Search results for: drop height
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 711

Search results for: drop height

681 Numerical Simulations of Electronic Cooling with In-Line and Staggered Pin Fin Heat Sinks

Authors: Yue-Tzu Yang, Hsiang-Wen Tang, Jian-Zhang Yin, Chao-Han Wu

Abstract:

Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume- based finite-difference method. Subsequently, numerical computations are performed with the realizable k - ԑ turbulence for the parameters studied, the fin height H, fin diameter D, and Reynolds number (Re) in the range of 7 ≤ H ≤ 10, 0.75 ≤ D ≤ 2, 2000 ≤ Re ≤ 126000 respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins are streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation.

Keywords: Pin-fin, heat sinks, simulations, turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
680 Routing Capability and Blocking Analysis of Dynamic ROADM Optical Networks (Category - II) for Dynamic Traffic

Authors: Indumathi T. S., T. Srinivas, B. Siva Kumar

Abstract:

Reconfigurable optical add/drop multiplexers (ROADMs) can be classified into three categories based on their underlying switching technologies. Category I consists of a single large optical switch; category II is composed of a number of small optical switches aligned in parallel; and category III has a single optical switch and only one wavelength being added/dropped. In this paper, to evaluate the wavelength-routing capability of ROADMs of category-II in dynamic optical networks,the dynamic traffic models are designed based on Bernoulli, Poisson distributions for smooth and regular types of traffic. Through Analytical and Simulation results, the routing power of cat-II of ROADM networks for two traffic models are determined.

Keywords: Fully-Reconfigurable Optical Add-Drop Multiplexers (FROADMs), Limited Tunability in Reconfigurable Optical Add-Drop multiplexers (LROADM), Multiplexer/De- Multiplexer (MUX/DEMUX), Reconfigurable Optical Add-Drop Multiplexers (ROADMs), Wavelength Division Multiplexing (WDM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
679 Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance

Authors: M. M. Isa, R. Abd-Rahman, H. H. Goh

Abstract:

A compound parabolic concentrator (CPC) is a wellknown non-imaging concentrator that will concentrate the solar radiation onto receiver (PV cell). One of disadvantage of CPC is has tall and narrow height compared to its diameter entry aperture area. Therefore, for economic reason, a truncation had been done by removed from the top of the full height CPC. This also will lead to the decreases of concentration ratio but it will be negligible. In this paper, the flux distribution of untruncated and truncated 2-D hollow compound parabolic trough concentrator (hCPTC) design is presented. The untruncated design has initial height H=193.4mm with concentration ratio C_(2-D)=4. This paper presents the optical simulation of compound parabolic trough concentrator using raytracing software TracePro. Results showed that, after the truncation, the height of CPC reduced 45% from initial height with the geometrical concentration ratio only decrease 10%. Thus, the cost of reflector and material dielectric usage can be saved especially at manufacturing site.

Keywords: Compound parabolic trough concentrator, optical modelling, ray-tracing analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3340
678 Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators

Authors: Feyza Eda Akyurek, Bayram Sahin, Kadir Gelis, Eyuphan Manay, Murat Ceylan

Abstract:

Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3–water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop.

Keywords: Turbulators, heat exchanger, nanofluids, heat transfer enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
677 A Contractor Iteration Method Using Eigenpairs for Positive Solutions of Nonlinear Elliptic Equation

Authors: Hailong Zhu, Zhaoxiang Li, Kejun Zhuang

Abstract:

By means of Contractor Iteration Method, we solve and visualize the Lane-Emden(-Fowler) equation Δu + up = 0, in Ω, u = 0, on ∂Ω. It is shown that the present method converges quadratically as Newton’s method and the computation of Contractor Iteration Method is cheaper than the Newton’s method.

Keywords: Positive solutions, newton's method, contractor iteration method, Eigenpairs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
676 Kinetic Theory Based CFD Modeling of Particulate Flows in Horizontal Pipes

Authors: Pandaba Patro, Brundaban Patro

Abstract:

The numerical simulation of fully developed gas–solid flow in a horizontal pipe is done using the eulerian-eulerian approach, also known as two fluids modeling as both phases are treated as continuum and inter-penetrating continua. The solid phase stresses are modeled using kinetic theory of granular flow (KTGF). The computed results for velocity profiles and pressure drop are compared with the experimental data. We observe that the convection and diffusion terms in the granular temperature cannot be neglected in gas solid flow simulation along a horizontal pipe. The particle-wall collision and lift also play important role in eulerian modeling. We also investigated the effect of flow parameters like gas velocity, particle properties and particle loading on pressure drop prediction in different pipe diameters. Pressure drop increases with gas velocity and particle loading. The gas velocity has the same effect ((proportional toU2 ) as single phase flow on pressure drop prediction. With respect to particle diameter, pressure drop first increases, reaches a peak and then decreases. The peak is a strong function of pipe bore.

