Search results for: gas cylinder
159 Image Analysis of Fine Structures of Supercavitation in the Symmetric Wake of a Cylinder
Authors: Y. Obikane , M.Kaneko, K.Kakioka, K.Ogura
Abstract:
The fine structure of supercavitation in the wake of a symmetrical cylinder is studied with high-speed video cameras. The flow is observed in a cavitation tunnel at the speed of 8m/sec when the sidewall and the wake are partially filled with the massive cavitation bubbles. The present experiment observed that a two-dimensional ripple wave with a wave length of 0.3mm is propagated in a downstream direction, and then abruptly increases to a thicker three-dimensional layer. IR-photography recorded that the wakes originated from the horseshoe vortexes alongside the cylinder. The wake was developed to inside the dead water zone, which absorbed the bubbly wake propelled from the separated vortices at the center of the cylinder. A remote sensing classification technique (maximum most likelihood) determined that the surface porosity was 0.2, and the mean speed in the mixed wake was 7m/sec. To confirm the existence of two-dimensional wave motions in the interface, the experiments were conducted at a very low frequency, and showed similar gravity waves in both the upper and lower interfaces.Keywords: Supercavitation, density gradient correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529158 Weakened Vortex Shedding from a Rotating Cylinder
Authors: Sharul S. Dol
Abstract:
An experimental study of the turbulent near wake of a rotating circular cylinder was made at a Reynolds number of 2000 for velocity ratios, λ between 0 and 2.7. Particle image velocimetry data are analyzed to study the effects of rotation on the flow structures behind the cylinder. The results indicate that the rotation of the cylinder causes significant changes in the vortex formation. Kármán vortex shedding pattern of alternating vortices gives rise to strong periodic fluctuations of a vortex street for λ < 2.0. Alternate vortex shedding is weak and close to being suppressed at λ = 2.0 resulting a distorted street with vortices of alternating sense subsequently being found on opposite sides. Only part of the circulation is shed due to the interference in the separation point, mixing in the base region, re-attachment, and vortex cut-off phenomenon. Alternating vortex shedding pattern diminishes and completely disappears when the velocity ratio is 2.7. The shed vortices are insignificant in size and forming a single line of vortex street. It is clear that flow asymmetries will deteriorate vortex shedding, and when the asymmetries are large enough, total inhibition of a periodic street occurs.
Keywords: Circulation, particle image velocimetry, rotating circular cylinder, smoke-wire flow visualization, Strouhal number, vortex shedding, vortex street.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2868157 Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice
Authors: S. Bangphan, P. Bangphan, T. Boonkang
Abstract:
Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved.
Keywords: Rice polished cylinder, statistical process control, control charts, process capability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3717156 Anisotropic Constitutive Model and its Application in Simulation of Thermal Shock Wave Propagation for Cylinder Shell Composite
Authors: Xia Huang, Wenhui Tang, Banghai Jiang, Xianwen Ran
Abstract:
In this paper, a plane-strain orthotropic elasto-plastic dynamic constitutive model is established, and with this constitutive model, the thermal shock wave induced by intense pulsed X-ray radiation in cylinder shell composite is simulated by the finite element code, then the properties of thermal shock wave propagation are discussed. The results show that the thermal shock wave exhibit different shapes under the radiation of soft and hard X-ray, and while the composite is radiated along different principal axes, great differences exist in some aspects, such as attenuation of the peak stress value, spallation and so on.Keywords: anisotropic constitutive model, thermal shock wave, X-ray, cylinder shell composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763155 A Transform-Free HOC Scheme for Incompressible Viscous Flow past a Rotationally Oscillating Circular Cylinder
Authors: Rajendra K. Ray, H. V. R. Mittal
Abstract:
A numerical study is made of laminar, unsteady flow behind a rotationally oscillating circular cylinder using a recently developed higher order compact (HOC) scheme. The stream function vorticity formulation of Navier-Stokes (N-S) equations in cylindrical polar coordinates are considered as the governing equations. The temporal behaviour of vortex formation and relevant streamline patterns of the flow are scrutinized over broad ranges of two externally specified parameters namely dimensionless forced oscillating frequency Sf and dimensionless peak rotation rate αm for the Reynolds-s number Re = 200. Excellent agreements are found both qualitatively and quantitatively with the existing experimental and standard numerical results.Keywords: HOC, Navier-Stokes, non-uniform polar grids, rotationally oscillating cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632154 Flow Control around Bluff Bodies by Attached Permeable Plates
Authors: G. M. Ozkan, H. Akilli
Abstract:
The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0o, 15o, 30o, 45o, 60o) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45oand 60o which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations.
