Explicit Chain Homotopic Function to Compute Hochschild Homology of the Polynomial Algebra
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Explicit Chain Homotopic Function to Compute Hochschild Homology of the Polynomial Algebra

Authors: Z. Altawallbeh

Abstract:

In this paper, an explicit homotopic function is constructed to compute the Hochschild homology of a finite dimensional free k-module V. Because the polynomial algebra is of course fundamental in the computation of the Hochschild homology HH and the cyclic homology CH of commutative algebras, we concentrate our work to compute HH of the polynomial algebra, by providing certain homotopic function.

Keywords: Exterior algebra, free resolution, free and projective modules, Hochschild homology, homotopic function, symmetric algebra.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1338208

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500

References:


[1] R.Bott, W.Tu.Loring, "Differential forms in algebraic topology", Springer-Verlag, New York, 1982.
[2] A.Connes, "Non-commutative differential geometry", Publ. Math. IHES 62 (1985), 257-360. 87i:58162.
[3] J-L.Loday, "Cyclic Homology", 2nd edn, Grundlehren. Math. Wiss. 301, Springer-Verlag, Berlin (1998).
[4] J-L.Loday, D.Quillen, "Cyclic homology and the Lie algebra homology of matrices", Comment. Math. Helvetici 59 (1984), 565-591. 86i:17009.
[5] J.M.Lodder, "From Leibniz homology to cyclic homology", K-Theory, 27 (2002), 359-370.
[6] S.Mac Lane, "Homology", Academic Press, New York, 1963.