Search results for: Numerical wave tank
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2898

Search results for: Numerical wave tank

2868 Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle

Authors: R. Haoui

Abstract:

The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.

Keywords: Launchers, supersonic flow, finite volume, nozzles, shock wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877
2867 Reflection of Plane Waves at Free Surface of an Initially Stressed Dissipative Medium

Authors: M. M. Selim

Abstract:

The paper discuses the effect of initial stresses on the reflection coefficients of plane waves in a dissipative medium. Basic governing equations are formulated in context of Biot's incremental deformation theory. These governing equations are solved analytically to obtain the dimensional phase velocities of plane waves propagating in plane of symmetry. Closed-form expressions for the reflection coefficients of P and SV waves- incident at the free surface of an initially stressed dissipative medium are obtained. Numerical computations, using these expressions, are carried out for a particular model. Computations made with the results predicted in presence and absence of the initial stresses and the results have been shown graphically. The study shows that the presence of compressive initial stresses increases the velocity of longitudinal wave (P-wave) but diminishes that of transverse wave (SV-wave). Also the numerical results presented indicate that initial stresses and dissipation might affect the reflection coefficients significantly.

Keywords: Dissipation medium, initial stress, longitudinal waves, reflection coefficients, reflection of plane waves, transverse waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
2866 Experimental and CFD Investigation of Nozzle Angle in Jet Mixer

Authors: Hamid Rafiei, Reza Janamiri, Mohammad Hossein Sedaghat, Amir Hatampour

Abstract:

In this work, the results of mixing study by a jet mixer in a tank have been investigated in the laboratory scale. The tank dimensions are H/D=1 and the jet entrance have been considered in the center of upper surface of tank. RNG-k-ε model is used as the turbulent model for the prediction of the pattern of turbulent flow inside the tank. For this purpose, a tank with volume of 110 liter is simulated and it has been divided into 410,000 tetrahedral control cells for performing the calculations. The grids at the vicinity of the nozzle and suction pare are finer to get more accurate results. The experimental results showed that in a vertical jet, the lowest mixing time takes place at 35 degree. In addition, mixing time decreased by increasing the Reynolds number. Furthermore, the CFD simulation predicted the items as well a flow patterns precisely that validates the experiments.

Keywords: Jet mixer, CFD, Turbulent model, Nozzle angle, Mixing time, Reynolds Number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2579
2865 Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force

Authors: Amr R. El-Gamal, Ashraf Essa, Ayman Ismail

Abstract:

The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy’s linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark’s beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.

Keywords: Tethers tension, tension leg platforms, hydrodynamic wave forces, wave characteristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2930
2864 Influence Analysis of Pelamis Wave Energy Converter Structure Parameters

Authors: Liu Shengnan, Sun Liping, Zhu Jianxun

Abstract:

Based on three dimensional potential flow theory and hinged rigid body motion equations, structure RAOs of Pelamis wave energy converter is analyzed. Analysis of numerical simulation is carried out on Pelamis in the irregular wave conditions, and the motion response of structures and total generated power is obtained. The paper analyzes influencing factors on the average power including diameter of floating body, section form of floating body, draft, hinged stiffness and damping. The optimum parameters are achieved in Zhejiang Province. Compared with the results of the pelamis experiment made by Glasgow University, the method applied in this paper is feasible.

Keywords: Pelamis, Hinge, Floating multibody, Wave energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3261
2863 Numerical Comparison of Rushton Turbine and CD-6 Impeller in Non-Newtonian Fluid Stirred Tank

Authors: Akhilesh Khapre, Basudeb Munshi

Abstract:

A computational fluid dynamics simulation is done for non-Newtonian fluid in a baffled stirred tank. The CMC solution is taken as non-Newtonian shear thinning fluid for simulation. The Reynolds Average Navier Stocks equation with steady state multi reference frame approach is used to simulate flow in the stirred tank. The turbulent flow field is modelled using realizable k-ε turbulence model. The simulated velocity profiles of Rushton turbine is validated with literature data. Then, the simulated flow field of CD-6 impeller is compared with the Rushton turbine. The flow field generated by CD-6 impeller is less in magnitude than the Rushton turbine. The impeller global parameter, power number and flow number, and entropy generation due to viscous dissipation rate is also reported.

Keywords: Computational fluid dynamics, non-Newtonian, Rushton turbine, CD-6 impeller, power number, flow number, viscous dissipation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4148
2862 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions

Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic

Abstract:

Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.

