Search results for: legendre polynomial.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 254

Search results for: legendre polynomial.

224 Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation

Authors: Tsun-Hui Huang, Shyue-Cheng Yang, Chiou-Fen Shieh

Abstract:

In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.

Keywords: Polynomial constitutive equation, solitary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
223 The BGMRES Method for Generalized Sylvester Matrix Equation AXB − X = C and Preconditioning

Authors: Azita Tajaddini, Ramleh Shamsi

Abstract:

In this paper, we present the block generalized minimal residual (BGMRES) method in order to solve the generalized Sylvester matrix equation. However, this method may not be converged in some problems. We construct a polynomial preconditioner based on BGMRES which shows why polynomial preconditioner is superior to some block solvers. Finally, numerical experiments report the effectiveness of this method.

Keywords: Linear matrix equation, Block GMRES, matrix Krylov subspace, polynomial preconditioner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874
222 On CR-Structure and F-Structure Satisfying Polynomial Equation

Authors: Manisha Kankarej

Abstract:

The purpose of this paper is to show a relation between CR structure and F-structure satisfying polynomial equation. In this paper, we have checked the significance of CR structure and F-structure on Integrability conditions and Nijenhuis tensor. It was proved that all the properties of Integrability conditions and Nijenhuis tensor are satisfied by CR structures and F-structure satisfying polynomial equation.

Keywords: CR-submainfolds, CR-structure, Integrability condition & Nijenhuis tensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793
221 New Laguerre-s Type Method for Solving of a Polynomial Equations Systems

Authors: Oleksandr Poliakov, Yevgen Pashkov, Marina Kolesova, Olena Chepenyuk, Mykhaylo Kalinin, Vadym Kramar

Abstract:

In this paper we present a substantiation of a new Laguerre-s type iterative method for solving of a nonlinear polynomial equations systems with real coefficients. The problems of its implementation, including relating to the structural choice of initial approximations, were considered. Test examples demonstrate the effectiveness of the method at the solving of many practical problems solving.

Keywords: Iterative method, Laguerre's method, Newton's method, polynomial equation, system of equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
220 Particle Filter Applied to Noisy Synchronization in Polynomial Chaotic Maps

Authors: Moussa Yahia, Pascal Acco, Malek Benslama

Abstract:

Polynomial maps offer analytical properties used to obtain better performances in the scope of chaos synchronization under noisy channels. This paper presents a new method to simplify equations of the Exact Polynomial Kalman Filter (ExPKF) given in [1]. This faster algorithm is compared to other estimators showing that performances of all considered observers vanish rapidly with the channel noise making application of chaos synchronization intractable. Simulation of ExPKF shows that saturation drawn on the emitter to keep it stable impacts badly performances for low channel noise. Then we propose a particle filter that outperforms all other Kalman structured observers in the case of noisy channels.

Keywords: Chaos synchronization, Saturation, Fast ExPKF, Particlefilter, Polynomial maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
219 An Interval Type-2 Dual Fuzzy Polynomial Equations and Ranking Method of Fuzzy Numbers

Authors: Nurhakimah Ab. Rahman, Lazim Abdullah

Abstract:

According to fuzzy arithmetic, dual fuzzy polynomials cannot be replaced by fuzzy polynomials. Hence, the concept of ranking method is used to find real roots of dual fuzzy polynomial equations. Therefore, in this study we want to propose an interval type-2 dual fuzzy polynomial equation (IT2 DFPE). Then, the concept of ranking method also is used to find real roots of IT2 DFPE (if exists). We transform IT2 DFPE to system of crisp IT2 DFPE. This transformation performed with ranking method of fuzzy numbers based on three parameters namely value, ambiguity and fuzziness. At the end, we illustrate our approach by two numerical examples.

Keywords: Dual fuzzy polynomial equations, Interval type-2, Ranking method, Value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
218 On the Construction of m-Sequences via Primitive Polynomials with a Fast Identification Method

Authors: Abhijit Mitra

Abstract:

The paper provides an in-depth tutorial of mathematical construction of maximal length sequences (m-sequences) via primitive polynomials and how to map the same when implemented in shift registers. It is equally important to check whether a polynomial is primitive or not so as to get proper m-sequences. A fast method to identify primitive polynomials over binary fields is proposed where the complexity is considerably less in comparison with the standard procedures for the same purpose.