Keywords: Bluff body, flow control, permeable plate, PIV, VIV, vortex shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586153 Tumble Flow Analysis in an Unfired Engine Using Particle Image Velocimetry
Authors: B. Murali Krishna, J. M. Mallikarjuna
Abstract:
This paper deals with the experimental investigations of the in-cylinder tumble flows in an unfired internal combustion engine with a flat piston at the engine speeds ranging from 400 to 1000 rev/min., and also with the dome and dome-cavity pistons at an engine speed of 1000 rev/min., using particle image velocimetry. From the two-dimensional in-cylinder flow measurements, tumble flow analysis is carried out in the combustion space on a vertical plane passing through cylinder axis. To analyze the tumble flows, ensemble average velocity vectors are used and to characterize it, tumble ratio is estimated. From the results, generally, we have found that tumble ratio varies mainly with crank angle position. Also, at the end of compression stroke, average turbulent kinetic energy is more at higher engine speeds. We have also found that, at 330 crank angle position, flat piston shows an improvement of about 85 and 23% in tumble ratio, and about 24 and 2.5% in average turbulent kinetic energy compared to dome and dome-cavity pistons respectivelyKeywords: In-cylinder flow, Dome piston, Cavity, Tumble, PIV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282152 Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct
Authors: H. Bhowmik, A. Faisal, Ahmed Al Yaarubi, Nabil Al Alawi
Abstract:
Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m2 to 2426 W/m2 and the Rayleigh number ranges from 1×104 to 4.35×104. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0o, 90o, 180o) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90o and 180o are higher than that of stagnation point (0o). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented.
Keywords: Steady-state, transient, natural convection, Rayleigh number, Nusselt number, Fourier Number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224151 Influence of Flame-Holder on Existence Important Parameters in a Duct Combustion Simulator
Authors: M. M. Doustdar, M. Mojtahedpoor
Abstract:
The effects of flame-holder position, the ratio of flame holder diameter to combustion chamber diameter and injection angle on fuel propulsive droplets sizing and effective mass fraction have been studied by a cold flow. We named the mass of fuel vapor inside the flammability limit as the effective mass fraction. An empty cylinder as well as a flame-holder which are a simulator for duct combustion has been considered. The airflow comes into the cylinder from one side and injection operation will be done by four nozzles which are located on the entrance of cylinder. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multiphase, multi component code for the analysis of chemically reacting flows with sprays, is used.Keywords: KIVA-3V, flame-holder, duct combustion, effective mass fraction, mean diameter of droplets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746150 Grid Independence Study of Flow Past a Square Cylinder Using the Multi-Relaxation-Time Lattice Boltzmann Method
Authors: Shams-Ul-Islam, Hamid Rahman, Waqas Sarwar Abbasi
Abstract:
Numerical calculations of flow around a square cylinder are presented using the multi-relaxation-time lattice Boltzmann method at Reynolds number 150. The effects of upstream locations, downstream locations and blockage are investigated systematically. A detail analysis are given in terms of time-trace analysis of drag and lift coefficients, power spectra analysis of lift coefficient, vorticity contours visualizations and phase diagrams. A number of physical quantities mean drag coefficient, drag coefficient, Strouhal number and root-mean-square values of drag and lift coefficients are calculated and compared with the well resolved experimental data and numerical results available in open literature. The results had shown that the upstream, downstream and height of the computational domain are at least 7.5, 37.5 and 12 diameters of the cylinder, respectively.
