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Pension Plan Member’s Investment Strategies with
Transaction Cost and Couple Risky Assets Modelled
by the O-U Process
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Abstract—This paper studies the optimal investment strategies
for a plan member (PM) in a defined contribution (DC) pension
scheme with transaction cost, taxes on invested funds and couple
risky assets (stocks) under the Ornstein-Uhlenbeck (O-U) process.
The PM’s portfolio is assumed to consist of a risk-free asset and two
risky assets where the two risky assets are driven by the O-U process.
The Legendre transformation and dual theory is use to transform the
resultant optimal control problem which is a nonlinear partial
differential equation (PDE) into linear PDE and the resultant linear
PDE is then solved for the explicit solutions of the optimal
investment strategies for PM exhibiting constant absolute risk
aversion (CARA) using change of variable technique. Furthermore,
theoretical analysis is used to study the influences of some sensitive
parameters on the optimal investment strategies with observations
that the optimal investment strategies for the two risky assets increase
with increase in the dividend and decreases with increase in tax on
the invested funds, risk averse coefficient, initial fund size and the
transaction cost.

Keywords—Ornstein-Uhlenbeck process, portfolio management,
Legendre transforms, CARA utility.

I. INTRODUCTION

HE DC pension scheme is a common practice among the

working class whose aim is to prepare for a future after
working age. This scheme has been on in many countries
across the world due to its ability to provide a comfortable
platform for its members to be involved in the day-to-day
activities of the pension fund. The most interesting part of the
DC plan is that members are involved in planning for their
retirement benefits. Since member’s benefit depend on
investments in the financial market, there is need to develop
and understand how best these accumulated funds can be
invested for optimal profit; this has given birth to a new
research area known as optimal investment strategies for a DC
pension plan.

A lot of researches have been carried out on portfolio
optimization, some of which include [1]-[3]. Reference [4]
studied the optimal investment problem with taxes, dividend
and transaction cost using different utility functions under the
CEV process. Reference [5] studied the reinsurance problem
and optimal portfolio strategies under the CEV model. In [6],
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[7], the optimal portfolio strategies for a DC pension plan with
return of premiums clauses under CEV process was studied.
Also, the optimal investment strategies with stochastic interest
rate under GBM have been studied by some authors; these
include [8], who studied the investment portfolio under
stochastic interest rate for a case of protected DC fund. Also,
[9] and [10] used stochastic interest rate to obtain optimal
investment plan for a DC plan. In [11] and [12], the optimal
investment plan with the Vasicek interest rate was studied and
in [13] and [14], the optimal investment strategies in a DC
plan under affine interest rate were studied. In [15], the
optimal investment strategy for an insurer with stochastic
interest rate under the CEV model was studied; in their work,
they studied the effect of some sensitive parameters on the
investment strategy when the interest rate is driven by the
Cox-Ingersoll-Ross (CIR) model. Reference [16] studied the
optimal portfolio strategies for investors with exponential
utility under the modified CEV process. Here, the interest rate
follows the O-U process.

Most of the literatures mentioned above used the CIR
model, Vasicek model, affine model etc. to model their
interest rate, however very few used O-U process. According
to [17], the O-U process models both interest rate and stock
market price since it reflects changes in the interest rates and
asset prices. In [17], the optimal investment strategies for a
DC plan under the O-U process were studied. In their work, a
single risky asset modelled by the O-U process was combined
with a risk-free asset and also investment in loan.

From this important assertion on the O-U process and
considering the unstable nature of the stock market prices, we
are inspired to build a strategic investment plan for a PM with
exponential utility which considers changes in stock market
prices. This is done by studying the optimal investment
strategies for a PM exhibiting CARA and whose risky assets
follow O-U process. The main difference between our work
and that of [17] is that we will be considering a PM in a DC
plan with exponential utility instead of logarithm utility and
investment in two risky assets instead of one risky asset
modelled by the O-U process.

II. THE FINANCIAL MARKET MODEL

We consider a portfolio comprising of one risk free asset
and two risky assets in a financial market which is open
continuously over an interval t € [0,T] where T is the
expiration date of the investment. Let {Z;(t), Z,(t):t = 0} be
standard Brownian motion defined on a complete probability
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space (Q, F, P) where Q is a real space and P is a probability
measure and F is the filtration which represents the
information generated by the Brownian motions.