Keywords: Finite field, irreducible polynomial, primitive polynomial, maximal length sequence, additive shift register, multiplicative shift register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3939
217 Explicit Chain Homotopic Function to Compute Hochschild Homology of the Polynomial Algebra

Authors: Z. Altawallbeh

Abstract:

In this paper, an explicit homotopic function is constructed to compute the Hochschild homology of a finite dimensional free k-module V. Because the polynomial algebra is of course fundamental in the computation of the Hochschild homology HH and the cyclic homology CH of commutative algebras, we concentrate our work to compute HH of the polynomial algebra, by providing certain homotopic function.

Keywords: Exterior algebra, free resolution, free and projective modules, Hochschild homology, homotopic function, symmetric algebra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
216 Orthogonal Functions Approach to LQG Control

Authors: B. M. Mohan, Sanjeeb Kumar Kar

Abstract:

In this paper a unified approach via block-pulse functions (BPFs) or shifted Legendre polynomials (SLPs) is presented to solve the linear-quadratic-Gaussian (LQG) control problem. Also a recursive algorithm is proposed to solve the above problem via BPFs. By using the elegant operational properties of orthogonal functions (BPFs or SLPs) these computationally attractive algorithms are developed. To demonstrate the validity of the proposed approaches a numerical example is included.

Keywords: Linear quadratic Gaussian control, linear quadratic estimator, linear quadratic regulator, time-invariant systems, orthogonal functions, block-pulse functions, shifted legendre polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
215 Non-Polynomial Spline Solution of Fourth-Order Obstacle Boundary-Value Problems

Authors: Jalil Rashidinia, Reza Jalilian

Abstract:

In this paper we use quintic non-polynomial spline functions to develop numerical methods for approximation to the solution of a system of fourth-order boundaryvalue problems associated with obstacle, unilateral and contact problems. The convergence analysis of the methods has been discussed and shown that the given approximations are better than collocation and finite difference methods. Numerical examples are presented to illustrate the applications of these methods, and to compare the computed results with other known methods.

Keywords: Quintic non-polynomial spline, Boundary formula, Convergence, Obstacle problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
214 Evolving Neural Networks using Moment Method for Handwritten Digit Recognition

Authors: H. El Fadili, K. Zenkouar, H. Qjidaa

Abstract:

This paper proposes a neural network weights and topology optimization using genetic evolution and the backpropagation training algorithm. The proposed crossover and mutation operators aims to adapt the networks architectures and weights during the evolution process. Through a specific inheritance procedure, the weights are transmitted from the parents to their offsprings, which allows re-exploitation of the already trained networks and hence the acceleration of the global convergence of the algorithm. In the preprocessing phase, a new feature extraction method is proposed based on Legendre moments with the Maximum entropy principle MEP as a selection criterion. This allows a global search space reduction in the design of the networks. The proposed method has been applied and tested on the well known MNIST database of handwritten digits.

Keywords: Genetic algorithm, Legendre Moments, MEP, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
213 Comparison of the Existing Methods in Determination of the Characteristic Polynomial

Authors: Mohammad Saleh Tavazoei, Mohammad Haeri

Abstract:

This paper presents comparison among methods of determination of the characteristic polynomial coefficients. First, the resultant systems from the methods are compared based on frequency criteria such as the closed loop bandwidth, gain and phase margins. Then the step responses of the resultant systems are compared on the basis of the transient behavior criteria including overshoot, rise time, settling time and error (via IAE, ITAE, ISE and ITSE integral indices). Also relative stability of the systems is compared together. Finally the best choices in regards to the above diverse criteria are presented.