Keywords: Grid independence, Multi-relaxation-time lattice Boltzmann method, Physical quantities, Square cylinder, Vorticity contours visualizations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3340149 Numerical Simulation and Experiment of a Lifting Body with Leading-Edge Rotating Cylinder
Authors: A. Badarudin, C. S. Oon, S. N. Kazi, N. Nik-Ghazali, Y. J. Lee, W. T. Chong
Abstract:
An experimental and simulation flight test has been carried out to evaluate the longitudinal gliding characteristics of a lifting body with blunted half-cone geometry. The novelty here is the lifting body's pitch control mechanism, which consists of a pair of leading-edge rotating cylinders. Flight simulation uses aerodynamic data from computational fluid dynamics supported by wind-tunnel test. Flight test consists of releasing an aluminum lifting body model from a moving vehicle at the appropriate wind speed while measuring the lifting body's variation of altitude against time of flight. Results show that leading-edge rotating cylinder is able to give small amounts of improvement to the longitudinal stability and pitch control to the lifting body.
Keywords: Lifting body, pitch control, aerodynamic, rotating cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933148 Effect of Prandtl Number on Natural Convection Heat Transfer from a Heated Semi-Circular Cylinder
Authors: Avinash Chandra, R. P. Chhabra
Abstract:
Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number. The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number, . The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. The resulting flow and temperature fields are visualized in terms of the streamline and isotherm patterns in the proximity of the cylinder. The flow remains attached to the cylinder surface over the range of conditions spanned here except that for and ; at these conditions, a separated flow region is observed when the condition of the constant wall temperature is prescribed on the surface of the cylinder. The heat transfer characteristics are analyzed in terms of the local and average Nusselt numbers. The maximum value of the local Nusselt number always occurs at the corner points whereas it is found to be minimum at the rear stagnation point on the flat surface. Overall, the average Nusselt number increases with Grashof number and/ or Prandtl number in accordance with the scaling considerations. The numerical results are used to develop simple correlations as functions of Grashof and Prandtl number thereby enabling the interpolation of the present numerical results for the intermediate values of the Prandtl or Grashof numbers for both thermal boundary conditions.Keywords: Constant heat flux, Constant surface temperature, Grashof number, natural convection, Prandtl number, Semi-circular cylinder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3418147 Dynamic Variational Multiscale LES of Bluff Body Flows on Unstructured Grids
Authors: Carine Moussaed, Stephen Wornom, Bruno Koobus, Maria Vittoria Salvetti, Alain Dervieux,
Abstract:
The effects of dynamic subgrid scale (SGS) models are investigated in variational multiscale (VMS) LES simulations of bluff body flows. The spatial discretization is based on a mixed finite element/finite volume formulation on unstructured grids. In the VMS approach used in this work, the separation between the largest and the smallest resolved scales is obtained through a variational projection operator and a finite volume cell agglomeration. The dynamic version of Smagorinsky and WALE SGS models are used to account for the effects of the unresolved scales. In the VMS approach, these effects are only modeled in the smallest resolved scales. The dynamic VMS-LES approach is applied to the simulation of the flow around a circular cylinder at Reynolds numbers 3900 and 20000 and to the flow around a square cylinder at Reynolds numbers 22000 and 175000. It is observed as in previous studies that the dynamic SGS procedure has a smaller impact on the results within the VMS approach than in LES. But improvements are demonstrated for important feature like recirculating part of the flow. The global prediction is improved for a small computational extra cost.Keywords: variational multiscale LES, dynamic SGS model, unstructured grids, circular cylinder, square cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828146 Transient Thermal Stresses of Functionally Graded Thick Hollow Cylinder under the Green-Lindsay Model
Authors: Tariq T. Darabseh
Abstract:
The transient thermoelastic response of thick hollow cylinder made of functionally graded material under thermal loading is studied. The generalized coupled thermoelasticity based on the Green-Lindsay model is used. The thermal and mechanical properties of the functionally graded material are assumed to be varied in the radial direction according to a power law variation as a function of the volume fractions of the constituents. The thermal and elastic governing equations are solved by using Galerkin finite element method. All the finite element calculations were done by using commercial finite element program FlexPDE. The transient temperature, radial displacement, and thermal stresses distribution through the radial direction of the cylinder are plotted.