Keywords: CFD, Eulerian modeling, gas solid flow, KTGF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175
675 Generalized Inverse Eigenvalue Problems for Symmetric Arrow-head Matrices

Authors: Yongxin Yuan

Abstract:

In this paper, we first give the representation of the general solution of the following inverse eigenvalue problem (IEP): Given X ∈ Rn×p and a diagonal matrix Λ ∈ Rp×p, find nontrivial real-valued symmetric arrow-head matrices A and B such that AXΛ = BX. We then consider an optimal approximation problem: Given real-valued symmetric arrow-head matrices A, ˜ B˜ ∈ Rn×n, find (A, ˆ Bˆ) ∈ SE such that Aˆ − A˜2 + Bˆ − B˜2 = min(A,B)∈SE (A−A˜2 +B −B˜2), where SE is the solution set of IEP. We show that the optimal approximation solution (A, ˆ Bˆ) is unique and derive an explicit formula for it.

Keywords: Partially prescribed spectral information, symmetric arrow-head matrix, inverse problem, optimal approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
674 Natural Gas Sweetening by Wetted-Wire Column

Authors: Sarah Taheri, Shahram Ghanbari Pakdehi, Arash Rezaei

Abstract:

Natural gas usually includes H2S component which is very toxic, hazardous and corrosive to environment, human being and process equipments, respectively. Therefore, sweetening of the gas (separation of H2S) is inevitable. To achieve this purpose, using packed-bed columns with liquid absorbents such as MEA or DEA is very common. Due to some problems of usual packed columns especially high pressure drop of gas phase, a novel kind of them called wetted-wire column (WWC) has been invented. The column decreases the pressure drop significantly and improves the absorption efficiency. The packings are very thin rods (like wire) and as long as column. The column has 100 wires with a triangular arrangement and counter current flows of gas and liquid phases. The observation showed that at the same conditions, the absorption performance was quite comparable to conventional packed-bed towers and a very low pressure drop.

Keywords: H2S, Natural gas, separation, wetted-wire column (WWC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
673 Compensation Method Eliminating Voltage Distortions in PWM Inverter

Authors: H. Sediki, S. Djennoune

Abstract:

The switching lag-time and the voltage drop across the power devices cause serious waveform distortions and fundamental voltage drop in pulse width-modulated inverter output. These phenomenons are conspicuous when both the output frequency and voltage are low. To estimate the output voltage from the PWM reference signal it is essential to take account of these imperfections and to correct them. In this paper, on-line compensation method is presented. It needs three simple blocs to add at the ideal reference voltages. This method does not require any additional hardware circuit and off- line experimental measurement. The paper includes experimental results to demonstrate the validity of the proposed method. It is applied, finally, in case of indirect vector controlled induction machine and implemented using dSpace card.

Keywords: Dead time, field-oriented control, Induction motor, PWM inverter, voltage drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4582
672 On Hyperbolic Gompertz Growth Model

Authors: Angela Unna Chukwu, Samuel Oluwafemi Oyamakin

Abstract:

We proposed a Hyperbolic Gompertz Growth Model (HGGM), which was developed by introducing a shape parameter (allometric). This was achieved by convoluting hyperbolic sine function on the intrinsic rate of growth in the classical gompertz growth equation. The resulting integral solution obtained deterministically was reprogrammed into a statistical model and used in modeling the height and diameter of Pines (Pinus caribaea). Its ability in model prediction was compared with the classical gompertz growth model, an approach which mimicked the natural variability of height/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using goodness of fit tests and model selection criteria. The Kolmogorov Smirnov test and Shapiro-Wilk test was also used to test the compliance of the error term to normality assumptions while the independence of the error term was confirmed using the runs test. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic gompertz growth models better than the source model (classical gompertz growth model) while the results of R2, Adj. R2, MSE and AIC confirmed the predictive power of the Hyperbolic Gompertz growth models over its source model.