Keywords: Characteristic Polynomial, Transient Response, Filters, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
212 On Chromaticity of Wheels

Authors: Zainab Yasir Al-Rekaby, Abdul Jalil M. Khalaf

Abstract:

Let the vertices of a graph such that every two adjacent vertices have different color is a very common problem in the graph theory. This is known as proper coloring of graphs. The possible number of different proper colorings on a graph with a given number of colors can be represented by a function called the chromatic polynomial. Two graphs G and H are said to be chromatically equivalent, if they share the same chromatic polynomial. A Graph G is chromatically unique, if G is isomorphic to H for any graph H such that G is chromatically equivalent to H. The study of chromatically equivalent and chromatically unique problems is called chromaticity. This paper shows that a wheel W12 is chromatically unique.

Keywords: Chromatic Polynomial, Chromatically Equivalent, Chromatically Unique, Wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
211 Generalized Chebyshev Collocation Method

Authors: Junghan Kim, Wonkyu Chung, Sunyoung Bu, Philsu Kim

Abstract:

In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower degree polynomial. The constructed algorithm controls both the error and the time step size simultaneously and further the errors at each integration step are embedded in the algorithm itself, which provides the efficiency of the computational cost. For the assessment of the effectiveness, numerical results obtained by the proposed method and the Radau IIA are presented and compared.

Keywords: Generalized Chebyshev Collocation method, Generalized Chebyshev Polynomial, Initial value problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
210 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun

Abstract:

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

Keywords: spline, GMDH, nonparametric, bias, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
209 Empirical Statistical Modeling of Rainfall Prediction over Myanmar

Authors: Wint Thida Zaw, Thinn Thu Naing

Abstract:

One of the essential sectors of Myanmar economy is agriculture which is sensitive to climate variation. The most important climatic element which impacts on agriculture sector is rainfall. Thus rainfall prediction becomes an important issue in agriculture country. Multi variables polynomial regression (MPR) provides an effective way to describe complex nonlinear input output relationships so that an outcome variable can be predicted from the other or others. In this paper, the modeling of monthly rainfall prediction over Myanmar is described in detail by applying the polynomial regression equation. The proposed model results are compared to the results produced by multiple linear regression model (MLR). Experiments indicate that the prediction model based on MPR has higher accuracy than using MLR.

Keywords: Polynomial Regression, Rainfall Forecasting, Statistical forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2634
208 A Generalization of Planar Pascal’s Triangle to Polynomial Expansion and Connection with Sierpinski Patterns

Authors: Wajdi Mohamed Ratemi

Abstract:

The very well-known stacked sets of numbers referred to as Pascal’s triangle present the coefficients of the binomial expansion of the form (x+y)n. This paper presents an approach (the Staircase Horizontal Vertical, SHV-method) to the generalization of planar Pascal’s triangle for polynomial expansion of the form (x+y+z+w+r+⋯)n. The presented generalization of Pascal’s triangle is different from other generalizations of Pascal’s triangles given in the literature. The coefficients of the generalized Pascal’s triangles, presented in this work, are generated by inspection, using embedded Pascal’s triangles. The coefficients of I-variables expansion are generated by horizontally laying out the Pascal’s elements of (I-1) variables expansion, in a staircase manner, and multiplying them with the relevant columns of vertically laid out classical Pascal’s elements, hence avoiding factorial calculations for generating the coefficients of the polynomial expansion. Furthermore, the classical Pascal’s triangle has some pattern built into it regarding its odd and even numbers. Such pattern is known as the Sierpinski’s triangle. In this study, a presentation of Sierpinski-like patterns of the generalized Pascal’s triangles is given. Applications related to those coefficients of the binomial expansion (Pascal’s triangle), or polynomial expansion (generalized Pascal’s triangles) can be in areas of combinatorics, and probabilities.

Keywords: Generalized Pascal’s triangle, Pascal’s triangle, polynomial expansion, Sierpinski’s triangle, staircase horizontal vertical method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
207 Method of Finding Aerodynamic Characteristic Equations of Missile for Trajectory Simulation

Authors: Attapon Charoenpon, Ekkarach Pankeaw

Abstract:

This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (╬¢ ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ╬¢ <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.