Keywords: Finite element method, thermal stresses, Green-Lindsay theory, functionally graded material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007145 Effect of Reynolds Number on Flow past a Square Cylinder in Presence of Upstream and Downstream Flat Plate at Small Gap Spacing
Authors: Shams-ul-Islam, Raheela Manzoor, Zhou Chao Ying
Abstract:
A two-dimensional numerical study for flow past a square cylinder in presence of flat plate both at upstream and downstream position is carried out using the single-relaxation-time lattice Boltzmann method for gap spacing 0.5 and 1. We select Reynolds numbers from 80 to 200. The wake structure mechanism within gap spacing and near wake region, vortex structures around and behind the main square cylinder in presence of flat plate are studied and compared with flow pattern around a single square cylinder. The results are obtained in form of vorticity contour, streamlines, power spectra analysis, time trace analysis of drag and lift coefficients. Four different types of flow patterns were observed in both configurations, named as (i) Quasi steady flow (QSF), (ii) steady flow (SF), (iii) shear layer reattachment (SLR), (iv) single bluff body (SBB). It is observed that upstream flat plate plays a vital role in significant drag reduction. On the other hand, rate of suppression of vortex shedding is high for downstream flat plate case at low Reynolds numbers. The reduction in mean drag force and root mean square value of drag force for upstream flat plate case are89.1% and 86.3% at (Re, g) = (80, 0.5d) and (120, 1d) and reduction for downstream flat plate case for mean drag force and root mean square value of drag force are 11.10% and 97.6% obtained at (180, 1d) and (180, 0.5d).Keywords: Detached flat plates, drag and lift coefficients, Reynolds numbers, square cylinder, Strouhal number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183144 Reciprocating Compressor Optimum Design and Manufacturing with Respect to Performance, Reliability and Cost
Authors: A. Almasi
Abstract:
Reciprocating compressors are flexible to handle wide capacity and condition swings, offer a very efficient method of compressing almost any gas mixture in wide range of pressure, can generate high head independent of density, and have numerous applications and wide power ratings. These make them vital component in various units of industrial plants. In this paper optimum reciprocating compressor configuration regarding interstage pressures, low suction pressure, non-lubricated cylinder, speed of machine, capacity control system, compressor valve, lubrication system, piston rod coating, cylinder liner material, barring device, pressure drops, rod load, pin reversal, discharge temperature, cylinder coolant system, performance, flow, coupling, special tools, condition monitoring (including vibration, thermal and rod drop monitoring), commercial points, delivery and acoustic conditions are presented.
Keywords: Design, optimum, reciprocating compressor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9888143 Force Statistics and Wake Structure Mechanism of Flow around a Square Cylinder at Low Reynolds Numbers
Authors: Shams-Ul-Islam, Waqas Sarwar Abbasi, Hamid Rahman
Abstract:
Numerical investigation of flow around a square cylinder are presented using the multi-relaxation-time lattice Boltzmann methods at different Reynolds numbers. A detail analysis are given in terms of time-trace analysis of drag and lift coefficients, power spectra analysis of lift coefficient, vorticity contours visualizations, streamlines and phase diagrams. A number of physical quantities mean drag coefficient, drag coefficient, Strouhal number and root-mean-square values of drag and lift coefficients are calculated and compared with the well resolved experimental data and numerical results available in open literature. The Reynolds numbers affected the physical quantities.