Let r > 0 be the risk-free interest rate and S, (t) the price of
the risk-free asset at time t. Then the stochastic differential
equation associated with the risk-free asset price is given as:

dSy(t) = rS,(t)dt 850(0) =8,>0 €))
where r > 0 is the risk free interest rate.

Let 8, (t) and S, (t) denote the prices of the two risky assets
(stocks) which are described by the O-U process which
describe the fluctuation in the stock market prices and the
dynamics of the stock market prices are described similar to
[17] by the stochastic differential equations at t = 0 as follows

ds,(t) = ki(ny — 8)dt + v1,dZ;(t) + v1,dZ,(t)(2)

dS;(t) = ky(ng — 83)dt + v5,dZ; (1) + v2,dZ,(£)(3)
where k; > 0 and k, > 0 are the recovery rates of the risky
assets, 7, and #n, are the response centers of the two risky
assets, 111, V12, U21and v,, are instantaneous volatilities and

form a 2 X 2 matrix v = {UM}ZXZ such that v Tis positive
definite. see [19] for details.

III. OPTIMIZATION PROBLEM

A. Wealth Formulations and Hamilton Jacobi Bellman

Equation

Let ¢ = {@4, @,} be the optimal investment strategy and
we define the utility attained by the investor from a given state
y attime t as

Gop(t, 81,82, %) =
E,[U(YM) | 81(t) = 51, 8,(t) = 52, Y1) = %], (4)
where t is the time, r is the risk free interest rate and g is the
wealth.
The objective here is to determine the optimal investment
strategy and the optimal value function of the investor given
as

(p* and g(t'51'52"y‘) = Supgqo(t: '51’52’%) (5)
¢
Respectively such that
G (t, 81, 82,4) = G(t, 81,82, %) (6)

Let Y(t) be the member’s surplus wealth at time t and
suppose the tax rate in the financial market is 7, the member’s
contribution rate at any given time is ¢,d; and d, represent the
dividend incomes of the two risky assets and the rate of
transaction cost which covers the administrative fee and stamp
kl(n1—51)+(d1—§—4")51

81

duties is B. Also we assume >0 and
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kz(n2—52)+(dz—§—/r')52
82
with the member’s surplus fund is given as:

> 0 then the differential form associated

dsy(t) as(t) as,(t)
dy(t) = (y(t) (‘po 50 TP se P20 )> @)
—tY(t)dt + cdt

substituting (1)-(3) into (7), we have

kl(n1—51)+ dl———f 51
P1 \

| Y© |

I kz(nz—éz)+(dz———r 52 | dt
L /

dy(t) = +HY® - T)) +ec (®)

+'y(t) <((P1'V11 4’24721) dB + (<P11f12 + (pzvzz) dB )
YO) =y

where @, ¢, and ¢, are the optimal investment plans for the
risk-free asset and the two risky assets respectively, such that
Yo =1-¢1—¢@,.

From [19], applying the Ito’s lemma and maximum
principle, the Hamilton Jacobi Bellman (HJB) equation which
is a nonlinear PDE associated with (8) is obtained by
maximizing G+ (t, 7, 81,82, 4) subject to the PPM’s wealth as
follows

Ge + ki(ng —81)G,, + ka(n, — 82)Gs,
+((T‘ - T)x + C)gy + % (Ulzl + Ulzz)galal

1
+3 (vh +v5)Gs,s, + (11021 + V12022)Gs s,

+ sup
P1.P2

(4’1”11 + <l—"2"’21)Z
2
Y 81 82

2 v oo\ 2 vy
+(¢1 12 +<Pz zz)

82

kl(n1—41)+ dl—ﬁ—f)é
@1

[Gy

I
kay(ny— 52)+ dz—E—/}")éz
P2
(<ﬂ14’11 + 4024721)”
5 5 11
Y ; . Gys
1
+ (‘Pl’l’lz + <Pz:’zz) o
2
P1vi1z | P2t22
(2 v
Y Gy
21

1

v v,

+ ((ﬂ1 11 + P2 21)/0,
81 82

)

Differentiating (9) with respect to ¢,and¢,, we obtain the
first order maximizing condition for (9) as

(4’111’21+”121’22)<

kz2(nz—s83) \]
(d ———¢)52>I
key(n1-841) I
_ |
. (0221+0222)( (d —E—«r)51> J%Qy B
1= (CEABCEE) T G
—(v11721 +1202)?

