Search results for: penetration
145 Investigation on Ship Collision Phenomena by Analytical and Finite Element Methods
Authors: Abuzar.Abazari, Saeed. Ziaei-Rad, Hoseein. Dalayeli
Abstract:
Collision is considered as a time-depended nonlinear dynamic phenomenon. The majority of researchers have focused on deriving the resultant damage of the ship collisions via analytical, experimental, and finite element methods.In this paper, first, the force-penetration curve of a head collision on a container ship with rigid barrier based on Yang and Pedersen-s methods for internal mechanic section is studied. Next, the obtained results from different analytical methods are compared with each others. Then, through a simulation of the container ship collision in Ansys Ls-Dyna, results from finite element approach are compared with analytical methods and the source of errors is discussed. Finally, the effects of parameters such as velocity, and angle of collision on the forcepenetration curve are investigated.Keywords: Ship collision, Force-penetration curve, Damage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128144 Improving Urban Mobility: Analyzing Impacts of Connected and Automated Vehicles on Traffic and Emissions
Authors: Saad Roustom, Hajo Ribberink
Abstract:
In most cities in the world, traffic has increased strongly over the last decades, causing high levels of congestion and deteriorating inner-city air quality. This study analyzes the impact of connected and automated vehicles (CAVs) on traffic performance and greenhouse gas (GHG) emissions under different CAV penetration rates in mixed fleet environments of CAVs and driver-operated vehicles (DOVs) and under three different traffic demand levels. Utilizing meso-scale traffic simulations of the City of Ottawa, Canada, the research evaluates the traffic performance of three distinct CAV driving behaviors—Cautious, Normal, and Aggressive—at penetration rates of 25%, 50%, 75%, and 100%, across three different traffic demand levels. The study employs advanced correlation models to estimate GHG emissions. The results reveal that Aggressive and Normal CAVs generally reduce traffic congestion and GHG emissions, with their benefits being more pronounced at higher penetration rates (50% to 100%) and elevated traffic demand levels. On the other hand, Cautious CAVs exhibit an increase in both traffic congestion and GHG emissions. However, results also show deteriorated traffic flow conditions when introducing 25% penetration rates of any type of CAVs. Aggressive CAVs outperform all other driving at improving traffic flow conditions and reducing GHG emissions. The findings of this study highlight the crucial role CAVs can play in enhancing urban traffic performance and mitigating the adverse impact of transportation on the environment. This research advocates for the adoption of effective CAV-related policies by regulatory bodies to optimize traffic flow and reduce GHG emissions. By providing insights into the impact of CAVs, this study aims to inform strategic decision-making and stimulate the development of sustainable urban mobility solutions.
Keywords: Connected and automated vehicles, congestion, GHG emissions, mixed fleet environment, traffic performance, traffic simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 110143 Effect of Zinc Oxide on Characteristics of Active Flux TIG Welds of 1050 Aluminum Plates
Authors: H. Fazlinejad, A. Halvaee
Abstract:
In this study, characteristics of ATIG welds using ZnO flux on aluminum was investigated and compared with TIG welds. Autogenously AC-ATIG bead on plate welding was applied on Al1050 plate with a coating of ZnO as the flux. Different levels of welding current and flux layer thickness was considered to study the effect of heat input and flux quantity on ATIG welds and was compared with those of TIG welds. Geometrical investigation of the weld cross sections revealed that penetration depth of the ATIG welds with ZnO flux, was increased up to 2 times in some samples compared to the TIG welds. Optical metallographic and Scanning Electron Microscopy (SEM) observations revealed similar microstructures in TIG and ATIG welds. Composition of the ATIG welds slag was also analyzed using X-ray diffraction. In both TIG and ATIG samples, the lowest values of microhardness were observed in the HAZ.
