Search results for: post-earthquake fire ignition (PEFI)
178 Effect of Fire on Structural Behavior of Normal and High Strength Concrete Beams
Authors: Alaa I. Arafa, Hemdan O. A. Said. Marwa A. M. Ali
Abstract:
This paper investigates and evaluates experimentally the structural behavior of high strength concrete (HSC) beams under fire and compares it with that of Normal strength concrete (NSC) beams. The main investigated parameters are: concrete compressive strength (300 or 600 kg/cm2); the concrete cover thickness (3 or 5 cm); the degree of temperature (room temperature or 600 oC); the type of cooling (air or water); and the fire exposure time (3 or 5 hours). Test results showed that the concrete compressive strength decreases significantly as the exposure time to fire increases.Keywords: Experimental, fire, high strength concrete beams, monotonic loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871177 Hybrid RANS-LES Simulation of In-Cylinder Air Flow for Different Engine Speeds at Fixed Intake Flow Pressure
Authors: L. V. Fui, A. Ulugbek, S. S. Dol
Abstract:
The in-cylinder flow and mixture formations are significant in view of today’s increasing concern on environmental issues and stringent emission regulations. In this paper, the numerical simulations of a SI engine at different engine speeds (2000-5000 rpm) at fixed intake flow pressure of 1 bar are studied using the AVL FIRE software. The simulation results show that when the engine speed at fixed intake flow pressure is increased, the volumetric efficiency of the engine decreases. This is due to a richer fuel conditions near the engine cylinder wall when engine speed is increased. Significant effects of impingement are also noted on the upper and side walls of the engine cylinder. These variations in mixture formation before ignition could affect the thermodynamics efficiency and specific fuel consumption that would lead to a reduced engine performance.
Keywords: AVL FIRE, fuel mass, IC engine, LES, RANS, turbulent intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420176 Fire Spread Simulation Tool for Cruise Vessels
Authors: Erik Hedin, Lars Strandén, Johannes Lundsten
Abstract:
In 2002 an amendment to SOLAS opened for lightweight material constructions in vessels if the same fire safety as in steel constructions could be obtained. FISPAT (FIreSPread Analysis Tool) is a computer application that simulates fire spread and fault injection in cruise vessels and identifies fire sensitive areas. It was developed to analyze cruise vessel designs and provides a method to evaluate network layout and safety of cruise vessels. It allows fast, reliable and deterministic exhaustive simulations and presents the result in a graphical vessel model. By performing the analysis iteratively while altering the cruise vessel design it can be used along with fire chamber experiments to show that the lightweight design can be as safe as a steel construction and that SOLAS regulations are fulfilled.Keywords: Fire spread, network, safety, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415175 Dimethyl Ether as an Ignition Improver for Hydrous Methanol Fuelled Homogeneous Charge Compression Ignition (HCCI) Engine
Authors: M. Venkatesan, N. Shenbaga Vinayaga Moorthi, R. Karthikeyan, A. Manivannan
Abstract:
Homogeneous Charge Compression (HCCI) Ignition technology has been around for a long time, but has recently received renewed attention and enthusiasm. This paper deals with experimental investigations of HCCI engine using hydrous methanol as a primary fuel and Dimethyl Ether (DME) as an ignition improver. A regular diesel engine has been modified to work as HCCI engine for this investigation. The hydrous methanol is inducted and DME is injected into a single cylinder engine. Hence, hydrous methanol is used with 15% water content in HCCI engine and its performance and emission behavior is documented. The auto-ignition of Methanol is enabled by DME. The quantity of DME varies with respect to the load. In this study, the experiments are conducted independently and the effect of the hydrous methanol on the engine operating limit, heat release rate and exhaust emissions at different load conditions are investigated. The investigation also proves that the Hydrous Methanol with DME operation reduces the oxides of Nitrogen and smoke to an extreme low level which is not possible by the direct injection CI engine. Therefore, it is beneficial to use hydrous methanol-DME HCCI mode while using hydrous methanol in internal Combustion Engines.