Keywords: Height, Dbh, forest, Pinus caribaea, hyperbolic, gompertz.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2707
671 Classification of Initial Stripe Height Patterns using Radial Basis Function Neural Network for Proportional Gain Prediction

Authors: Prasit Wonglersak, Prakarnkiat Youngkong, Ittipon Cheowanish

Abstract:

This paper aims to improve a fine lapping process of hard disk drive (HDD) lapping machines by removing materials from each slider together with controlling the strip height (SH) variation to minimum value. The standard deviation is the key parameter to evaluate the strip height variation, hence it is minimized. In this paper, a design of experiment (DOE) with factorial analysis by twoway analysis of variance (ANOVA) is adopted to obtain a statistically information. The statistics results reveal that initial stripe height patterns affect the final SH variation. Therefore, initial SH classification using a radial basis function neural network is implemented to achieve the proportional gain prediction.

Keywords: Stripe height variation, Two-way analysis ofvariance (ANOVA), Radial basis function neural network, Proportional gain prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
670 Thermal Performance Analysis of Nanofluids in Microchannel Heat Sinks

Authors: Manay E., Sahin B., Yilmaz M., Gelis K.

Abstract:

In the present study, the pressure drop and laminar convection heat transfer characteristics of nanofluids in microchannel heat sink with square duct are numerically investigated. The water based nanofluids created with Al2O3 and CuO particles in four different volume fractions of 0%, 0.5%, 1%, 1.5% and 2% are used to analyze their effects on heat transfer and the pressure drop. Under the laminar, steady-state flow conditions, the finite volume method is used to solve the governing equations of heat transfer. Mixture Model is considered to simulate the nanofluid flow. For verification of used numerical method, the results obtained from numerical calculations were compared with the results in literature for both pure water and the nanofluids in different volume fractions. The distributions of the particles in base fluid are assumed to be uniform. The results are evaluated in terms of Nusselt number, the pressure drop and heat transfer enhancement. Analysis shows that the nanofluids enhance heat transfer while the Reynolds number and the volume fractions are increasing. The best overall enhancement was obtained at φ=%2 and Re=100 for CuO-water nanofluid.

Keywords: Microchannel Heat Sink, Nanofluid, Heat transfer enhancement, pressure drop

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3577
669 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System

Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan

Abstract:

With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.

Keywords: Dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation; pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012
668 A Small-Scale Study of Fire Whirls and Investigation of the Effects of Near-Ground Height on the Behavior of Fire Whirls

Authors: M. Arabghahestani, A. Darwish Ahmad, N. K. Akafuah

Abstract:

In this work, small-scale experiments of fire whirl were conducted to study the spinning fire phenomenon and to gain comprehensive understandings of fire tornadoes and the factors that affect their behavior. High speed imaging was used to track the flames at both temporal and spatial scales. This allowed us to better understand the role of the near-ground height in creating a boundary layer flow profile that, in turn contributes to formation of vortices around the fire, and consequent fire whirls. Based on the results obtained from these observations, we were able to spot the differences in the fuel burning rate of the fire itself as a function of a newly defined specific non-dimensional near-ground height. Based on our observations, there is a cutoff non-dimensional height, beyond which a normal fire can be turned into a fire whirl. Additionally, the results showed that the fire burning rate decreases by moving the fire to a height higher than the ground level. These effects were justified by the interactions between vortices formed by, the back pressure and the boundary layer velocity profile, and the vortices generated by the fire itself.

Keywords: Boundary layer profile, fire whirls, near-ground height, vortex interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674
667 Experimental Investigation of Plane Jets Exiting Five Parallel Channels with Large Aspect Ratio

Authors: Laurentiu Moruz, Jens Kitzhofer, Mircea Dinulescu

Abstract:

The paper aims to extend the knowledge about jet behavior and jet interaction between five plane unventilated jets with large aspect ratio (AR). The distance between the single plane jets is two times the channel height. The experimental investigation applies 2D Particle Image Velocimetry (PIV) and static pressure measurements. Our study focuses on the influence of two different outlet nozzle geometries (triangular shape with 2 x 7.5° and blunt geometry) with respect to variation of Reynolds number from 5500 - 12000. It is shown that the outlet geometry has a major influence on the jet formation in terms of uniformity of velocity profiles downstream of the sudden expansion. Furthermore, we describe characteristic regions like converging region, merging region and combined region. The triangular outlet geometry generates most uniform velocity distributions in comparison to a blunt outlet nozzle geometry. The blunt outlet geometry shows an unstable behavior where the jets tend to attach to one side of the walls (ceiling) generating a large recirculation region on the opposite side. Static pressure measurements confirm the observation and indicate that the recirculation region is connected to larger pressure drop.