Keywords: ATIG, active flux, weld penetration, Al 1050, ZnO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832142 Red Diode Laser in the Treatment of Epidermal Diseases in PDT
Authors: Farhad H. Mustafa, Mohamad S. Jaafar , Asaad H. Ismail, Ahamad F. Omar, Zahra A. Timimi, Hend A. A. Houssein
Abstract:
The process of laser absorption in the skin during laser irradiation was a critical point in medical application treatments. Delivery the correct amount of laser light is a critical element in photodynamic therapy (PDT). More amounts of laser light able to affect tissues in the skin and small amount not able to enhance PDT procedure in skin. The knowledge of the skin tone laser dependent distribution of 635 nm radiation and its penetration depth in skin is a very important precondition for the investigation of advantage laser induced effect in (PDT) in epidermis diseases (psoriasis). The aim of this work was to estimate an optimum effect of diode laser (635 nm) on the treatment of epidermis diseases in different color skin. Furthermore, it is to improve safety of laser in PDT in epidermis diseases treatment. Advanced system analytical program (ASAP) which is a new approach in investigating the PDT, dependent on optical properties of different skin color was used in present work. A two layered Realistic Skin Model (RSM); stratum corneum and epidermal with red laser (635 nm, 10 mW) were used for irradiative transfer to study fluence and absorbance in different penetration for various human skin colors. Several skin tones very fair, fair, light, medium and dark are used to irradiative transfer. This investigation involved the principles of laser tissue interaction when the skin optically injected by a red laser diode. The results demonstrated that the power characteristic of a laser diode (635 nm) can affect the treatment of epidermal disease in various color skins. Power absorption of the various human skins were recorded and analyzed in order to find the influence of the melanin in PDT treatment in epidermal disease. A two layered RSM show that the change in penetration depth in epidermal layer of the color skin has a larger effect on the distribution of absorbed laser in the skin; this is due to the variation of the melanin concentration for each color.Keywords: Photodynamic therapy, Realistic skin model, Laser, Light penetration, simulation, Optical properties of skin, Melanin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377141 Techno-Economic Analysis of Motor-Generator Pair System and Virtual Synchronous Generator for Providing Inertia of Power System
Authors: Zhou Yingkun, Xu Guorui, Wei Siming, Huang Yongzhang
Abstract:
With the increasing of the penetration of renewable energy in power system, the whole inertia of the power system is declining, which will endanger the frequency stability of the power system. In order to enhance the inertia, virtual synchronous generator (VSG) has been proposed. In addition, the motor-generator pair (MGP) system is proposed to enhance grid inertia. Both of them need additional equipment to provide instantaneous energy, so the economic problem should be considered. In this paper, the basic working principle of MGP system and VSG are introduced firstly. Then, the technical characteristics and economic investment of MGP/VSG are compared by calculation and simulation. The results show that the MGP system can provide same inertia with less cost than VSG.
Keywords: High renewable energy penetration, inertia of power system, virtual synchronous generator, motor-generator pair system, techno-economic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259140 Numerical Simulation of Diesel Sprays under Hot Bomb Conditions
Authors: Ishtiaq A. Chaudhry, Zia R Tahir, F. A. Siddiqui, F. Noor, M. J. Rashid
Abstract:
It has experimentally been proved that the performance of compression ignition (C.I.) engine is spray characteristics related. In modern diesel engine the spray formation and the eventual combustion process are the vital processes that offer more challenges towards enhancing the engine performance. In the present work the numerical simulation has been carried out for evaporating diesel sprays using Fluent software. For computational fluid dynamics simulation “Meshing” is done using Gambit software before transmitting it into Fluent. The simulation is carried out using hot bomb conditions under varying chamber conditions such as gas pressure, nozzle diameter and fuel injection pressure. For comparison purpose, the numerical simulations the chamber conditions were kept the same as that of the experimental data. At varying chamber conditions the spray penetration rates are compared with the existing experimental results.
Keywords: Evaporating diesel sprays, Penetration rates, Hot bomb conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184139 Smart Grids in Morocco: An Outline of the Recent Developments, Key Drivers, and Recommendations for Future Implementation
Authors: M. Laamim, A. Benazzouz, A. Rochd, A. Ghennioui, A. El Fadili, M. Benzaazoua
Abstract:
Smart grids have recently sparked a lot of interest in the energy sector as they allow for the modernization and digitization of the existing power infrastructure. Smart grids have several advantages in terms of reducing the environmental impact of generating power from fossil fuels due to their capacity to integrate large amounts of distributed energy resources. On the other hand, smart grid technologies necessitate many field investigations and requirements. This paper focuses on the major difficulties that governments face around the world and compares them to the situation in Morocco. Also presented in this study are the current works and projects being developed to improve the penetration of smart grid technologies into the electrical system. Furthermore, the findings of this study will be useful to promote the smart grid revolution in Morocco, as well as to construct a strong foundation and develop future needs for better penetration of technologies that aid in the integration of smart grid features.