Keywords: Hydrous Methanol, Dimethyl ether, Performance, Emission and Combustion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504174 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease
Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg
Abstract:
Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.Keywords: Contrast analysis, early fire detection, video smoke detection, video surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583173 Experimental Investigation of Vessel Volume and Equivalence Ratio in Vented Gas
Authors: Rafiziana M. Kasmani, Gordon E. Andrews, Herodotos N. Phylaktou, Norazana Ibrahim, Roshafima R. Ali
Abstract:
An experiment of vented gas explosions involving two different cylinder vessel volumes (0.2 and 0.0065 m3) was reported, with equivalence ratio (Φ) ranged from 0.3 to 1.6. Both vessels were closed at the rear end and fitted at the other side with a circular orifice plate that gives a constant vent coefficient (K =Av/V2/3) of 16.4. It was shown that end ignition gives higher overpressures than central ignition, even though most of the published work on venting uses central ignition. For propane and ethylene, it is found that rich mixtures gave the highest overpressures and these mixtures are not considered in current vent design guidance; which the guideline is based on mixtures giving the maximum flame temperature. A strong influence of the vessel volume at constant K was found for methane, propane, ethylene and hydrogen-air explosions. It can be concluded that self- acceleration of the flame, which is dependent on the distance of a flame from the ignition and the ‘suction’ at the vent opening are significant factors affecting the vent flow during explosion development in vented gas explosion. This additional volume influence on vented explosions is not taken into account in the current vent design guidance.Keywords: Equivalence ratio, ignition position, self-acceleration flame, vented gas explosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804172 Study of Fire Propagation and Soot Flow in a Pantry Car of Railway Locomotive
Authors: Juhi Kaushik, Abhishek Agarwal, Manoj Sarda, Vatsal Sanjay, Arup Kumar Das
Abstract:
Fire accidents in trains bring huge disaster to human life and property. Evacuation becomes a major challenge in such incidents owing to confined spaces, large passenger density and trains moving at high speeds. The pantry car in Indian Railways trains carry inflammable materials like cooking fuel and LPG and electrical fittings. The pantry car is therefore highly susceptible to fire accidents. Numerical simulations have been done in a pantry car of Indian locomotive train using computational fluid dynamics based software. Different scenarios of a fire outbreak have been explored by varying Heat Release Rate per Unit Area (HRRPUA) of the fire source, introduction of exhaust in the cooking area, and taking a case of an air conditioned pantry car. Temporal statures of flame and soot have been obtained for each scenario and differences have been studied and reported. Inputs from this study can be used to assess casualties in fire accidents in locomotive trains and development of smoke control/detection systems in Indian trains.Keywords: Fire propagation, flame contour, pantry fire, soot flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812171 Application of UAS in Forest Firefighting for Detecting Ignitions and 3D Fuel Volume Estimation
Authors: Artur Krukowski, Emmanouela Vogiatzaki
Abstract:
The article presents results from the AF3 project “Advanced Forest Fire Fighting” focused on Unmanned Aircraft Systems (UAS)-based 3D surveillance and 3D area mapping using high-resolution photogrammetric methods from multispectral imaging, also taking advantage of the 3D scanning techniques from the SCAN4RECO project. We also present a proprietary embedded sensor system used for the detection of fire ignitions in the forest using near-infrared based scanner with weight and form factors allowing it to be easily deployed on standard commercial micro-UAVs, such as DJI Inspire or Mavic. Results from real-life pilot trials in Greece, Spain, and Israel demonstrated added-value in the use of UAS for precise and reliable detection of forest fires, as well as high-resolution 3D aerial modeling for accurate quantification of human resources and equipment required for firefighting.
Keywords: Forest wildfires, fuel volume estimation, 3D modeling, UAV, surveillance, firefighting, ignition detectors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 581170 Determining Fire Resistance of Wooden Construction Elements through Experimental Studies and Artificial Neural Network
Authors: Sakir Tasdemir, Mustafa Altin, Gamze Fahriye Pehlivan, Ismail Saritas, Sadiye Didem Boztepe Erkis, Selma Tasdemir
Abstract:
Artificial intelligence applications are commonly used in industry in many fields in parallel with the developments in the computer technology. In this study, a fire room was prepared for the resistance of wooden construction elements and with the mechanism here, the experiments of polished materials were carried out. By utilizing from the experimental data, an artificial neural network (ANN) was modelled in order to evaluate the final cross sections of the wooden samples remaining from the fire. In modelling, experimental data obtained from the fire room were used. In the developed system, the first weight of samples (ws-gr), preliminary cross-section (pcs-mm2), fire time (ft-minute), and fire temperature (t-oC) as input parameters and final cross-section (fcs-mm2) as output parameter were taken. When the results obtained from ANN and experimental data are compared after making statistical analyses, the data of two groups are determined to be coherent and seen to have no meaning difference between them. As a result, it is seen that ANN can be safely used in determining cross sections of wooden materials after fire and it prevents many disadvantages.