Keywords: 2D particle image velocimetry, parallel jet interaction, pressure drop, sudden expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
666 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil

Authors: Pakawhat Khumkhreung, Yottana Khunatorn

Abstract:

The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.

Keywords: Airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1080
665 Reducing Pressure Drop in Microscale Channel Using Constructal Theory

Authors: K. X. Cheng, A. L. Goh, K. T. Ooi

Abstract:

The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs.

Keywords: Constructal theory, enhanced heat transfer, microchannel, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
664 Assessment the Effect of Setback in Height of Frame on Reinforcement Structures

Authors: Farshad Mehrabi, Ali kheirodin, Mohsen Gerami

Abstract:

Ambiguities in effects of earthquake on various structures in all earthquake codes would necessitate more study and research concerning influential factors on dynamic behavior. Previous studies which were done on different features in different buildings play a major role in the type of response a structure makes to lateral vibrations. Diagnosing each of these irregularities can help structure designers in choosing appropriate setbacks for decreasing possible damages. Therefore vertical setback is one of the irregularity factors in the height of the building where can be seen in skyscrapers and hotels. Previous researches reveal notable changes in the place of these setbacks showing dynamic response of the structure. Consequently analyzing 48 models of concrete frames for 3, 6 and 9 stories heights with three different bays in general shape of a surface decline by height have been constructed in ETABS2000 software, and then the shape effect of each and every one of these frames in period scale has been discussed. The result of this study reveals that not only mass, stiffness and height but also shape of the frame is influential.

Keywords: period, concrete frame, irregularity in height, decrease in plan surface, dynamic behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
663 Effects of Winter and Spring Sowing on Yield Components of Safflower Genotypes

Authors: Rahim Ada

Abstract:

The research was conducted with three replications as “Randomized Block Design” in Konya-Turkey ecological conditions. In the study, 16 of promising safflower lines (A8, E1, F4, F6, G16, H14, I1), and 1 cultivar (Dinçer) were evaluated in 2008-09 growing season. Some of the yield components such as plant height (cm), first branch height (cm), number of branches per plant, 1000 seed weight (g), seed yield (kg ha-1), oil content (%), oil yield (kg ha-1) were determined. Winter sowing showed higher values than spring sowing. The highest values were taken from Dinçer for plant height (86.7 cm), E1 (37.5 cm) for first branch height, F6 for number of branch (11.6 per plant), I1 for number of head (24.9 per plant), A8 for 1000 seed weight (51.75 g), Dinçer for seed yield (2927.1 kg ha-1), oil content (28.79 %) and also for oil yield (87.44 kg ha-1) respectively.

Keywords: Oil yield, Safflower, Sowing time, Yield components

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
662 Minaret of Medieval City Aktobe

Authors: Yeraly Akymbek, Beibit Baibugunov

Abstract:

In the article the remains of the base of the minaret, found in 2009 at the medieval fortress shakhristan Aktobe, which is located along the courses of the rivers Balta and Aksu. The minaret, which consists of two parts: the stylobate in the pit and base part refers to the XI-XII centuries. The preserved height of the building is 3.6 meters. Volume stylobat quadrangular minaret, the corners of which are aimed at the four corners of the world amounts to 8,65 x8, 5 m, height – 2.6 m. Diameter octagonal upper cap of 7.85 m and a height of preserved – 1 m. This minaret is of particular importance among the historical and architectural monuments of Kazakhstan, as it is so far the only minaret belonging to Karakhanid epoch in which Islam was the state religion.

Keywords: Aktobe, medieval, minaret, stylobate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
661 Investigation of the Flow Characteristics in a Catalytic Muffler with Perforated Inlet Cone

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

Emission regulations for diesel engines are being strengthened and it is impossible to meet the standards without exhaust after-treatment systems. Lack of the space in many diesel vehicles, however, make it difficult to design and install stand-alone catalytic converters such as DOC, DPF, and SCR in the vehicle exhaust systems. Accordingly, those have been installed inside the muffler to save the space, and referred to the catalytic muffler. However, that has complex internal structure with perforated plate and pipe for noise and monolithic catalyst for emission reduction. For this reason, flow uniformity and pressure drop, which affect efficiency of catalyst and engine performance, respectively, should be examined when the catalytic muffler is designed. In this work, therefore, the flow uniformity and pressure drop to improve the performance of the catalytic converter and the engine have been numerically investigated by changing various design parameters such as inlet shape, porosity, and outlet shape of the muffler using the three-dimensional turbulent flow of the incompressible, non-reacting, and steady state inside the catalytic muffler. Finally, it can be found that the shape, in which the muffler has perforated pipe inside the inlet part, has higher uniformity index and lower pressure drop than others considered in this work.