Keywords: Smart grids, microgrids, virtual power plants, digital twin, distributed energy resources, vehicle-to-grid, advanced metering infrastructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771138 Verification Process of Cylindrical Contact Force Models for Internal Contact Modeling
Authors: Cândida M. Pereira, Amílcar L. Ramalho, Jorge A. Ambrósio
Abstract:
In the numerical solution of the forward dynamics of a multibody system, the positions and velocities of the bodies in the system are obtained first. With the information of the system state variables at each time step, the internal and external forces acting on the system are obtained by appropriate contact force models if the continuous contact method is used instead of a discrete contact method. The local deformation of the bodies in contact, represented by penetration, is used to compute the contact force. The ability and suitability with current cylindrical contact force models to describe the contact between bodies with cylindrical geometries with particular focus on internal contacting geometries involving low clearances and high loads simultaneously is discussed in this paper. A comparative assessment of the performance of each model under analysis for different contact conditions, in particular for very different penetration and clearance values, is presented. It is demonstrated that some models represent a rough approximation to describe the conformal contact between cylindrical geometries because contact forces are underestimated.Keywords: Clearance joints, Contact mechanics, Contact dynamics, Internal cylindrical contact, Multibody dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321137 Effects of Preparation Conditions on the Properties of Crumb Rubber Modified Binder
Authors: Baha Vural Kök, Mehmet Yilmaz, Mustafa Akpolat, Cihat Sav
Abstract:
Various types of additives are used frequently in order to improve the rheological and mechanical properties of bituminous mixtures. Small devices instead of full scale machines are used for bitumen modification in the laboratory. These laboratory scale devices vary in terms of their properties such as mixing rate, mixing blade and the amount of binder. In this study, the effect of mixing rate and time during the bitumen modification processes on conventional and rheological properties of pure and crumb rubber modified binder were investigated. Penetration, softening point, rotational viscosity (RV) and dynamic shear rheometer (DSR) tests were applied to pure and CR modified bitumen. It was concluded that the penetration and softening point test did not show the efficiency of CR obtained by different mixing conditions. Besides, oxidation that occurred during the preparation processes plays a great part in the improvement effects of the modified binder.
Keywords: Bitumen, crumb rubber, modification, rheological properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982136 Investigating the Impact of Wind Speed on Active and Reactive Power Penetration to the Distribution Network
Authors: Sidhartha Panda, N.P.Padhy
Abstract:
Wind power is among the most actively developing distributed generation (DG) technology. Majority of the wind power based DG technologies employ wind turbine induction generators (WTIG) instead of synchronous generators, for the technical advantages like: reduced size, increased robustness, lower cost, and increased electromechanical damping. However, dynamic changes of wind speed make the amount of active/reactive power injected/drawn to a WTIG embedded distribution network highly variable. This paper analyzes the effect of wind speed changes on the active and reactive power penetration to the wind energy embedded distribution network. Four types of wind speed changes namely; constant, linear change, gust change and random change of wind speed are considered in the analysis. The study is carried out by three-phase, non-linear, dynamic simulation of distribution system component models. Results obtained from the investigation are presented and discussed.