Keywords: Artificial neural network, final cross-section, fire retardant polishes, fire safety, wood resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959169 Research on a Forest Fire Spread Simulation Driven by the Wind Field in Complex Terrain
Authors: Ying Shang, Chencheng Wang
Abstract:
The wind field is the main driving factor for the spread of forest fires. For the simulation results of forest fire spread to be more accurate, it is necessary to obtain more detailed wind field data. Therefore, this paper studied the mountainous fine wind field simulation method coupled with WRF (Weather Research and Forecasting Model) and CFD (Computational Fluid Dynamics) to realize the numerical simulation of the wind field in a mountainous area with a scale of 30 m and a small measurement error. Local topographical changes have an important impact on the wind field. Based on the Rothermel fire spread model, a forest fire in Idaho in the western United States was simulated. The historical data proved that the simulation results had a good accuracy. They showed that the fire spread rate will decrease rapidly with time and then reach a steady state. After reaching a steady state, the fire spread growth area will not only be affected by the slope, but will also show a significant quadratic linear positive correlation with the wind speed change.
Keywords: Wind field, numerical simulation, forest fire spread, fire behavior model, complex terrain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 376168 Evaluation of Graph-based Analysis for Forest Fire Detections
Authors: Young Gi Byun, Yong Huh, Kiyun Yu, Yong Il Kim
Abstract:
Spatial outliers in remotely sensed imageries represent observed quantities showing unusual values compared to their neighbor pixel values. There have been various methods to detect the spatial outliers based on spatial autocorrelations in statistics and data mining. These methods may be applied in detecting forest fire pixels in the MODIS imageries from NASA-s AQUA satellite. This is because the forest fire detection can be referred to as finding spatial outliers using spatial variation of brightness temperature. This point is what distinguishes our approach from the traditional fire detection methods. In this paper, we propose a graph-based forest fire detection algorithm which is based on spatial outlier detection methods, and test the proposed algorithm to evaluate its applicability. For this the ordinary scatter plot and Moran-s scatter plot were used. In order to evaluate the proposed algorithm, the results were compared with the MODIS fire product provided by the NASA MODIS Science Team, which showed the possibility of the proposed algorithm in detecting the fire pixels.Keywords: Spatial Outlier Detection, MODIS, Forest Fire
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226167 The Indo-European and Old Iranian Fire and Its Relations with the Lur Fire
Authors: Behzad Moeini Sam, Sara Mohammadi Avandi, Afroz Kianpor
Abstract:
The rituals of fire among the Iranians originate in the general Proto-Indo-European and Indo-Iranian eras when they lived in regions known as the Pontic-Caspian (Indo-Europeans) and Kazakhstan (the Andronovo culture belonging to the Indo-Iranian tribes), and we can get to know about their vulgar heritage despite their separation from each other during several millennia. The early Aryan settlers of Iran had brought their cults to their new home and were bequeathed to them by their Indo-Iranian ancestors. Tradition speaks of several great sacred Iranian fires consecrated by the pre-Zoroastrian kings. Ātar or fire is comparable to the Vedic Agni Atar's functions and elaborately are delineated in the Later Avesta. This paper aims to show the fire cults among the Iranian Lur tribes who originate in the past. Therefore, it will be searched for rituals equally in Indo-European and Indo-Iranian Periods and Old Iranian Texts and their frequency among the Lur tribes. In addition to the library books, we tried to interview the chiefs of Lur tribes. Finally, we concluded that the fire among the Lur Tribes is a sequence of beliefs of the Proto-Indo-European and Indo-Iranian Periods reflected in Old and Middle Iranian texts.