I
|
|
|
|
l 515%51
YGyy

(10)
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(’1’114’21‘*""12”22)(

ka(ny—3;)

2,2
_(’1’11"'”12)( B )
e (o is) Jugy s
2 ((”121"'”122)(4’221"'”222)) Gyy YGyy
—(v11021 +v12722)?

I[ ko (n,—52) )]I
| |
| |
| |
L

(11)

Substituting (10) and (11) into (9), we have
Gt + ki(ny —81)Gs, + ka(ny — 83)Gs,
+((T‘ - T)@ + C)gy + %Tlgslal
F3FsGoysy + Fallnss, +5 (Fa = Fs = F) &
vy
B GyGys1
- (kl(nl —38) + (d1 -5 /r) 50%

— (ko = 52) + (d = £ = 1) o) 2

vy

=0 (12)

g12¢51 1 g;dz g?ﬂlgy;dz
Gy 2 Gyy Gy

1
-iF
2 1

where
Fy = (0] +vh), Fp = (05 +v3,),
F3 = (v11021 + v1207%2),
oF ( kq(ny—51) >( kz(ny—83) )
F = 3 +(d1—§—¢“)51 +(dz—§—r)5z
'y =

(F1F2=F3) ’

2 (13)
Fo = Tz(kl(n1—51)+(d1—§—r)51)
> (F1F,-F3) ’

Fo— Tl(kz(n2—52)+(d2—§—/r)52)2
6~ (F1F2~F3) ’

Equations (10) and (11) become

[ (kz (u2—52)+(d2—§—r)52)7-"3

_ _(k1(n1_51)+(d1_g_’f)%)?z ﬂ _ 81Gys,
$1= 'y’(TITZ_Ta‘Z) gyy ygyy;

(14)

(k2 (n2—52)+(d2 —§—¢)52)73
—(kz(nz_52)+(d2_§_4”)51)f1 ﬁ _ 820y,
y(F1F,=F3) Gyy  YGyy

P2 = (15)

B. Legendre Transformation and Dual Theory

The differential equation obtained in (12) is a nonlinear
PDE and is somehow complex to solve. In this section, we
will introduce the Legendre transformation and dual theory
and use it to transform the nonlinear PDE to a linear PDE.
Theorem 1. Let f: R* —» R be a convex function for z > 0,
define the Legendre transform

N(z) = max{f(x) - 2y}, (16)

The function N(z) is the Legendre dual of the function
f(y), see [20].

Since f () is convex, from Theorem 1 and [17], [18], the
Legendre transform for the value function L(t, 8, 85, %) can
be defined as follows

G(t,81,82,2) = sup{G(t, 81, 8,,4) —zy | 0<x <o} 0<t<T(17)

where § is the dual of G and z > 0 is the dual variable of 4.
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The value of 4 where this optimum is achieved is
represented by g(t, 81,82, 2), such that

I G(t, 81,82,4) =

| N
¥ | zy+g(t.51,52,z)} 0<t<T(18)

g(t, 81,82,3) = inf{

From (18), the function g and § are very much related
where g refers to as the dual of G. The two functions are
related thus

G(t, 81, 82,2) = G(t, 81,55, h) — Bh. (19)
where

A(t, 81,82,%) = Y, gy =3 A= -G (20)
differentiating (19) with respect to ¢, , 8;, 8, andy

(gt = gtr g51 = gAal rgaz = gAzzr gy =23,

i g — _gAzslz g — _§42z

{ Y gzz e gzz ’

— -1 _ A §51z2 (21)

I gyy = g ’ gélai = gélél - g_zzr

| _ A gezzz

k 95252 = g5252 - §_zz

At terminal time T, we define the dual utility in terms of the
original utility function U(y) as

U(z) = sup{U(y) —zy5 1 0 <x < 0},

and
G(z) =sup{y | U(y) = zy + U(z).