Keywords: Code validation, Force statistics, Multi-relaxation-time lattice Boltzmann method, Reynolds numbers, Square cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3124142 Critical Cylindrical Effect and Space-Time Exchange in Rotational Reference Frames of Special Relativity
Authors: Rui Yin, Ming Yin, Yang Wang
Abstract:
For a rotational reference frame of the theory of special relativity, the critical radius is defined as the distance from the axis to the point where the tangential velocity is equal to the speed of light, and the critical cylinder as the set of all points separated from the axis by this critical radius. Based on these terms, two relativistic effects of rotation are discovered: (i) the tangential velocity in the region of Outside Critical Cylinder (OCC) is not superluminal, due to the existence of space-time exchange; (ii) some of the physical quantities of the rotational body have an opposite mathematic sign at OCC versus those at Inside Critical Cylinder (ICC), which is termed as the Critical Cylindrical Effect (CCE). The laboratory experiments demonstrate that the repulsive force exerted on an anion by electrons will change to an attractive force by the electrons in precession while the anion is at OCC of the precession. 36 screenshots from four experimental videos are provided. Theoretical proofs for both space-time exchange and CCE are then presented. The CCEs of field force are also discussed.
Keywords: Critical radius, critical cylindrical effect, special relativity, space-time exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71141 Enhancing Oscillation Amplitude Response Generated by Vortex Induced Vibrations Through Experimental Identification of Optimum Parameters
Authors: Mohammed F. Alhaddad
Abstract:
Vortex Induced Vibrations (VIV) is a phenomenon that occurs as a result of a flow passing by a bluff body. The aim of this paper is to identify factors for maximizing oscillation amplitude generated by VIV in order to enhance the energy harnessed through this method. The experimental study in this paper will examine the effect of oscillating cylinder diameter, surface roughness, the location of surface roughness with respect to the centreline of the oscillating cylinder and the velocity on the oscillation amplitude of the used module.
Keywords: Energy, renewable, electrostatic, vibration, vortex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96140 Travel Time Model for Cylinder Type Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we mainly analyze an automated parking system where the storage and retrieval requests are performed by a tower crane. In this parking system, the S/R crane which is located at the middle of the bottom of the cylinder parking area can rotate in both clockwise and counterclockwise and three kinds of movements can be done simultaneously. We develop some mathematical travel time models for the single command cycle under the random storage assignment using the characteristics of this system. Finally, we compare these travel models with discrete case and it is shown that these travel models display a good satisfactory performance.Keywords: Parking system, travel time model, tower crane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794139 Combustion and Emission of a Compression Ignition Engine Fueled with Diesel and Hydrogen-Methane Mixture
Authors: J. H. Zhou, C. S. Cheung, C. W. Leung
Abstract:
The present study conducted experimental investigation on combustion and emission characteristics of compression ignition engine using diesel as pilot fuel and methane, hydrogen and methane/hydrogen mixture as gaseous fuels at 1800 rev min-1. The effect of gaseous fuel on peak cylinder pressure and heat release is modest at low to medium loads. At high load, the high combustion temperature and high quantity of pilot fuel contribute to better combustion efficiency for all kinds of gaseous fuels and increases the peak cylinder pressure. Enrichment of hydrogen in methane gradually increases the peak cylinder pressure. The brake thermal efficiency increases with higher hydrogen fraction at lower loads. Hydrogen addition in methane contributed to a proportional reduction of CO/CO2/HC emission without penalty of NOx. For particulate emission, methane and hydrogen, could both suppress the particle emission. 30% hydrogen fraction in methane is observed to be best in reducing the particulate emission.