Keywords: Indo-European, Ancient Iran, Fire, Lur, Zoroastrian.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 300166 Energy Based Temperature Profile for Heat Transfer Analysis of Concrete Section Exposed to Fire on One Side
Authors: Pattamad Panedpojaman
Abstract:
For fire safety purposes, the fire resistance and the structural behavior of reinforced concrete members are assessed to satisfy specific fire performance criteria. The available prescribed provisions are based on standard fire load. Under various fire scenarios, engineers are in need of both heat transfer analysis and structural analysis. For heat transfer analysis, the study proposed a modified finite difference method to evaluate the temperature profile within a cross section. The research conducted is limited to concrete sections exposed to a fire on their one side. The method is based on the energy conservation principle and a pre-determined power function of the temperature profile. The power value of 2.7 is found to be a suitable value for concrete sections. The temperature profiles of the proposed method are only slightly deviate from those of the experiment, the FEM and the FDM for various fire loads such as ASTM E 119, ASTM 1529, BS EN 1991-1-2 and 550 oC. The proposed method is useful to avoid incontinence of the large matrix system of the typical finite difference method to solve the temperature profile. Furthermore, design engineers can simply apply the proposed method in regular spreadsheet software.Keywords: temperature profile, finite difference method, concrete section, one-side fire exposed, energy conservation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075165 Thermoplastic Composites with Reduced Discoloration and Enhanced Fire-Retardant Property
Authors: Peng Cheng, Liqing Wei, Hongyu Chen, Ruomiao Wang
Abstract:
This paper discusses a light-weight reinforced thermoplastic (LWRT) composite with superior fire retardancy. This porous LWRT composite is manufactured using polyolefin, fiberglass, and fire retardant additives via a wet-lay process. However, discoloration of the LWRT can be induced by various mechanisms, which may be a concern in the building and construction industry. It is commonly understood that discoloration is strongly associated with the presence of phenolic antioxidant(s) and NOx. The over-oxidation of phenolic antioxidant(s) is probably the root-cause of the discoloration (pinking/yellowing). Hanwha Azdel, Inc. developed a LWRT with fire-retardant property of ASTM E84-Class A specification, as well as negligible discoloration even under harsh conditions. In addition, this thermoplastic material is suitable for secondary processing (e.g. compression molding) if necessary.Keywords: Discoloration, fire-retardant, thermoplastic composites, wet-lay process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791164 Impact Porous Dielectric Silica Gel for Operating Voltage and Power Discharge Reactor
Authors: E. Gnapowski, S. Gnapowski
Abstract:
This study examined the effect of porous dielectric silica gel the discharge ignition voltage and input power in a plasma reactor. For the experiment was used a plasma reactor with two mesh electrodes made of stainless steel with a mesh size of 0.1x0.1mm. The study analyzed and compared with parameters such as power, ignition and operation voltage of the reactor for two dielectrics a porous and glass. During experiment were observed several new phenomena conducted for porous dielectric. The first phenomenon was the reduction the ignition voltage discharge to volume around few hundred volts. Second it was increase input power six times more compared with power those obtained for the glass dielectric. Thirdly difference it is ΔV between ignition voltage Vi and operating voltage reactor Vm for porous dielectric it was 11%, while ΔV for the glass dielectric it was 60%. Also change the discharge characteristics from DBD for glass dielectric to the streamer resistance discharge for the porous dielectric.
Keywords: Input power, mesh electrodes, onset voltage, porous dielectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943163 Response Delay Model: Bridging the Gap in Urban Fire Disaster Response System
Authors: Sulaiman Yunus
Abstract:
The need for modeling response to urban fire disaster cannot be over emphasized, as recurrent fire outbreaks have gutted most cities of the world. This necessitated the need for a prompt and efficient response system in order to mitigate the impact of the disaster. Promptness, as a function of time, is seen to be the fundamental determinant for efficiency of a response system and magnitude of a fire disaster. Delay, as a result of several factors, is one of the major determinants of promptgness of a response system and also the magnitude of a fire disaster. Response Delay Model (RDM) intends to bridge the gap in urban fire disaster response system through incorporating and synchronizing the delay moments in measuring the overall efficiency of a response system and determining the magnitude of a fire disaster. The model identified two delay moments (pre-notification and Intra-reflex sequence delay) that can be elastic and collectively plays a significant role in influencing the efficiency of a response system. Due to variation in the elasticity of the delay moments, the model provides for measuring the length of delays in order to arrive at a standard average delay moment for different parts of the world, putting into consideration geographic location, level of preparedness and awareness, technological advancement, socio-economic and environmental factors. It is recommended that participatory researches should be embarked on locally and globally to determine standard average delay moments within each phase of the system so as to enable determining the efficiency of response systems and predicting fire disaster magnitudes.