As aresultG(t,7, 81, 85,2) = G(t, 7,81, 85, 4) — ZA.

G(z) = UY'(2), (22)

where G is the inverse of the marginal utility U and note that

g(T' T '51! '52! y’) = U(/y’)
At terminal time T, we can define

(T, 1, 81,82,%)
= inf{y [ U() = 2y + §(t,1,81,8,,2) }and G(t,7, 81, 85, 2)
4>0

= sup{U(x) — zy}
4>0

so that

(T, 7,81,8,,3) = (U) (). (23)

Substituting (21) into (12), (14) and (15), we have

( Getkilng =806, +ka(my = 8Gs, )
i +H-Dy+c)z+ %Tlg;lél i
4 +%7:29A5252 + T3§5152 - %(th — Fs — Fe)z2G, } =0(24)
i —(kl(nl —381) + (d1 —g—r) 51)Z§51z i
k —(kz(nz —38,) + (d2 —g—r) 52)Z§525 J
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(ka2 (ny—s3)+(d=E-1)s;) 7
_ - _B_ A

oi = ool g 2l )
(k2 (ny—s3)+(dz=E-1)s, )7

(,0; _ _(kz("2_52)‘*(‘12_%_””)51)71 52Z§zz _ 52§512 (26)

Y(F1Fo=F3)

From (20), differentiating (24)-(26) with respect to z, we
have
A+ 181 hs + T80, — ((r -h+ C)
—(r = D)z by +5Fihy s, +5Fohy,
+F3fis s, +%(T4 —Fs — Fo)z2hy,
+%(T4_T5—T6)th =0
ki(ng — 81) 5
- +(d1 —g—r)al oz

- (kz(’nz — &) + (dz - g - ”") ‘52) 25,

27)

(kz (nz—52)+(dz—§—fr*)5z)f3
—(kl(n1 —é1)+(d1—§—r)51)7’2

*
= 813Ny —
#1 ’!&(?17:2—7:32) 1 2

‘51/%1

(28)

[ (kz (n, —é2)+(dz—§—r)5z)73
A,

‘(kz(4"'2‘52)"'(‘12‘?"")51)71 5z h Sahs,
$(F1Fo=FP) 2y

9y = 29)
where, G(T, 81, 8,,%) = U(z) and U(2) is the marginal utility
of the PM. Next, we proceed to solve (27) for £ considering a
PM with exponential utility, then substitute the solution into
(28) and (29) for the optimal investment plan.

C. Optimal Investment Plan for a Member with Exponential
Utility

We consider a member with a utility function displaying
CARA. Since we are interested in finding the optimal
portfolio strategies a DC member with CARA utility, we
choose the exponential utility function.

The exponential utility function is given as

U(y) = ——e™™, m>0 (30)
From (23),
A(T, 81,85,2) = (U)(z) = —ilnz (31)
Next, we conjecture a solution to (27) as:
k“”W%@z_%b@C%;éi?»+wwhn)
y(M =1, a(T, ;) = b(T, 5,) =w(T) =0,
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1 Inz + a.(t, 31) )

he= =210 ( ,
t m[ t( ) +bt(t,52) +Wt i

y y
IL% Z_Za‘ﬁ’h“z Z_Zbéz' }
Yy Yy Yy
h5151 = _;a5151’h5252 = _zbézéz’hzz = mz2’ i
y

ﬁz = _m_z"h'dlz = hézz = '/%152 =0 J

Substituting (33) into (27), we have

Inzly, — (r — D)yl
+m[w; — (r — )w — ¢]

1
|
1
{ I[at + b+ 180, + 17885, — ETZbﬁZ‘S

'+y|+r—r—%(T4—T5 —Fe) —%Tla‘slé
|  +0-D@+b)—2(a+b)

\i
-
il
)

—_—

Splitting (34) we have

{yt—(r—‘r)y=0
y) =1

{wt—(r—r)w—c=0
w(T) =0

[ a;+ by + 18,0, +18,95, +T7—T 0

1 1 1
_E(Tél-_g:s_T6)_ET1a5151_ET2b5252
a(T,s,) = b(T,8,) =0

Solving (35) and (36), we have
y(t) — e(r—r)(t—T)
=1 = ltr-0-T
w(t) = — [1-e |
Next, we propose a solution for (37):