Keywords: Combustion characteristics, diesel engine, emissions, methane/hydrogen mixture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3696138 Influences of Thermal Relaxation Times on Generalized Thermoelastic Longitudinal Waves in Circular Cylinder
Authors: Fatimah A. Alshaikh
Abstract:
This paper is concerned with propagation of thermoelastic longitudinal vibrations of an infinite circular cylinder, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). Three displacement potential functions are introduced to uncouple the equations of motion. The frequency equation, by using the traction free boundary conditions, is given in the form of a determinant involving Bessel functions. The roots of the frequency equation give the value of the characteristic circular frequency as function of the wave number. These roots, which correspond to various modes, are numerically computed and presented graphically for different values of the thermal relaxation times. It is found that the influences of the thermal relaxation times on the amplitudes of the elastic and thermal waves are remarkable. Also, it is shown in this study that the propagation of thermoelastic longitudinal vibrations based on the generalized thermoelasticity can differ significantly compared with the results under the classical formulation. A comparison of the results for the case with no thermal effects shows well agreement with some of the corresponding earlier results.
Keywords: Wave propagation, longitudinal vibrations, circular cylinder, generalized thermoelasticity, Thermal relaxation times.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189137 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend
Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes
Abstract:
This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.Keywords: Diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318136 Effect of Cooled EGR in Combustion Characteristics of a Direct Injection CI Engine Fuelled with Biodiesel Blend
Authors: Sankar Chandrasekar, Rana Niranchan V.S., Joseph Sidharth Leon
Abstract:
As the demand and prices of various petroleum products have been on the rise in recent years, there is a growing need for alternative fuels. Biodiesel, which consists of alkyl monoesters of fatty acids from vegetable oils and animal fats, is considered as an alternative to petroleum diesel. Biodiesel has comparable performance with that of diesel and has lower brake specific fuel consumption than diesel with significant reduction in emissions of CO, hydrocarbons (HC) and smoke with however, a slight increase in NOx emissions. This paper analyzes the effect of cooled exhaust gas recirculation in the combustion characteristics of a direct injection compression ignition engine using biodiesel blended fuel as opposed to the conventional system. The combustion parameters such as cylinder pressure, heat release rate, delay period and peak pressure were analyzed at various loads. The maximum cylinder pressure reduces as the fraction of biodiesel increases in the blend the maximum rate of pressure rise was found to be higher for diesel at higher engine loads.
Keywords: Cylinder pressure, delay period, EGR, heat release.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735135 A Computational Comparison between Revetec Engine and Conventional Internal Combustion Engines on the Indicated Torque
Authors: Maisara Mohyeldin Gasim, A. K. Amirruddin, A. Shahrani
Abstract:
This paper investigates the effect of replacing crankshaft with cam on the indicated torque during compression and power strokes in internal combustion engines. A Cycloidal cam profile was used in Revetec engine to calculate and compare the torque to a conventional engine, using a computational method. Firstly, the cylinder pressure was calculated using Ferguson equation, and then the torque calculated depending on cylinder pressure values in every crank angle. the results showed that by using Cycloidal cam profile in Revetec engine the torque can increased by 14% compared with conventional engines, which means an increase in engine efficiency.Keywords: Revetec engine, indicated torque, cam profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014134 Experimental Investigations of a Modified Taylor-Couette Flow
Authors: A. Esmael, A. El Shrif
Abstract:
In this study the instability problem of a modified Taylor-Couette flow between two vertical coaxial cylinders of radius R1, R2 is considered. The modification is based on the wavy shape of the inner cylinder surface, where inner cylinders with different surface amplitude and wavelength are used. The study aims to discover the effect of the inner surface geometry on the instability phenomenon that undergoes Taylor-Couette flow. The study reveals that the transition processes depends strongly on the amplitude and wavelength of the inner cylinder surface and resulting in flow instabilities that are strongly different from that encountered in the case of the classical Taylor-Couette flow.