Keywords: Aerodynamic, Characteristic Equation, Angle ofAttack, Polynomial interpolation, Trajectories

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3667
206 Quintic Spline Solution of Fourth-Order Parabolic Equations Arising in Beam Theory

Authors: Reza Mohammadi, Mahdieh Sahebi

Abstract:

We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the derived method. Numerical comparison with other methods shows the superiority of presented scheme.

Keywords: Fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
205 Cryptography over Sextic Extension with Cubic Subfield

Authors: A. Chillali, M. Sahmoudi

Abstract:

In this paper, we will give a cryptographic application over the integral closure O_Lof sextic extension L, namely L is an extension of Q of degree 6 in the form Q(a,b), which is a rational quadratic and monogenic extension over a pure monogenic cubic subfield K generated by a who is a root of monic irreducible polynomial of degree 2 andb is a root of irreducible polynomial of degree 3.

Keywords: Integral bases, Cryptography, Discrete logarithm problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
204 Non-Polynomial Spline Method for the Solution of Problems in Calculus of Variations

Authors: M. Zarebnia, M. Hoshyar, M. Sedaghati

Abstract:

In this paper, a numerical solution based on nonpolynomial cubic spline functions is used for finding the solution of boundary value problems which arise from the problems of calculus of variations. This approximation reduce the problems to an explicit system of algebraic equations. Some numerical examples are also given to illustrate the accuracy and applicability of the presented method.

Keywords: Calculus of variation; Non-polynomial spline functions; Numerical method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
203 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4 × 4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4 × 4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4 × 4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: Chirp signals, Image multiplexing, Image transformation, Linear canonical transform, Polynomial approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
202 Comparison of Polynomial and Radial Basis Kernel Functions based SVR and MLR in Modeling Mass Transfer by Vertical and Inclined Multiple Plunging Jets

Authors: S. Deswal, M. Pal

Abstract:

Presently various computational techniques are used in modeling and analyzing environmental engineering data. In the present study, an intra-comparison of polynomial and radial basis kernel functions based on Support Vector Regression and, in turn, an inter-comparison with Multi Linear Regression has been attempted in modeling mass transfer capacity of vertical (θ = 90O) and inclined (θ multiple plunging jets (varying from 1 to 16 numbers). The data set used in this study consists of four input parameters with a total of eighty eight cases, forty four each for vertical and inclined multiple plunging jets. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 along with corresponding root mean square error values of 0.0025 and 0.0020 were achieved by using polynomial and radial basis kernel functions based Support Vector Regression respectively. An intra-comparison suggests improved performance by radial basis function in comparison to polynomial kernel based Support Vector Regression. Further, an inter-comparison with Multi Linear Regression (correlation coefficient = 0.973 and root mean square error = 0.0024) reveals that radial basis kernel functions based Support Vector Regression performs better in modeling and estimating mass transfer by multiple plunging jets.

Keywords: Mass transfer, multiple plunging jets, polynomial and radial basis kernel functions, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
201 New Algorithms for Finding Short Reset Sequences in Synchronizing Automata

Authors: Adam Roman

Abstract:

Finding synchronizing sequences for the finite automata is a very important problem in many practical applications (part orienters in industry, reset problem in biocomputing theory, network issues etc). Problem of finding the shortest synchronizing sequence is NP-hard, so polynomial algorithms probably can work only as heuristic ones. In this paper we propose two versions of polynomial algorithms which work better than well-known Eppstein-s Greedy and Cycle algorithms.

Keywords: Synchronizing words, reset sequences, Černý Conjecture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
200 Digital Predistorter with Pipelined Architecture Using CORDIC Processors

Authors: Kyunghoon Kim, Sungjoon Shim, Jun Tae Kim, Jong Tae Kim

Abstract:

In a wireless communication system, a predistorter(PD) is often employed to alleviate nonlinear distortions due to operating a power amplifier near saturation, thereby improving the system performance and reducing the interference to adjacent channels. This paper presents a new adaptive polynomial digital predistorter(DPD). The proposed DPD uses Coordinate Rotation Digital Computing(CORDIC) processors and PD process by pipelined architecture. It is simpler and faster than conventional adaptive polynomial DPD. The performance of the proposed DPD is proved by MATLAB simulation.