{a(t,él) + b(t, 8,) = A(t) + 8,B(t) + 8,C(t)
A(T) =1,B(T) = C(T) =0

a;+ b = A¢ + 8B, + 8,C; ,a,, =B,
b51 = C’ a5151 = bézéz =0

Substituting (41) into (37), we have

1
{A:+(T—T)—;(T4_T5—7:6)
+8,(By —7B) + 8,(C; —1rC) =0

Splitting (42), we have
B,—rB=0
C.—rC=0
Ap+(r—1) =5 (Fy— F5 — Fg) = 0
Solving (43)-(45), we have

B(t)=0

1SN1:0000000091950263
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(45)
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cC®)=0 (47)

AR = (et o 1) (- T) (48)
Therefore, the solution of (37) is given as

a(t,8,) +b(t,s,) = (m +7— r) t—-T) (49)

Substituting (38), (39) and (49) into (32), we have

A(t, 81,8,2)

__ikuqmqme+(r&jﬁﬁq“_T»] (50)
+-< [ 1— e(r—r)(t—T)]
T

Result 1.The optimal portfolio strategies for a member with
exponential utility function are given as

< ka(nz—52) >}_ 1
B 3

—(dz—5+7)8

51e(r_7)(t_T)(1+2k1+r—§+d1)(T—t) (dz-5+r)ez

k1(n1-51)
" 7_ —(d1—§+4ﬂ)51 Tzi

my(F1F2—F2)
< kq(ng1—81) >.7-‘
B 3
—(d1—5—7r)s
526D (1420547 -Eray ) (r-1) (d1-5=r)en

ka(nz2—62)
| G,

my(F1F2~F3)

(51

S
=
Il

(52)

S
Ny
I

Proof. From (50), we have

ka(nz—s82)
2F3(-r—kq) (d _E_¢)52
2P (et )( k1(ni-51) )
—2F2(=7r=ky ( B
+ dl—g—”")ﬁl
1 m(F1F,—F2)
kq(n1—81)
+(d1—§—/r’)51
ka(nz2—62)
2F1(-r—kq) (d _E_y)éz
2 m(F1Fy—F2)

e(r-D)(t-T)
hy=—

—_e(r-D)(t-T) t-T)

2f3(—r—k2)< (53)

_e(r—D)(t-T) (T—t)

mz
Substituting (53) into (28) and (29), resultl is proven.

IV. THEORETICAL ANALYSIS

In this section, we present some results to demonstrate the
impact of some parameters on the optimal investment plan.
Result 2.Suppose m > 0,8 > 0,7 > 0,7 > 0,t € [0,T],
k,>0,k,>0,d;, >0,d,>0,8>0,8,>0,4 >0,
(F1F, —F#) >0and T —t > 0 then

()"4’1<0() “’1<0(m) >0( v) 2 <0()a‘”1

Proof.
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(i) Recall that

ka(nz—52)
—(d2—§+4~)52 3

{ }
—1) (=T B | |
81T )(1+2k1+r—7+d1)(T—t)i Ky (mresy) i i
. I —(d1—§+r)51 2|
$1= my(F1F2-F5)
[( ka(n2—82) )fF 1
| B 3|
g g | \-(a2=5+r)s ) |
51T )(1+2k1+7‘—5+d1)(T—t)| Ky (ny-51) i I
097 _ | —(d1—§+r)51 2]
ay my2(F1F,—FZ)

Sincee T-M(-T) (1 + 2k + 71— g + dl) (T-t)>0 and

[(kz(nz —8) — (dz - g +4’”) 52)7'3 - (k1(”ﬂ1 —81) —
(di- £y 7)81)Fo] > 0and (F,F, — FZ) > 0, then

I[( k2 (nz—52) >.7-‘ ]I

B 3

5le(r—r)(:—r)< 1+§k1 >(T_t)l ~(d2=g+r)s2) |

+r—tdy I ki(ni1—381) . I

d0i _ _ |\ ~(d2-5+r)ea) %]
oy my?(F1F2~F3)