Keywords: Delay moment, fire disaster, reflex sequence, response, response delay moment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733162 Numerical Simulations of Fire in Typical Air Conditioned Railway Coach
Authors: Manoj Sarda, Abhishek Agarwal, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das
Abstract:
Railways in India remain primary mode of transport having one of the largest networks in the world and catering to billions of transits yearly. Catastrophic economic damage and loss to life is encountered over the past few decades due to fire to locomotives. Study of fire dynamics and fire propagation plays an important role in evacuation planning and reducing losses. Simulation based study of propagation of fire and soot inside an air conditioned coach of Indian locomotive is done in this paper. Finite difference based solver, Fire Dynamic Simulator (FDS) version 6 has been used for analysis. A single air conditioned 3 tier coupe closed to ambient surroundings by glass windows having occupancy for 8 people is the basic unit of the domain. A system of three such coupes combined is taken to be fundamental unit for the entire study to resemble effect to an entire coach. Analysis of flame and soot contours and concentrations is done corresponding to variations in heat release rate per unit volume (HRRPUA) of fire source, variations in conditioned air velocity being circulated inside coupes by vents and an alternate fire initiation and propagation mechanism via ducts. Quantitative results of fractional area in top and front view of the three coupes under fire and smoke are obtained using MATLAB (IMT). Present simulations and its findings will be useful for organizations like Commission of Railway Safety and others in designing and implementing safety and evacuation measures.Keywords: Air-conditioned coaches, fire propagation, flame contour, soot flow, train fire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295161 Fire Resilient Cities: The Impact of Fire Regulations, Technological and Community Resilience
Authors: Fanny Guay
Abstract:
Building resilience, sustainable buildings, urbanization, climate change, resilient cities, are just a few examples of where the focus of research has been in the last few years. It is obvious that there is a need to rethink how we are building our cities and how we are renovating our existing buildings. However, the question remaining is how can we assure that we are building sustainable yet resilient cities? There are many aspects one can touch upon when discussing resilience in cities, but after the event of Grenfell in June 2017, it has become clear that fire resilience must be a priority. We define resilience as a holistic approach including communities, society and systems, focusing not only on resisting the effects of a disaster, but also how it will cope and recover from it. Cities are an example of such a system, where components such as buildings have an important role to play. A building on fire will have an impact on the community, the economy, the environment, and so the entire system. Therefore, we believe that fire and resilience go hand in hand when we discuss building resilient cities. This article aims at discussing the current state of the concept of fire resilience and suggests actions to support the built of more fire resilient buildings. Using the case of Grenfell and the fire safety regulations in the UK, we will briefly compare the fire regulations in other European countries, more precisely France, Germany and Denmark, to underline the difference and make some suggestions to increase fire resilience via regulation. For this research, we will also include other types of resilience such as technological resilience, discussing the structure of buildings itself, as well as community resilience, considering the role of communities in building resilience. Our findings demonstrate that to increase fire resilience, amending existing regulations might be necessary, for example, how we performed reaction to fire tests and how we classify building products. However, as we are looking at national regulations, we are only able to make general suggestions for improvement. Another finding of this research is that the capacity of the community to recover and adapt after a fire is also an essential factor. Fundamentally, fire resilience, technological resilience and community resilience are closely connected. Building resilient cities is not only about sustainable buildings or energy efficiency; it is about assuring that all the aspects of resilience are included when building or renovating buildings. We must ask ourselves questions as: Who are the users of this building? Where is the building located? What are the components of the building, how was it designed and which construction products have been used? If we want to have resilient cities, we must answer these basic questions and assure that basic factors such as fire resilience are included in our assessment.Keywords: Buildings, cities, fire, resilience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880160 Large Eddy Simulation of Compartment Fire with Gas Combustible
Authors: Mliki Bouchmel, Abbassi Mohamed Ammar, Kamel Geudri, Chrigui Mouldi, Omri Ahmed
Abstract:
The objective of this work is to use the Fire Dynamics Simulator (FDS) to investigate the behavior of a kerosene small-scale fire. FDS is a Computational Fluid Dynamics (CFD) tool developed specifically for fire applications. Throughout its development, FDS is used for the resolution of practical problems in fire protection engineering. At the same time FDS is used to study fundamental fire dynamics and combustion. Predictions are based on Large Eddy Simulation (LES) with a Smagorinsky turbulence model. LES directly computes the large-scale eddies and the sub-grid scale dissipative processes are modeled. This technique is the default turbulence model which was used in this study. The validation of the numerical prediction is done using a direct comparison of combustion output variables to experimental measurements. Effect of the mesh size on the temperature evolutions is investigated and optimum grid size is suggested. Effect of width openings is investigated. Temperature distribution and species flow are presented for different operating conditions. The effect of the composition of the used fuel on atmospheric pollution is also a focus point within this work. Good predictions are obtained where the size of the computational cells within the fire compartment is less than 1/10th of the characteristic fire diameter.