Keywords: Wind turbine induction generator, distribution network, active and reactive power, wind speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449135 Flow Visualization of Angled Supersonic Jets into a Supersonic Cross Flow
Authors: Yan Shao, Jin Zhou, Lin Lai, Haiyan Wu, Jing Lei
Abstract:
This paper describes Nano-particle based Planar Laser Scattering (NPLS) flow visualization of angled supersonic jets into a supersonic cross flow based on the HYpersonic Low TEmperature (HYLTE) nozzle which was widely used in DF chemical laser. In order to investigate the non-reacting flowfield in the HYLTE nozzle, a testing section with windows was designed and manufactured. The impact of secondary fluids orifice separation on mixing was examined. For narrow separation of orifices, the secondary fuel penetration increased obviously compared to diluent injection, which means smaller separation of diluent and fuel orifices would enhance the mixing of fuel and oxidant. Secondary injections with angles of 30, 40 and 50 degrees were studied. It was found that the injectant penetration increased as the injection angle increased, while the interfacial surface area to entrain the freestream fluid is largest when the injection angle is 40 degree.Keywords: HYLTE nozzle, NPLS, supersonic mixing, transverse injection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843134 Development of an Impregnated Diamond Bit with an Improved Rate of Penetration
Authors: Tim Dunne, Weicheng Li, Chris Cheng, Qi Peng
Abstract:
Deeper petroleum reservoirs are more challenging to exploit due to the high hardness and abrasive characteristics of the formations. A cutting structure that consists of particulate diamond impregnated in a supporting matrix is found to be effective. Diamond impregnated bits are favored in these applications due to the higher thermal stability of the matrix material. The diamond particles scour or abrade away concentric grooves while the rock formation adjacent to the grooves is fractured and removed. The matrix material supporting the diamond will wear away, leaving the superficial dull diamonds to fall out. The matrix material wear will expose other embedded intact sharp diamonds to continue the operation. Minimizing the erosion effect on the matrix is an important design consideration, as the life of the bit can be extended by preventing early diamond pull-out. A careful balancing of the key parameters, such as diamond concentration, tungsten carbide and metal binder must be considered during development. Described herein is the design of experiment for developing and lab testing 8 unique samples. ASTM B611 wear testing was performed to benchmark the material performance against baseline products, with further scanning electron microscopy and microhardness evaluations. The recipe S5 with diamond 25/35 mesh size, narrow size distribution, high concentration blended with fine tungsten carbide and Co-Cu-Fe-P metal binder has the best performance, which shows 19% improvement in the ASTM B611 wear test compared with the reference material. In the field trial, the rate of penetration (ROP) is measured as 15 m/h, compared to 9.5, 7.8, and 6.8 m/h of other commercial impregnated bits in the same formation. A second round of optimizing recipe S5 for a higher wear resistance is further reported.
Keywords: Diamond containing material, grit hot press insert, impregnated diamond, insert, rate of penetration, ultrahard formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 374133 Investigating the Properties of Asphalt and Asphalt Mixture Based on the Effect of Waste Toner
Authors: P. I. Itoua, D. Sun, S. Shen
Abstract:
This study aimed at investigating the properties of asphalt and mix asphalt based on the effects of waste toner sources (WT1 and WT2) with 8% dosage waste toner powders (WT). The test results included penetration, softening points, ductility, G*sinδ, G*/sinδ, Ideal cracking test (IDEAL-CT), and Ideal shear rutting test (IDEAL-RT). The results showed that the base binder with WT2 had a significantly higher viscosity value compared to the WT1 modified binder, and thus, higher energy for mixing and compaction is needed. Furthermore, the results of penetration, softening points, G*sinδ, and G*/sinδ were all affected by waste toner type. In terms of asphalt mixture, the IDEAL-RT test revealed that the addition of waste toner improved the rutting resistance of the asphalt mixture regardless of toner type. Further, CTindex values for waste toner-modified asphalt mixtures show no significant difference. Above all, WT-modified asphalt mixtures produced by the wet process have better rutting performance.
Keywords: Waste toner, waste toner-modified asphalt, asphalt mixture properties, IDEAL-RT test, IDEAL-CT test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142132 Impact of Increasing Distributed Solar PV Systems on Distribution Networks in South Africa
Authors: Aradhna Pandarum
Abstract:
South Africa is experiencing an exponential growth of distributed solar PV installations. This is due to various factors with the predominant one being increasing electricity tariffs along with decreasing installation costs, resulting in attractive business cases to some end-users. Despite there being a variety of economic and environmental advantages associated with the installation of PV, their potential impact on distribution grids has yet to be thoroughly investigated. This is especially true since the locations of these units cannot be controlled by Network Service Providers (NSPs) and their output power is stochastic and non-dispatchable. This report details two case studies that were completed to determine the possible voltage and technical losses impact of increasing PV penetration in the Northern Cape of South Africa. Some major impacts considered for the simulations were ramping of PV generation due to intermittency caused by moving clouds, the size and overall hosting capacity and the location of the systems. The main finding is that the technical impact is different on a constrained feeder vs a non-constrained feeder. The acceptable PV penetration level is much lower for a constrained feeder than a non-constrained feeder, depending on where the systems are located.