Therefore < 0

I[ < kz(nz—s82) )}_ ]I
B 3
—r)(t-T 8 | \-(d2—5+r)e2) 2 |
51N )(1+2k1+r—5+d1)(T—t)| < Ky (ngmin) )T I
(i) 2% = _ \(aa=ger)e) ]
am ym?2(F1F,~F3)
Sincee T-M(-T) (1 + 2k + 71— g + dl) (T-t)>0 and
(kz(’nz — &) — (dz —§+4’")52)7:3

- (kl(/n1 —81) — (dl - g + 4") 51) F,
F2) > 0, then

>0 and from (F,F, —

[( ko (n,—587) )T

| B 3
dy—>+71)8

516D 12k +r-Lra, ) - 0| (dz-3+r)2

( kq(ng—s1) )7’
201 _ _ (e _
om ym?(F,Fo~F3)

1
|
|
|
|
|

20
Therefore 222 < 0
om

[( ka(nz-52) )T
| B 3
—\d2—5+7r)s

51e(r_r)(t_T)(1+2k1+r—§+d1)(T—t)| (¢2-5+r)ez

1

|

|

| k1(n1—51) " i

* __ I_ —(d1—§+4")51 ZJ

1= my(F1Fa—F2)

[ (1+2ks47-Evay ), 7

(kz (nz —52)—(‘12—%‘””)52)-7:3

—(k1(4¢1—61)—(d1—§+’f')51)Tz

|
|
my(F1F2—F2) i

e(T-1)(t-T) (T—t)l

|

atpl
(i) — 9

]
o

Since( 2k, + r—§+ d1)>0
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(kz(”z_ﬁz)_(d2_§+4”)5z)7:3

_(kl(m_51>_(d1_£+4~)51)gr2 > 0and

(F1F, —F2) > 0; therefore > 0.
I[< kz(ny—s;) )7__ ]I
B 3
SN g | —(dz——+r)52 |
(t-T)s,e D T)(1+2k1+r—;+d1)(7'—t)i ( kl(’ffl—él) )Ti
(iv) 2 = (i) )

ym(F1Fo~F3)

[( ky(ny—52) )}_
| B 3
—\d2—>+7 )8

(T—t)‘sle(f"')(t"r)(1+2k1+r—§+d1)(T—t)I (d25+r)en

| ky(n1-51)
l_<—(d1—§+¢)51>?2
’y*m(fFrsz—ng)
Sincee ™ (14 2k, +7 =L 4+d, ) (T =) >0
(kz(’nz —8) — (dz _§+”’“)52)T3 -

(kr(’nr —81) — (dr _§+”")51)T2
F2) > 0, then

1
|
|
|
|
|

and

> 0 and from (F,F, —

[ [ ka(nz—s2) 1
A Lo R
(T—t)éle(f’r)([’T)(1+2k1+‘r—;+d1)(T—t)| Ku(miesy) i
- 7
i _ _ | <—(d1—§+r)5l> 1oy
ot ym(F F,—F2)
Therefore 1<
516D 1k +r-Lra ) (-0 \
- _B
I —(T—t)sle(r")(“'r) (kZ(nz 82)= (dz 2;-4/-)452)}‘3 I
v )6<p1 | ‘(kr(nr‘51)‘(d1‘;+4")51)7:2 |
i ym(F F,—FD) i
/ —a1e DD 12k +r-La, ) (r-0) |25 \
[ —(r=)s,e@nED (kz(’ﬂz_éz) dz“‘”" 82 j:3 |
% _ | —(k. (ny—81)— (dl——+4")51)}"2 |
B i ym(FiFo—FD) i
/ 5D 142k +r-Lra, ) (- t)[fz %) \
| (T—t)5,F=PET) (kz(nz_éz) dz“‘“" 82 73 |
% _ | + _(kl(/nr_ér) (dr__+"')51)7:2 |
B~ i ym(F F,—F2) i
Sincee " (14 2k, +r—L4d,) T -0) >0,  Fy-

Fy>0 and [(kz(/n2 — &) — (d2 —§+ 4") 52) Fy — (kl(/n1 -
81) — (d1 -Ey /r) 51)7-‘2] >0 and from the lemma (F,F, —
F2) > 0; therefore T L <0.