Keywords: Hydrodynamic Instability, Modified Taylor-Couette Flow, Turbulence, Taylor vortices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472133 Experimental Investigations on the Mechanism of Stratified Liquid Mixing in a Cylinder
Authors: Chai Mingming, Li Lei, Lu Xiaoxia
Abstract:
In this paper, the mechanism of stratified liquids’ mixing in a cylinder is investigated. It is focused on the effects of Rayleigh-Taylor Instability (RTI) and rotation of the cylinder on liquid interface mixing. For miscible liquids, Planar Laser Induced Fluorescence (PLIF) technique is applied to record the concentration field for one liquid. Intensity of Segregation (IOS) is used to describe the mixing status. For immiscible liquids, High Speed Camera is adopted to record the development of the interface. The experiment of RTI indicates that it plays a great role in the mixing process, and meanwhile the large-scale mixing is triggered, and subsequently the span of the stripes decreases, showing that the mesoscale mixing is coming into being. The rotation experiments show that the spin-down process has a great role in liquid mixing, during which the upper liquid falls down rapidly along the wall and crashes into the lower liquid. During this process, a lot of interface instabilities are excited. Liquids mix rapidly in the spin-down process. It can be concluded that no matter what ways have been adopted to speed up liquid mixing, the fundamental reason is the interface instabilities which increase the area of the interface between liquids and increase the relative velocity of the two liquids.
Keywords: Interface instability, liquid mixing, Rayleigh-Taylor Instability, spin-down process, spin-up process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 929132 Fourth Order Accurate Free Convective Heat Transfer Solutions from a Circular Cylinder
Authors: T. V. S. Sekhar, B. Hema Sundar Raju
Abstract:
Laminar natural-convective heat transfer from a horizontal cylinder is studied by solving the Navier-Stokes and energy equations using higher order compact scheme in cylindrical polar coordinates. Results are obtained for Rayleigh numbers of 1, 10, 100 and 1000 for a Prandtl number of 0.7. The local Nusselt number and mean Nusselt number are calculated and compared with available experimental and theoretical results. Streamlines, vorticity - lines and isotherms are plotted.Keywords: Higher order compact scheme, Navier-Stokes equations, Energy equation, Natural convection, Boussinesq's approximation and Mean Nusselt number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664131 Effects of Cerium Oxide Nanoparticle Addition in Diesel and Diesel-Biodiesel Blends on the Performance Characteristics of a CI Engine
Authors: Abbas Alli Taghipoor Bafghi, Hosein Bakhoda, Fateme Khodaei Chegeni
Abstract:
An experimental investigation is carried out to establish the performance characteristics of a compression ignition engine while using cerium oxide nanoparticles as additive in neat diesel and diesel-biodiesel blends. In the first phase of the experiments, stability of neat diesel and diesel-biodiesel fuel blends with the addition of cerium oxide nanoparticles is analyzed. After series of experiments, it is found that the blends subjected to high speed blending followed by ultrasonic bath stabilization improves the stability. In the second phase, performance characteristics are studied using the stable fuel blends in a single cylinder four stroke engine coupled with an electrical dynamometer and a data acquisition system. The cerium oxide acts as an oxygen donating catalyst and provides oxygen for combustion. The activation energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall results reduction in HC emissions. The tests revealed that cerium oxide nanoparticles can be used as additive in diesel and diesel-biodiesel blends to improve complete combustion of the fuel significantly.Keywords: Diesel engine, cerium oxide, diesel-biodiesel blends, nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4815130 Design and Simulation of Air-Fuel Ratio Control System for Distributorless CNG Engine
Authors: Ei Ei Moe, Zaw Min Aung, Kyawt Khin
Abstract:
This paper puts forward one kind of air-fuel ratio control method with PI controller. With the help of MATLAB/SIMULINK software, the mathematical model of air-fuel ratio control system for distributorless CNG engine is constructed. The objective is to maintain cylinder-to-cylinder air-fuel ratio at a prescribed set point, determined primarily by the state of the Three- Way-Catalyst (TWC), so that the pollutants in the exhaust are removed with the highest efficiency. The concurrent control of airfuel under transient conditions could be implemented by Proportional and Integral (PI) controller. The simulation result indicates that the control methods can easily eliminate the air/fuel maldistribution and maintain the air/fuel ratio at the stochiometry within minimum engine events.Keywords: Distributorless CNG Engine, Mathematical Modelof Air-fuel control, MATLAB/SIMULINK, PI controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4492