Keywords: Medium voltage networks, power system losses, power system voltage, solar photovoltaic, PV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 555131 The Influence of Swirl Burner Geometry on the Sugar-Cane Bagasse Injection and Burning
Authors: Juan H. Sosa-Arnao, Daniel J. O. Ferreira, Caice G. Santos, Justo E. Alvarez, Leonardo P. Rangel, Song W. Park
Abstract:
A comprehensive CFD model is developed to represent heterogeneous combustion and two burner designs of supply sugar-cane bagasse into a furnace. The objective of this work is to compare the insertion and burning of a Brazilian south-eastern sugar-cane bagasse using a new swirl burner design against an actual geometry under operation. The new design allows control the particles penetration and scattering inside furnace by adjustment of axial/tangential contributions of air feed without change their mass flow. The model considers turbulence using RNG k-, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The obtained results are favorable to use of new design swirl burner because its axial/tangential control promotes more penetration or more scattering than actual design and allows reproduce the actual design operation without change the overall mass flow supply.Keywords: Comprehensive CFD model, sugar-cane bagasse combustion, swirl burner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434130 Durability of Concrete with Different Mineral Admixtures: A Review
Authors: T. Ayub, N. Shafiq, S. U. Khan, M. F. Nuruddin
Abstract:
Several review papers exist in literature related to the concrete containing mineral admixtures; however this paper reviews the durability characteristics of the concrete containing fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK) and rice husk ash (RHA). Durability related properties reviewed include permeability, resistance to sulfate attack, alkali-silica reaction (ASR), carbonation, chloride ion penetration, freezing and thawing, abrasion, fire, acid and efflorescence. From review of existing literature, it is found that permeability of concrete depends upon the content of alumina in mineral admixtures, i.e. higher the alumina content, lesser the permeability which results higher resistance to sulfate and chloride ion penetration. Highly reactive mineral admixtures prevent more ASR and reduce efflorescence. The carbonation increases with the mineral admixtures because higher water binder ratio and lesser content of portlandite in concrete due to pozzolanic reaction. Mineral admixtures require air entrainment except MK and RHA for better resistance to freezing and thawing.
Keywords: Alkali silica reaction, carbonation, durability, mineral admixture, permeability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6862129 Transmit Sub-aperture Optimization in MSTA Ultrasound Imaging Method
Authors: YuriyTasinkevych, Ihor Trots, AndrzejNowicki, Marcin Lewandowski
Abstract:
The paper presents the optimization problem for the multi-element synthetic transmit aperture method (MSTA) in ultrasound imaging applications. The optimal choice of the transmit aperture size is performed as a trade-off between the lateral resolution, penetration depth and the frame rate. Results of the analysis obtained by a developed optimization algorithm are presented. Maximum penetration depth and the best lateral resolution at given depths are chosen as the optimization criteria. The optimization algorithm was tested using synthetic aperture data of point reflectors simulated by Filed II program for Matlab® for the case of 5MHz 128-element linear transducer array with 0.48 mm pitch are presented. The visualization of experimentally obtained synthetic aperture data of a tissue mimicking phantom and in vitro measurements of the beef liver are also shown. The data were obtained using the SonixTOUCH Research systemequipped with a linear 4MHz 128 element transducerwith 0.3 mm element pitch, 0.28 mm element width and 70% fractional bandwidth was excited by one sine cycle pulse burst of transducer's center frequency.Keywords: synthetic aperture method, ultrasound imaging, beamforming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886128 Physical and Rheological Properties of Asphalt Modified with Cellulose Date Palm Fibers
Authors: Howaidi M. Al-Otaibi, Abdulrahman S. Al-Suhaibani, Hamad A. Alsoliman
Abstract:
Fibers are extensively used in civil engineering applications for many years. In this study, empty fruit bunch of date palm trees were used to produce cellulose fiber that were used as additives in the asphalt binder. Two sizes (coarse and fine) of cellulose fibers were pre-blended in PG64-22 binder with various contents of 1.5%, 3%, 4.5%, 6%, and 7.5% by weight of asphalt binder. The physical and rheological properties of fiber modified asphalt binders were tested by using conventional tests such as penetration, softening point and viscosity; and SHRP test such as dynamic shear rheometer. The results indicated that the fiber modified asphalt binders were higher in softening point, viscosity, and complex shear modulus, and lower in penetration compared to pure asphalt. The fiber modified binders showed an improvement in rheological properties since it was possible to raise the control binder (pure asphalt) PG from 64 to 70 by adding 6% (by weight) of either fine or coarse fibers. Such improvement in stiffness of fiber modified binder is expected to improve pavement resistance to rutting.