Result 3.Suppose m>0,>0,r>0,7>0,t€[0,T]k, >
0,k, >0,d; >0,dy, >0,8 >0,8,>0,4>0,(FF,—-F2)>0
and T — t > 0 then

(i) 52 < 0, (i) 52 < 0, (i) 52 > 0, (iv) % < 0, (v) 2 < 0
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Proof.
(1) Recall that
I[( ki(n1—81) >}_ ]I
B 3
- g (ar-5-r)s1
52D (1420472 dy ) (T t)! Ky (rpin) i !
. [\(de-F-r)ea) "]
P2 my(F1Fy—F2)
[( kq(n1-51) )?—“ 1
| B 3|
e s | \=(@-5-r)s) 7 |
syt T)(1+2k2+r—5+d2)(T—t)| Ky (gmsn) i |
a_‘ﬂ}_ _ | —(d2—§—¢)52 1J
dy my?(F1Fy—FZ)

Sincee *-M(-T) (1 + 2k, +7— g + dz) (T-1t)>0 and
(kr(’nr — &) — (dl _2_4”)51)?3
_(kz(’nz —8) — (dz _g_f)éz)?‘l

lemma (F;F, — F2) > 0, then

>0 and from the

I[( kq(n1-81) )T ]I
B 3
525(r—r)(t—T)<1+2k2+r>(T_t)| ~(d1-3-r)a1 !
_5+d2 |_( ko (ny—s2) ):Fl
oo _ RO
dy my2(F1Fp—F2)
Therefore 90; <0
oy
[ ki(ni—s1) "
N (o R

1

|
(=T |
spe(TTE >(1+2k2+r—7+d2)(r—t)| Ky (rgmin) i |
093 [ —(dz—g—”'”)éz '
(i) om ym2(F1F,—-F%)

Sincee T~ (=1 (1 + 2k, +7 — g + dz) (T—1t)>0
(kr(’nl —81) — (dl _2_4”)51)7:3
_(kz(nz —8;) — (dz _é—”’)éz)}h

lemma (F;F, — F2) > 0, then

>0 and from the

[( k1(n1-51) )T 1
I\ _(; _B_ 3|
5,e(T=P)(E-T) 1+§k2+r T-0) (dl 2 4”)“1 |

2 L, | ( kz(n2—52) )Ti
i _ i)
om ym?2(F1F,—F3)

Therefore 90z <0
aom
(1+2k47-Evdy )57y
(kl(’nl —51)—(‘11 —§—¢)51)T3

—(k2(n2—s2)— dz—é—’f 82 ) F1
2

|
|
my(F1F2—F2) i

[
/ 82eTNE=T)(T—p)|
|[+

|
N
(i1i) o, i

\

Since (1+2k2+r—§+d2) >0,
(kr(”’h_ﬁr)_(dr_g_”")ér)f3

—(ky(n, — 8,) — dz—g—r 5) >0 and (F,F,
2

—-F3 >

68 1SN1:0000000091950263



Open Science Index, Physical and Mathematical Sciences Vol:15, No:4, 2021 publications.waset.org/10011990.pdf

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences
Vol:15, No:4, 2021

0; therefore > 0

kq(ng—51)
(ot

dl—é—r)al

[ 1

| |

(@-r)(-T) _B I |
(t-T)sze T (1+2k +r +d2 (T- t)I kz(’ﬂz—éz) I
| ( )TlJ

(iv) =2 a% =

ym(F,Fo~F3)

[ 1(%1 51) 1
|\ ~(d1-E-r)s1 )2 |
T

(T—t)s5eT(t- >(1+2k2+r——+dz (T- t)i kz(%z_éz) i
~ | (dz—E—¢)52 7:lJ

ym(F1F,—F3)