Keywords: Large eddy simulation, Radiation, Turbulence, combustion, pollution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177159 Comparative Parametric and Emission Characteristics of Single Cylinder Spark Ignition Engine Using Gasoline, Ethanol, and H₂O as Micro Emulsion Fuels
Authors: Ufaith Qadri, M Marouf Wani
Abstract:
In this paper, the performance and emission characteristics of a Single Cylinder Spark Ignition engine have been investigated. The research is based on micro emulsion application as fuel in a gasoline engine. We have analyzed many micro emulsion compositions in various proportions, for predicting the performance of the Spark Ignition engine. This new technology of fuel modifications is emerging very rapidly as lot of research is going on in the field of micro emulsion fuels in Compression Ignition engines, but the micro emulsion fuel used in a Gasoline engine is very rare. The use of micro emulsion as fuel in a Spark Ignition engine is virtually unexplored. So, our main goal is to see the performance and emission characteristics of micro emulsions as fuel, in Spark Ignition engines, and finding which composition is more efficient. In this research, we have used various micro emulsion fuels whose composition varies for all the three blends, and their performance and emission characteristic were predicted in AVL Boost software. Conventional Gasoline fuel 90%, 80% and 85% were blended with co-surfactant Ethanol in different compositions, and water was used as an additive for making it crystal clear transparent micro emulsion fuel, which is thermodynamically stable. By comparing the performances of engines, the power has shown similarity for micro emulsion fuel and conventional Gasoline fuel. On the other hand, Torque and BMEP shows increase for all the micro emulsion fuels. Micro emulsion fuel shows higher thermal efficiency and lower Specific Fuel Consumption for all the compositions as compared to the Gasoline fuel. Carbon monoxide and Hydro carbon emissions were also measured. The result shows that emissions decrease for all the composition of micro emulsion fuels, and proved to be the most efficient fuel both in terms of performance and emission characteristics.
Keywords: AVL Boost, emissions, micro emulsion, performance, SI engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852158 Investigation of Flame and Soot Propagation in Non-Air Conditioned Railway Locomotives
Authors: Abhishek Agarwal, Manoj Sarda, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das
Abstract:
Propagation of fire through a non-air conditioned railway compartment is studied by virtue of numerical simulations. Simultaneous computational fire dynamics equations, such as Navier-Stokes, lumped species continuity, overall mass and energy conservation, and heat transfer are solved using finite volume based (for radiation) and finite difference based (for all other equations) solver, Fire Dynamics Simulator (FDS). A single coupe with an eight berth occupancy is used to establish the numerical model, followed by the selection of a three coupe system as the fundamental unit of the locomotive compartment. Heat Release Rate Per Unit Area (HRRPUA) of the initial fire is varied to consider a wide range of compartmental fires. Parameters, such as air inlet velocity relative to the locomotive at the windows, the level of interaction with the ambiance and closure of middle berth are studied through a wide range of numerical simulations. Almost all the loss of lives and properties due to fire breakout can be attributed to the direct or indirect exposure to flames or to the inhalation of toxic gases and resultant suffocation due to smoke and soot. Therefore, the temporal stature of fire and smoke are reported for each of the considered cases which can be used in the present or extended form to develop guidelines to be followed in case of a fire breakout.Keywords: Fire dynamics, flame propagation, locomotive fire, soot flow pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138157 Effects of Engine Parameters and Fuel Compositions on Ignition Timing and Emission Characteristics of HCCI Engine
Authors: Fridhi Hadia, Soua Wadhah, Hidouri Ammar, Omri Ahmed
Abstract:
In this research, the effects of the engine parameters like compression ratios and steam injection on igniting timing and emission characteristics have been investigated numerically. The in-cylinder temperature and pressure at four different compression ratios have been compared with numerical results, and they show a good agreement with the published data. Two different fuels have been used in this study: Isooctane (IC8H18), and ethanol (C2H5OH). The increasing of the compression ratio (CR) advances the ignition timing, decreases the burn duration and increases the temperature and the pressure. The injection of water vapor lower than 40% decreased the peak temperature and slowed the combustion rate which leads to a lower NOx emission.
Keywords: Compression ratio, emission, HCCI engine, ignition timing, steam injection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871156 The Experimental and Statistical Analysis of the Wood Strength against Pressure According to Different Wood Types, Sizes, and Coatings
Authors: Mustafa Altin, Sakir Tasdemir, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Sevda Altin
Abstract:
In this study, an experiment was executed related to the strength of wooden materials which have been commonly used both in the past and present against pressure and whether fire retardant materials used against fire have any effects or not. Totally 81 samples which included 3 different wood species, 3 different sizes, 2 different fire retardants and 2 unprocessed samples were prepared. Compressive pressure tests were applied to the prepared samples, their variance analyses were executed in accordance with the obtained results and it was aimed to determine the most convenient wooden materials and fire-retardant coating material. It was also determined that the species of wood and the species of coating caused the decrease and/or increase in the resistance against pressure.