Keywords: DPD, CORDIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
199 Institutional Efficiency of Commonhold Industrial Parks Using a Polynomial Regression Model

Authors: Jeng-Wen Lin, Simon Chien-Yuan Chen

Abstract:

Based on assumptions of neo-classical economics and rational choice / public choice theory, this paper investigates the regulation of industrial land use in Taiwan by homeowners associations (HOAs) as opposed to traditional government administration. The comparison, which applies the transaction cost theory and a polynomial regression analysis, manifested that HOAs are superior to conventional government administration in terms of transaction costs and overall efficiency. A case study that compares Taiwan-s commonhold industrial park, NangKang Software Park, to traditional government counterparts using limited data on the costs and returns was analyzed. This empirical study on the relative efficiency of governmental and private institutions justified the important theoretical proposition. Numerical results prove the efficiency of the established model.

Keywords: Homeowners Associations, Institutional Efficiency, Polynomial Regression, Transaction Cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
198 Pension Plan Member’s Investment Strategies with Transaction Cost and Couple Risky Assets Modelled by the O-U Process

Authors: Udeme O. Ini, Edikan E. Akpanibah

Abstract:

This paper studies the optimal investment strategies for a plan member (PM) in a defined contribution (DC) pension scheme with transaction cost, taxes on invested funds and couple risky assets (stocks) under the Ornstein-Uhlenbeck (O-U) process. The PM’s portfolio is assumed to consist of a risk-free asset and two risky assets where the two risky assets are driven by the O-U process. The Legendre transformation and dual theory is use to transform the resultant optimal control problem which is a nonlinear partial differential equation (PDE) into linear PDE and the resultant linear PDE is then solved for the explicit solutions of the optimal investment strategies for PM exhibiting constant absolute risk aversion (CARA) using change of variable technique. Furthermore, theoretical analysis is used to study the influences of some sensitive parameters on the optimal investment strategies with observations that the optimal investment strategies for the two risky assets increase with increase in the dividend and decreases with increase in tax on the invested funds, risk averse coefficient, initial fund size and the transaction cost.

Keywords: Ornstein-Uhlenbeck process, portfolio management, Legendre transforms, CARA utility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477
197 Numerical Solution of Infinite Boundary Integral Equation by Using Galerkin Method with Laguerre Polynomials

Authors: N. M. A. Nik Long, Z. K. Eshkuvatov, M. Yaghobifar, M. Hasan

Abstract:

In this paper the exact solution of infinite boundary integral equation (IBIE) of the second kind with degenerate kernel is presented. Moreover Galerkin method with Laguerre polynomial is applied to get the approximate solution of IBIE. Numerical examples are given to show the validity of the method presented.

Keywords: Approximation, Galerkin method, Integral equations, Laguerre polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
196 A Hybrid Model of ARIMA and Multiple Polynomial Regression for Uncertainties Modeling of a Serial Production Line

Authors: Amir Azizi, Amir Yazid b. Ali, Loh Wei Ping, Mohsen Mohammadzadeh

Abstract:

Uncertainties of a serial production line affect on the production throughput. The uncertainties cannot be prevented in a real production line. However the uncertain conditions can be controlled by a robust prediction model. Thus, a hybrid model including autoregressive integrated moving average (ARIMA) and multiple polynomial regression, is proposed to model the nonlinear relationship of production uncertainties with throughput. The uncertainties under consideration of this study are demand, breaktime, scrap, and lead-time. The nonlinear relationship of production uncertainties with throughput are examined in the form of quadratic and cubic regression models, where the adjusted R-squared for quadratic and cubic regressions was 98.3% and 98.2%. We optimized the multiple quadratic regression (MQR) by considering the time series trend of the uncertainties using ARIMA model. Finally the hybrid model of ARIMA and MQR is formulated by better adjusted R-squared, which is 98.9%.

Keywords: ARIMA, multiple polynomial regression, production throughput, uncertainties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
195 The Adsorption of SDS on Ferro-Precipitates

Authors: R.Marsalek

Abstract:

This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (ν ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ν <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.

Keywords: ferro-precipitate, adsorption, SDS, zeta potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909