Keywords: Absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
2861 A Study of the Relation of Wave Height and Erosion at Bangkhuntien Shoreline, Thailand

Authors: Prasertsak Ekphisutsuntorn, Prungchan Wongwises, Chaiyuth Chinnarasri, Usa Humphries, Suphat Vongvisessomjai

Abstract:

In this paper, the significant wave height at the Upper Gulf of Thailand and the changing of wave height at Bangkhuntien shoreline were simulated by using the Simulating WAves Nearshore Model (SWAN) version 40.51. The simulated results indicated that the significant wave height by SWAN model corresponded with the observed data. The results showed that the maximum significant wave height at the Bangkhuntien shoreline were 1.06-2.05 m. and the average significant wave height at the Bangkhuntien shoreline were 0.30-0.47 m. The significant wave height can be used to calculate the erosion through the Bangkhuntien shoreline. The erosion rates at the Bangkhuntien shoreline were prepared by using the aerial photo and they were about 1.80 m/yr. from 1980- 1986, 4.75 m/yr from 1987-1993, 15.28 m/yr from 1994-1996 and 10.03 m/yr from 1997-2002. The relation between the wave energy and the erosion were in good agreement. Therefore, the significant wave height was one of the major factors of the erosion at the Bangkhuntien shoreline.

Keywords: significant wave height, erosion, SWAN, relation, Bangkhuntien shoreline

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
2860 Performance Evaluation of an Aboveground LNG Storage Tank Cover using Nondestructive and Destructive Tests

Authors: Sungnam Hong, Sun-Kyu Park, Jieun Jeong, Jinwoong Choi

Abstract:

In this study, a new procedure for inspecting damages on LNG storage tanks was proposed with the use of structural diagnostic techniques: i.e., nondestructive inspection techniques such as macrography, the hammer sounding test, the Schmidt hammer test, and the ultrasonic pulse velocity test, and destructive inspection techniques such as the compressive strength test, the chloride penetration test, and the carbonation test. From the analysis of all the test results, it was concluded that the LNG storage tank cover was in good condition. Such results were also compared with the Korean concrete standard specifications and design values. In addition, the remaining life of the LNG storage tank was estimated by using existing models. Based on the results, an LNG storage tank cover performance evaluation procedure was suggested.

Keywords: Destructive test, LNG storage tank, Nondestructive test, Performance evaluation procedure, Remaining life.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3190
2859 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method

Authors: N. Fusun Oyman Serteller

Abstract:

In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples.  Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.

Keywords: Finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
2858 Adaptive Fuzzy Control of a Nonlinear Tank Process

Authors: A. R. Tavakolpour-Saleh, H. Jokar

Abstract:

Liquid level control of conical tank system is known to be a great challenge in many industries such as food processing, hydrometallurgical industries and wastewater treatment plant due to its highly nonlinear characteristics. In this research, an adaptive fuzzy PID control scheme is applied to the problem of liquid level control in a nonlinear tank process. A conical tank process is first modeled and primarily simulated. A PID controller is then applied to the plant model as a suitable benchmark for comparison and the dynamic responses of the control system to different step inputs were investigated. It is found that the conventional PID controller is not able to fulfill the controller design criteria such as desired time constant due to highly nonlinear characteristics of the plant model. Consequently, a nonlinear control strategy based on gain-scheduling adaptive control incorporating a fuzzy logic observer is proposed to accurately control the nonlinear tank system. The simulation results clearly demonstrated the superiority of the proposed adaptive fuzzy control method over the conventional PID controller.

Keywords: Adaptive control, fuzzy logic, conical tank, PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
2857 Wave Vortex Parameters as an Indicator of Breaking Intensity

Authors: B. Robertson, K. Hall

Abstract:

The study of the geometric shape of the plunging wave enclosed vortices as a possible indicator for the breaking intensity of ocean waves has been ongoing for almost 50 years with limited success. This paper investigates the validity of using the vortex ratio and vortex angle as methods of predicting breaking intensity. Previously published works on vortex parameters, based on regular wave flume results or solitary wave theory, present contradictory results and conclusions. Through the first complete analysis of field collected irregular wave breaking vortex parameters it is illustrated that the vortex ratio and vortex angle cannot be accurately predicted using standard breaking wave characteristics and hence are not suggested as a possible indicator for breaking intensity.

Keywords: Breaking Wave Measurement, Wave Vortex Parameters, Analytical Techniques, Ocean Remote Sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
2856 Designing an Optimal Safe Layout for a Fuel Storage Tanks Farm: Case Study of Jaipur Oil Depot

Authors: Moosa Haji Abbasi, Emad Benhelal, Arshad Ahmad

Abstract:

Storage tank farms are essential industrial facilities to accumulate oil, petrochemicals and gaseous products. Since tank farms contain huge mass of fuel and hazardous materials, they are always targets of serious accidents such as fire, explosion, spill and toxic release which may cause severe impacts on human health, environmental and properties.

Although having a safe layout is not able to prevent initiating accidents, however it effectively controls and reduces the adverse impact of such accidents.

The aim of this paper is to determine the optimal layout for a storage tank contains different type of hydrocarbon fuels. A quantitative risk assessment is carried out on a selected tank farm in Jaipur, India, with particular attention given to both the consequence modeling and the overall risk assessment using PHAST Software. Various designs of tank layouts are examined taking into consideration several issues of plant operations and maintenance. In all stages of the work, standard guidelines specified by the industry are considered and recommendations are substantiated with simulation results and risk quantification.