Keywords: Catalytic muffler, Perforated inlet cone, Catalysts, Perforated pipe, Flow uniformity, Pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2902
660 An Analysis of Variation of Ceiling Height and Window Level for Studio Architecture in Malaysia

Authors: Seyedehzahra Mirrahimi, Nik Lukman Nik Ibrahim, M. Surat

Abstract:

This paper investigated the impact of ceiling height and window head heights variation on daylighting inside architectural teaching studio with a full width window. In architectural education, using the studio is more than normal classroom in most credit hours. Therefore, window position, size and dimension of studio have direct influence on level of daylighting. Daylighting design is a critical factor that improves student learning, concentration and behavior, in addition to these, it also reduces energy consumption. The methodology of analysis involves using Radiance in IES software under overcast and cloudy sky in Malaysia. It has been established that presentation of daylighting of architecture studio can be enhanced by changing the ceiling heights and window level, because, different ceiling heights and window head heights can contribute to different range of daylight levels.

Keywords: Ceiling height, window head height, daylighting, studio architecture, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3336
659 Growth of Droplet in Radiation-Induced Plasma of Own Steam

Authors: Pavlo Selyshchev

Abstract:

The theoretical approach is developed to describe the change of drops in the atmosphere of own steam and buffer gas under irradiation. It is shown that the irradiation influences on size of stable droplet and on the conditions under which the droplet exists. Under irradiation the change of drop becomes more complex: the not monotone and periodical change of size of drop becomes possible. All possible solutions are represented by means of phase portrait. It is found all qualitatively different phase portraits as function of critical parameters: rate generation of clusters and substance density.

Keywords: Irradiation, steam, plasma, cluster formation, liquid droplets, evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
658 Optimum Design of Tall Tube-Type Building: An Approach to Structural Height Premium

Authors: Ali Kheyroddin, Niloufar Mashhadiali, Frazaneh Kheyroddin

Abstract:

In last decades, tubular systems employed for tall buildings were efficient structural systems. However, increasing the height of a building leads to an increase in structural material corresponding to the loads imposed by lateral loads. Based on this approach, new structural systems are emerging to provide strength and stiffness with the minimum premium for height. In this research, selected tube-type structural systems such as framed tubes, braced tubes, diagrids and hexagrid systems were applied as a single tube, tubular structures combined with braced core and outrigger trusses on a set of 48, 72, and 96-story, respectively, to improve integrated structural systems. This paper investigated structural material consumption by model structures focusing on the premium for height. Compared analytical results indicated that as the height of the building increased, combination of the structural systems caused the framed tube, hexagrid and braced tube system to pay fewer premiums to material tonnage while in diagrid system, combining the structural system reduced insignificantly the steel material consumption.

Keywords: Braced tube, diagrid, framed tube, hexagrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
657 Effect of Utilization of Organic and Inorganic Nitrogen Source on the Potato Shoots Dry Matter, Leaf Area Index and Plant Height, During Middle Stage of Growth

Authors: A. A. Najm, M. R. Haj Seyed Hadi, F. Fazeli, M. Taghi Darzi, R. Shamorady

Abstract:

Cattle manure and mineral fertilizers are two source of Nitrogen, which can affect the growth and quantity of potato. In this research the effects of the use of cattle manure (5, 10, 15 and 20 ton ha-1), Nitrogen fertilizer (50, 100 and 150 kg N ha-1) and their interaction on potato growth were evaluated during field experiments in 2008 with the help of Randomized Complete Block (RCB) with the factorial arrangement of three experimental replications in Iran. At the 75 th day after emergence, dry weight of Shoots, leaf area index (LAI) and plant height were recorded. Results showed that, dry weight of Shoots, LAI and plant height increased linearly and very significantly in response to the application of manure and Nitrogen fertilizer. While the interaction between manure and Nitrogen fertilizer just on the LAI and plant height was significant, somehow the maximum amount of plant height( 73 cm) was obtained by using 150 kg Nitrogen + 15 tons of manure per hectare, and maximum LAI ( 5.36) was obtained by using 150 kg Nitrogen + 20 tons of manure per hectare. Also in this experiment maximum tuber yield (36.8 tons ha-1) was obtained by the utilization of 150 kg Nitrogen per hectare + 20 tons manure.