Keywords: Resistance of wood against pressure, species of wood, variance analysis, wood coating, wood fire safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715155 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode
Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan
Abstract:
Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.Keywords: Cathode spot, vacuum arc discharge, transverse magnetic field, random walk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398154 Nano Composite of Clay and Modified Ketonic Resin as Fire Retardant Polyol for Polyurethane
Authors: D. Önen, N. Kızılcan, B. Yıldız, A. Akar
Abstract:
In situ modified cyclohexanone-formaldehyde resins were prepared by addition of alendronic acid during resin preparation. Clay nanocomposites in ketonic resins were achieved by adding clay into the flask at the beginning of the resin preparation. The prepared resins were used for the synthesis of fire resistant polyurethanes foam. Both phosphorous containing modifier compound alendronic acid and nanoclay increases fire resistance of the cyclohexanone-formaldehyde resin thus polyurethane produced from these resins. The effect of the concentrations of alendronic acid and clay on the fire resistance and physical properties of polyurethanes was studied.
Keywords: Alendronic acid, clay, ketonic resin, polyurethane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2947153 Temperature Related Alterations to Mineral Levels and Crystalline Structure in Porcine Long Bone: Intense Heat vs. Open Flame
Authors: Caighley Logan, Suzzanne McColl
Abstract:
The outcome of fire related fatalities, along with other research, has found fires can have a detrimental effect to the mineral and crystalline structures within bone. This study focused on the mineral and crystalline structures within porcine bone samples to analyse the changes caused, with the intent of effectively ‘reverse engineering’ the data collected from burned bone samples to discover what may have happened. Using Fourier Transform Infrared (FTIR), and X-Ray Fluorescence (XRF), the data were collected from a controlled source of intense heat (muffle furnace) and an open fire, based in a living room setting in a standard size shipping container (2.5 m x 2.4 m) of a similar temperature with a known ignition source, a gasoline lighter. This approach is to analyse the changes to the samples and how the changes differ depending on the heat source. Results have found significant differences in the levels of remaining minerals for each type of heat/burning (p =< 0.001), particularly Phosphorus and Calcium, this also includes notable additions of absorbed elements and minerals from the surrounding materials, i.e., Cerium (Ce), Bromine (Br) and Neodymium (Ne). The analysis techniques included provide validated results in conjunction with previous studies.
Keywords: Forensic anthropology, thermal alterations, porcine bone, FTIR, XRF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204152 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams
Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim
Abstract:
When high strength reinforced concrete is exposed to high temperature due to a fire, deteriorations occur such as loss in strength and elastic modulus, cracking and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. From four-point loading test, results show that maximum loads of the rehabilitated beams are similar to or higher than those of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. The parameters are the fire cover thickness and strengths of repairing mortar. Analytical results show good rehabilitation effects, when the results predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric cement mortar. The predictions from the finite element (FE) models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.Keywords: Fire, High strength concrete, Rehabilitation, Reinforced concrete beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375151 A Simulation Study of Direct Injection Compressed Natural Gas Spark Ignition Engine Performance Utilizing Turbulent Jet Ignition with Controlled Air Charge
Authors: Siyamak Ziyaei, Siti Khalijah Mazlan, Petros Lappas
Abstract:
Compressed natural gas (CNG) is primarily composed of methane (CH4), and has a lower carbon to hydrogen ratio than other hydrocarbon fuels such as gasoline (C8H18) and diesel (C12H23). Consequently, it has the potential to reduce CO2 emissions compared to conventional fuels. Although Natural Gas (NG) has environmental advantages compared to other hydrocarbon fuels, its main component, CH4, burns at a slower rate compared to the conventional fuels. A higher pressure and leaner cylinder environment will unravel the slow burn characteristic of CH4. Lean combustion and high compression ratios are well-known methods for increasing the efficiency of internal combustion engines. In order to achieve successful a CNG lean combustion in Spark Ignition (SI) engines, a strong ignition system is essential to avoid engine misfires, especially in ultra-lean conditions. Turbulent Jet Ignition (TJI) is an ignition system that employs a pre-combustion chamber to ignite the lean fuel mixture in the main combustion chamber using a fraction of the total fuel per cycle. TJI enables ultra-lean combustion by providing distributed ignition sites through orifices. The fast burn rate provided by TJI enables the ordinary SI engine to be comparable to other combustion systems such as Homogeneous Charge Compression Ignition (HCCI) or Controlled Auto-Ignition (CAI) in terms of thermal efficiency, through the increased levels of dilution without the need of sophisticated control systems. Due to the