Keywords: Cellulose date palm fiber, fiber modified asphalt, physical properties, rheological properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857127 Rheological Properties of Polyethylene and Polypropylene Modified Bitumen
Authors: Noor Zainab Habib, Ibrahim Kamaruddin, Madzalan Napiah, Isa Mohd Tan
Abstract:
This paper presents a part of research on the rheological properties of bitumen modified by thermoplastic namely linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and polypropylene (PP) and its interaction with 80 pen base bitumen. As it is known that the modification of bitumen by the use of polymers enhances its performance characteristics but at the same time significantly alters its rheological properties. The rheological study of polymer modified bitumen (PMB) was made through penetration, ring & ball softening point and viscosity test. The results were then related to the changes in the rheological properties of polymer modified bitumen. It was observed that thermoplastic copolymer shows profound effect on penetration rather than softening point. The viscoelastic behavior of polymer modified bitumen depend on the concentration of polymer, mixing temperature, mixing technique, solvating power of base bitumen and molecular structure of polymer used. PP offer better blend in comparison to HDPE and LLDPE. The viscosity of base bitumen was also enhanced with the addition of polymer. The pseudoplastic behavior was more prominent for HDPE and LLDPE than PP. Best results were obtained when polymer concentration was kept below 3%Keywords: Polymer modified bitumen, Linear low densitypolyethylene, High density polyethylene, Polypropylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4421126 A New Correlation between SPT and CPT for Various Soils
Authors: Fauzi Jarushi, S. AlKaabim, Paul Cosentino
Abstract:
The Standard Penetration Test (SPT) is the most common in situ test for soil investigations. On the other hand, the Cone Penetration Test (CPT) is considered one of the best investigation tools. Due to the fast and accurate results that can be obtained it complaints the SPT in many applications like field explorations, design parameters, and quality control assessments. Many soil index and engineering properties have been correlated to both of SPT and CPT. Various foundation design methods were developed based on the outcome of these tests. Therefore it is vital to correlate these tests to each other so that either one of the tests can be used in the absence of the other, especially for preliminary evaluation and design purposes. The primary purpose of this study was to investigate the relationships between the SPT and CPT for different type of sandy soils in Florida. Data for this research were collected from number of projects sponsored by the Florida Department of Transportation (FDOT), six sites served as the subject of SPT-CPT correlations. The correlations were established between the cone resistance (qc), sleeve friction (fs) and the uncorrected SPT blow counts (N) for various soils. A positive linear relationship was found between qc, fs and N for various sandy soils. In general, qc versus N showed higher correlation coefficients than fs versus N. qc/N ratios were developed for different soil types and compared to literature values, the results of this research revealed higher ratios than literature values.
Keywords: In situ tests, Correlation, SPT, CPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16577125 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy
Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang
Abstract:
This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid-particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.