Sincee ™M) (14 2k, +7 =L 4+d,) (T =) > 0 and
(k1(4¢1 —81) — (dl _g_”")él)?s
- (kz(’nz —8;) — (dz _g_”")ﬁz)?f

lemma (F;F, — F2) > 0, then

>0 and from the

Fra
I

/ < ki(n,—81) 5 ]I
+2ky+1 —(drﬁ—”')"l) : I\
@-(-T) - ?
| (T—-t)se < §+dz )(T t) _( ky(n3—585) )? i |
i = S
ym(F,Fp—F2) I

Therefore ico

PR ClC T)(1+2k2+r—£+d2)(T t)[?3 A \
|
|
|
|

(=) 5, TDET) (k1(’n1‘51) dl—_‘T 81 7:3

( )% — I (kz(’nz_ﬁz) (dz———*r“)ziz)f}-'l
B i ym(F,F,—F2)
/ 526 @ DED 142k, 47-Lray ) -0 [F1255]
B
| ~(T-0)s,eTNED (e (r1=s1)=(d1=5=7)e1) 75
a0z _ | _(kz("‘2—52)—(612—%—4’)52)?1
B i ym(F1F,—F2)
/ 51e(f‘r)(f‘T)(1+2k1+r—§+d1)(7~_t) T_2;73] \
B
| (T=t)s,eENET) (Fer (1 =s)=(d1=5=r)s1) %5 |
@ = — I + _(kZ(/nZ_AZ)_(dZ_g_”l")éz)fl I
w i ym(F1Fo—F2) i

Sincee N (14 2k, +7—L4+d,) (T -6) >0,  Fi-
F3;>0 and [(kl(n1 —8) — (d1 —g— /r) 51)9’3 - (kz(/n2 -
8,) — (d2 -E_ ,,,«) 52)7’1] >0 and from the lemma (F,F, —

F2) > 0; therefore _B <0.
V. DISCUSSION

In this section, the influences of some parameters on the
optimal investment strategies are investigated. In Results 2
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and 3, we observed that the optimal investment strategies for
the two risky assets decrease as the initial fund size ¢of the
PM increases; this is because the PM with less fund at the
early stage of the investment may wish to increase his or her
accumulated funds before retirement by investing more in the
risky assets which have the tendency of yielding high dividend
in shorter time compared to the interest made from investment
in the risk-free asset within such time frame. On the contrary,
a PM with large fund at the beginning of the investment may
not be too desperate but may decide to invest more in the risk-
free asset and balance it with some fraction of the risky assets
to avoid risk that is generated by the O-U process as a result of
the changes in the stock market price at different time
intervals. Also, we observed that optimal investment strategies
of the two risky assets decrease with an increase in the risk
aversion coefficient m of the PM; the implication here is that a
PM with high risk aversion coefficient is scared of taking risk,
hence will prefer to invest less in risky assets and possibly
more in the risk-free asset and vice versa. We also observed
that the fraction invested in the risky assets increases with an
increase in dividend; this is reliably so since more dividend
makes such investment attractive and lucrative. Most
interestingly, the optimal investment strategies are decreasing
functions of taxes imposed on the investment in the risky
assets; this is because high tax rate discourages investment
hence the PM may be discouraged in investing in any asset
attracting high rate of taxation and may switch to less or non-
taxable assets.

Finally, we observed that the transaction cost also decreases
the fraction of the PM fund invested in the risky assets. This
so because most pension administrators charge for portfolio
management and since investment in stock is highly volatile,
the transaction cost may be high and, in some -cases,
discouraging for the PM member to accept hence push the PM
to invest more in the risk-free asset.

VI. CONCLUSION

In conclusion, the paper investigated the strategic portfolio
management for a PM in a DC pension plan with couple risky
assets (stocks), transaction cost and taxes on the invested fund
under the O-U process. A portfolio consisting of a risk-free
asset and two risky assets was considered where the two risky
assets were modelled by the O-U process. We used the
Legendre transform and dual theory technique to transform the
HIB equation into a linear PDE which is then solved using
change of variable technique under exponential utility function
for the optimal investment strategies. In addition, we used a
theoretical analysis to examine the effects of some sensitive
parameters on the optimal investment strategies where we
observed that as the dividend from the risky assets increase,
the optimal investment strategies increase and vice versa.
Also, as the tax on the invested funds, risk averse coefficient,
initial fund size and the transaction cost increasing functions
of the optimal investment strategies.
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