physical geometry of TJI, which contains small orifices that connect the pre-chamber to the main chamber, providing the right mixture of fuel and air has been identified as a key challenge due to the insufficient amount of air that is pushed into the pre-chamber during each compression stroke. There is also the problem of scavenging which contributed to the factors that reduces the TJI performance. Combustion residual gases such as CO2, CO and NOx from the previous combustion cycle dilute the pre-chamber fuel-air mixture preventing rapid combustion in the pre-chamber. An air-controlled active TJI is presented in this paper in order to address these issues. By supplying air into the pre-chamber at a sufficient pressure, residual gases are exhausted, and the air-fuel ratio is controlled within the pre-chamber, thereby improving the quality of the combustion. An investigation of the 3D combustion characteristics of a CNG-fueled SI engine using a direct injection fuelling strategy employing an air channel in the prechamber is presented in this paper. Experiments and simulations were performed at the Worldwide Mapping Point (WWMP) at 1500 revolutions per minute (rpm), 3.3 bar Indicated Mean Effective Pressure (IMEP), using only conventional spark plugs as a baseline. With a validated baseline engine simulation, the settings were set for all simulation scenarios at λ=1. Following that, the pre-chambers with and without an auxiliary fuel supply were simulated. In the study of (DI-CNG) SI engine, active TJI was observed to perform better than passive TJI and conventional spark plug ignition. In conclusion, the active pre-chamber with an air channel demonstrated an improved thermal efficiency (ηth) over other counterparts and conventional spark ignition systems.
Keywords: Turbulent Jet Ignition, Active Air Control Turbulent Jet Ignition, Pre-chamber ignition system, Active and Passive Pre-chamber, thermal efficiency, methane combustion, internal combustion engine combustion emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172150 Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams
Authors: Yeo Kyeong Lee, Hae Won Min, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin
Abstract:
In recent years, fire accidents have been steadily increased and the amount of property damage caused by the accidents has gradually raised. Damaging building structure, fire incidents bring about not only such property damage but also strength degradation and member deformation. As a result, the building structure undermines its structural ability. Examining the degradation and the deformation is very important because reusing the building is more economical than reconstruction. Therefore, engineers need to investigate the strength degradation and member deformation well, and make sure that they apply right rehabilitation methods. This study aims at evaluating deformation characteristics of fire damaged and rehabilitated normal strength concrete beams through both experiments and finite element analyses. For the experiments, control beams, fire damaged beams and rehabilitated beams are tested to examine deformation characteristics. Ten test beam specimens with compressive strength of 21MPa are fabricated and main test variables are selected as cover thickness of 40mm and 50mm and fire exposure time of 1 hour or 2 hours. After heating, fire damaged beams are air-recurred for 2 months and rehabilitated beams are repaired with polymeric cement mortar after being removed the fire damaged concrete cover. All beam specimens are tested under four points loading. FE analyses are executed to investigate the effects of main parameters applied to experimental study. Test results show that both maximum load and stiffness of the rehabilitated beams are higher than those of the fire damaged beams. In addition, predicted structural behaviors from the analyses also show good rehabilitation effect and the predicted load-deflection curves are similar to the experimental results. For the further, the proposed analytical method can be used to predict deformation characteristics of fire damaged and rehabilitated concrete beams without suffering from time and cost consuming of experimental process.Keywords: Fire, Normal strength concrete, Rehabilitation, Reinforced concrete beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387149 Reaction to the Fire of a Composite Material the Base of Scrapes of Tires End Latex for Thermal Isolation
Authors: E. T. L. Cöuras Ford, V. A. C. Vale, J. U. L. Mendes, R. M. Nascimento
Abstract:
The great majority of the applications of thermal isolation in the strip of drops and averages temperatures (up to 200ºC), it is made of materials aggressive nature, such an as glass wool, rock wool, polystyrene, EPS among others. Such materials, in spite of the effectiveness in the retention of the flow of heat, possess considerable cost and when discarded they are long years to be to decompose. In that context, trying to adapt the world politics the about of the preservation of the environment, a study began with intention of developing a material composite, with properties of thermal, originating from insulating industrial residues. In this research, the behavior of the composite was analyzed, as submitted the fire. For this, the reaction rehearsals were accomplished to the fire for the composites 2:1; 1:1; 1:2 and for the Latex, based in the "con" experiment in agreement with the norm ASTM - E 1334 - 90. As consequence, in function of the answers of the system was possible to be observed to the acting of each mixture proportion.Keywords: Composite, Latex, Reaction to the fire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035