Keywords: Liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2648124 Vickers Indentation Simulation of Buffer Layer Thickness Effect for DLC Coated Materials
Authors: Abdul Wasy, Balakrishnan G., Yi Qi Wang, Atta Ur Rehman, Jung Il Song
Abstract:
Vickers indentation is used to measure the hardness of materials. In this study, numerical simulation of Vickers indentation experiment was performed for Diamond like Carbon (DLC) coated materials. DLC coatings were deposited on stainless steel 304 substrates with Chromium buffer layer using RF Magnetron and T-shape Filtered Cathodic Vacuum Arc Dual system The objective of this research is to understand the elastic plastic properties, stress strain distribution, ring and lateral crack growth and propagation, penetration depth of indenter and delamination of coating from substrate with effect of buffer layer thickness. The effect of Poisson-s ratio of DLC coating was also analyzed. Indenter penetration is more in coated materials with thin buffer layer as compared to thicker one, under same conditions. Similarly, the specimens with thinner buffer layer failed quickly due to high residual stress as compared to the coated materials with reasonable thickness of 200nm buffer layer. The simulation results suggested the optimized thickness of 200 nm among the prepared specimens for durable and long service.Keywords: Thin film, buffer layer. Diamond like Carbon, Vickers indentation, Poisson's ratio, Finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936123 Electric Vehicle Market Penetration Impact on Greenhouse Gas Emissions for Policy-Making: A Case Study of United Arab Emirates
Authors: Ahmed Kiani
Abstract:
The United Arab Emirates is clearly facing a multitude of challenges in curbing its greenhouse gas emissions to meet its pre-allotted framework of Kyoto protocol and COP21 targets due to its hunger for modernization, industrialization, infrastructure growth, soaring population and oil and gas activity. In this work, we focus on the bonafide zero emission electric vehicles market penetration in the country’s transport industry for emission reduction. We study the global electric vehicle market trends, the complementary battery technologies and the trends by manufacturers, emission standards across borders and prioritized advancements which will ultimately dictate the terms of future conditions for the United Arab Emirate transport industry. Based on our findings and analysis at every stage of current viability and state-of-transport-affairs, we postulate policy recommendations to local governmental entities from a supply and demand perspective covering aspects of technology, infrastructure requirements, change in power dynamics, end user incentives program, market regulators behavior and communications amongst key stakeholders.
Keywords: Electric vehicles, greenhouse gas emission reductions, market analysis, policy recommendations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548122 Comparison of Rheological Properties for Polymer Modified Asphalt Produced in Riyadh
Authors: Ali M. Babalghaith, Hamad A. Alsoliman, Abdulrahman S. Al-Suhaibani
Abstract:
Flexible pavement made with neat asphalt binder is not enough to resist heavy traffic loads as well as harsh environmental condition found in Riyadh region. Therefore, there is a need to modify asphalt binder with polymers to satisfy such conditions. There are several types of polymers that are used to modify asphalt binder. The objective of this paper is to compare the rheological properties of six polymer modified asphalt binders (Lucolast7010, Anglomak2144, Paveflex140, SBS KTR401, EE-2 and Crumb rubber) obtained from asphalt manufacturer plants. The rheological properties of polymer modified asphalt binders were tested using conventional tests such as penetration, softening point and viscosity; and SHRP tests such as dynamic shear rheometer and bending beam rheometer. The results have indicated that the polymer modified asphalt binders have lower penetration and higher softening point than neat asphalt indicating an improvement in stiffness of asphalt binder, and as a result, more resistant to rutting. Moreover, the dynamic shear rheometer results have shown that all modifiers used in this study improved the binder properties and satisfied the Superpave specifications except SBS KTR401 which failed to satisfy the rutting parameter (G*/sinδ).Keywords: Polymer modified asphalt, rheological properties, SBS, crumb rubber, EE-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410121 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration
Authors: C. Iraklis, G. Evmiridis, A. Iraklis
Abstract:
Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.
Keywords: Congestion, distribution networks, loss reduction, particle swarm optimization, smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748120 Studying the Possibility to Weld AA1100 Aluminum Alloy by Friction Stir Spot Welding
Authors: Ahmad K. Jassim, Raheem Kh. Al-Subar
Abstract:
Friction stir welding is a modern and an environmentally friendly solid state joining process used to joint relatively lighter family of materials. Recently, friction stir spot welding has been used instead of resistance spot welding which has received considerable attention from the automotive industry. It is environmentally friendly process that eliminated heat and pollution. In this research, friction stir spot welding has been used to study the possibility to weld AA1100 aluminum alloy sheet with 3 mm thickness by overlapping the edges of sheet as lap joint. The process was done using a drilling machine instead of milling machine. Different tool rotational speeds of 760, 1065, 1445, and 2000 RPM have been applied with manual and automatic compression to study their effect on the quality of welded joints. Heat generation, pressure applied, and depth of tool penetration have been measured during the welding process. The result shows that there is a possibility to weld AA1100 sheets; however, there is some surface defect that happened due to insufficient condition of welding. Moreover, the relationship between rotational speed, pressure, heat generation and tool depth penetration was created.