Keywords: Solanum tuberosum, LAI, cattle manure, mineral fertilizer, integrated management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
656 Energy Requirement for Cutting Corn Stalks (Single Cross 704 Var.)

Authors: M. Azadbakht, A. Rezaei Asl, K. Tamaskani Zahedi

Abstract:

Corn is cultivated in most countries because of high consumption, quality, and food value. This study evaluated needed energy for cutting corn stems in different levels of cutting height and moisture content. For this reason, test device was fabricated and then calibrated. The device works on the principle of conservation of energy. The results were analyzed using split plot design and SAS software. The results showed that effect of height and moisture content and their interaction effect on cutting energy are significant (P<1%). The maximum cutting energy was 3.22 kJ in 63 (w.b.%) moisture content and the minimum cutting energy was 1.63 kJ in 83.25 (w.b.%) moisture content.

Keywords: Cutting energy, Corn stalk, Cutting height, Moisture content, Impact cutting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3143
655 Non-reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors was run to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6 and 1 and for air mass flow rates of 14 m/s, 28 m/s and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.

Keywords: Aerodynamic, Computational Fluid Dynamics, Propulsion, Trapped Vortex Combustor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71
654 Workstation Design Based On Ergonomics in Animal Feed Packing Process

Authors: Pirutchada Musigapong, Wantanee Phanprasit

Abstract:

The intention of this study to design the probability optimized sewing sack-s workstation based on ergonomics for productivity improvement and decreasing musculoskeletal disorders. The physical dimensions of two workers were using to design the new workstation. The physical dimensions are (1) sitting height, (2) mid shoulder height sitting, (3) shoulder breadth, (4) knee height, (5) popliteal height, (6) hip breadth and (7) buttock-knee length. The 5th percentile of buttock knee length sitting (51 cm), the 50th percentile of mid shoulder height sitting (62 cm) and the 95th percentile of popliteal height (43 cm) and hip breadth (45 cm) applied to design the workstation for sewing sack-s operator and the others used to adjust the components of this workstation. The risk assessment by RULA before and after using the probability optimized workstation were 7 and 7 scores and REBA scores were 11 and 5, respectively. Body discomfort-abnormal index was used to assess muscle fatigue of operators before adjustment workstation found that neck muscles, arm muscles area, muscles on the back and the lower back muscles fatigue. Therefore, the extension and flexion exercise was applied to relief musculoskeletal stresses. The workers exercised 15 minutes before the beginning and the end of work for 5 days. After that, the capability of flexion and extension muscles- workers were increasing in 3 muscles (arm, leg, and back muscles).

Keywords: Animal feed, anthropometry, ergonomics, sewing sack, workstation design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429
653 The Study of Super Hydrophobic Surfaces Using High Speed Shadowgraphy

Authors: D. Jasikova, M. Kotek, V. Kopecky

Abstract:

The aim of this article is the measurement of the basic characteristic of superhydrophobic surfaces using high speed shadowgraphy. Here we describe the novel patented system for the industrial production of superhydrophobic surfaces. These surfaces were investigated with two optically based measurement methods: impinging drop and inclined wall. The results of the visualization and analysis help to state the suitable sample with superhydrophobic properties for mathematic simulation.

Keywords: Antipearl effect, contact angle, hydrophobic, impinging drop, inclined wall, measurement, plasma, shadowgraphy, superhydrophobic surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458
652 Study and Enhancement of Flash Evaporation Desalination Utilizing the Ocean Thermocline and Discharged heat

Authors: Sami Mutair, Yasuyuki Ikegami

Abstract:

This paper reports on the results of experimental investigations of flash evaporation from superheated jet issues vertically upward from a round straight nozzle of 81.3 mm diameter. For the investigated range of jet superheat degree and velocity, it was shown that flash evaporation enhances with initial temperature increase. Due to the increase of jet inertia and subsequently the delay of jet shattering, increase of jet velocity was found to result in increase of evaporation "delay period". An empirical equation predicts the jet evaporation completion height was developed, this equation is thought to be useful in designing the flash evaporation chamber. In attempts for enhancement of flash evaporation, use of steel wire mesh located at short distance downstream was found effective with no consequent pressure drop.

Keywords: Enhancement; Flash Evaporation; OTEC; superheated jet

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3042