Keywords: Friction, spot, stir, environmental, sustainable, AA1100 aluminum alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145119 Evaluation of the Rheological Properties of Bituminous Binders Modified with Biochars Obtained from Various Biomasses by Pyrolysis Method
Authors: Muhammed Ertuğrul Çeloğlu, Mehmet Yılmaz
Abstract:
In this study, apricot seed shell, walnut shell, and sawdust were chosen as biomass sources. The materials were sorted by using a sieve No. 50 and the sieved materials were subjected to pyrolysis process at 400 °C, resulting in three different biochar products. The resulting biochar products were added to the bitumen at three different rates (5%, 10% and 15%), producing modified bitumen. Penetration, softening point, rotation viscometer and dynamic shear rheometer (DSR) tests were conducted on modified binders. Thus the modified bitumen, which was obtained by using additives at 3 different rates obtained from biochar produced at 400 °C temperatures of 3 different biomass sources were compared and the effects of pyrolysis temperature and additive rates were evaluated. As a result of the conducted tests, it was determined that the rheology of the pure bitumen improved significantly as a result of the modification of the bitumen with the biochar. Additionally, with biochar additive, it was determined that the rutting parameter values obtained from softening point, viscometer and DSR tests were increased while the values in terms of penetration and phase angle decreased. It was also observed that the most effective biomass is sawdust while the least effective was ground apricot seed shell.
Keywords: Rheology, biomass, pyrolysis, biochar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845118 Double Layer Polarization and Non-Linear Electroosmosis in and around a Charged Permeable Aggregate
Authors: Partha P. Gopmandal, S. Bhattacharyya
Abstract:
We have studied the migration of a charged permeable aggregate in electrolyte under the influence of an axial electric field and pressure gradient. The migration of the positively charged aggregate leads to a deformation of the anionic cloud around it. The hydrodynamics of the aggregate is governed by the interaction of electroosmotic flow in and around the particle, hydrodynamic friction and electric force experienced by the aggregate. We have computed the non-linear Nernest-Planck equations coupled with the Dracy- Brinkman extended Navier-Stokes equations and Poisson equation for electric field through a finite volume method. The permeability of the aggregate enable the counterion penetration. The penetration of counterions depends on the volume charge density of the aggregate and ionic concentration of electrolytes at a fixed field strength. The retardation effect due to the double layer polarization increases the drag force compared to an uncharged aggregate. Increase in migration sped from the electrophretic velocity of the aggregate produces further asymmetry in charge cloud and reduces the electric body force exerted on the particle. The permeability of the particle have relatively little influence on the electric body force when Double layer is relatively thin. The impact of the key parameters of electrokinetics on the hydrodynamics of the aggregate is analyzed.
Keywords: Electrophoresis, Advective flow, Polarization effect, Numerical solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808117 Study on Numerical Simulation Applied to Moisture Buffering Design Method – The Case Study of Pine Wood in a Single Zone Residential Unit in Taiwan
Authors: Y.C. Yeh, Y.S. Tsay, C.M. Chiang
Abstract:
A good green building design project, designers should consider not only energy consumption, but also healthy and comfortable needs of inhabitants. In recent years, the Taiwan government paid attentions on both carbon reduction and indoor air quality issues, which be presented in the legislation of Building Codes and other regulations. Taiwan located in hot and humid climates, dampness in buildings leads to significant microbial pollution and building damage. This means that the high temperature and humidity present a serious indoor air quality issue. The interactions between vapor transfers and energy fluxes are essential for the whole building Heat Air and Moisture (HAM) response. However, a simulation tool with short calculation time, property accuracy and interface is needed for practical building design processes. In this research, we consider the vapor transfer phenomenon of building materials as well as temperature and humidity and energy consumption in a building space. The simulation bases on the EMPD method, which was performed by EnergyPlus, a simulation tool developed by DOE, to simulate the indoor moisture variation in a one-zone residential unit based on the Effective Moisture Penetration Depth Method, which is more suitable for practical building design processes.
Keywords: Effective Moisture Penetration Depth Method, Moisture Buffering Effect, Interior Material, Green Material, EnergyPlus
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580116 High Aspect Ratio SiO2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator
Authors: N. V. Toan, S. Sangu, T. Saitoh, N. Inomata, T. Ono
Abstract:
This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm).
Keywords: Thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275