Keywords: Tank farm, safe distance, safe layout, risk assessment, PHAST.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15634
2855 Time-Domain Simulations of the Coupled Dynamics of Surface Riding Wave Energy Converter

Authors: Chungkuk Jin, Moo-Hyun Kim, HeonYong Kang

Abstract:

A surface riding (SR) wave energy converter (WEC) is designed and its feasibility and performance are numerically simulated by the author-developed floater-mooring-magnet-electromagnetics fully-coupled dynamic analysis computer program. The biggest advantage of the SR-WEC is that the performance is equally effective even in low sea states and its structural robustness is greatly improved by simply riding along the wave surface compared to other existing WECs. By the numerical simulations and actuator testing, it is clearly demonstrated that the concept works and through the optimization process, its efficiency can be improved.

Keywords: Computer simulation, electromagnetics fully-coupled dynamics, floater-mooring-magnet, optimization, performance evaluation, surface riding, wave energy converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
2854 Influence of Tether Length in the Response Behavior of Square Tension Leg Platform in Regular Waves

Authors: Amr R. El-Gamal, Ashraf Essa, Ayman Ismail

Abstract:

The tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is regarded as moored structure in horizontal plan, while inherit stiffness of fixed platform in vertical plane. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark’s beta integration scheme. The effect of tethers length and wave characteristics such as wave period and wave height on the response of TLP's was evaluated.

Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether length, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about that is significantly dependent on tether length.

Keywords: Hydrodynamic wave forces, tension leg platforms, tethers length, wave characteristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
2853 Estimating the Runoff Using the Simple Tank Model and Comparing it with the SCS-CN Model - A Case Study of the Dez River Basin

Authors: H. Alaleh, N. Hedayat, A. Alaleh, H. Ayazi, A. Ruhani

Abstract:

Run-offs are considered as important hydrological factors in feasibility studies of river engineering and irrigation-related projects under arid and semi-arid condition. Flood control is one of the crucial factor, the management of which while mitigates its destructive consequences, abstracts considerable volume of renewable water resources. The methodology applied here was based on Mizumura, which applied a mathematical model for simple tank to simulate the rainfall-run-off process in a particular water basin using the data from the observational hydrograph. The model was applied in the Dez River water basin adjacent to Greater Dezful region, Iran in order to simulate and estimate the floods. Results indicated that the calculated hydrographs using the simple tank method, SCS-CN model and the observation hydrographs had a close proximity. It was also found that on average the flood time and discharge peaks in the simple tank were closer to the observational data than the CN method. On the other hand, the calculated flood volume in the CN model was significantly closer to the observational data than the simple tank model.

Keywords: Simple tank, Dez River, run-off, lag time, excess rainfall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
2852 Cubic Trigonometric B-spline Approach to Numerical Solution of Wave Equation

Authors: Shazalina Mat Zin, Ahmad Abd. Majid, Ahmad Izani Md. Ismail, Muhammad Abbas

Abstract:

The generalized wave equation models various problems in sciences and engineering. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline for the approximate solution of wave equation is developed. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Von Neumann stability analysis is used to analyze the proposed method. Two problems are discussed to exhibit the feasibility and capability of the method. The absolute errors and maximum error are computed to assess the performance of the proposed method. The results were found to be in good agreement with known solutions and with existing schemes in literature.

Keywords: Collocation method, Cubic trigonometric B-spline, Finite difference, Wave equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603
2851 Experimental Study of Fuel Tank Filling

Authors: Maurizio Mastroianni, Lou Savoni, Paul Henshaw, Gary W. Rankin

Abstract:

The refueling of a transparent rectangular fuel tank fitted with a standard filler pipe and roll-over valve was experimentally studied. A fuel-conditioning cart, capable of handling fuels of different Reid vapor pressure at a constant temperature, was used to dispense fuel at the desired rate. The experimental protocol included transient recording of the tank and filler tube pressures while video recording the flow patterns in the filler tube and tank during the refueling process. This information was used to determine the effect of changes in the vent tube diameter, fuel-dispense flow rate and fuel Reid vapor pressure on the pressure-time characteristics and the occurrence of premature fuel filling shut-off and fuel spill-back. Pressure-time curves for the case of normal shut-off demonstrated the classic, three-phase characteristic noted in the literature. The variation of the maximum values of tank dome and filler tube pressures are analyzed in relation to the occurrence of premature shut-off.

Keywords: experimental study, fuel tank filling, premature shutoff, spill-back

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4204
2850 Numerical Simulation of High Pressure Hydrogen Emerges to Air

Authors: Mohamed H. Elhsnawi, Mesbah M. Salem, Saleh B. Mohamed

Abstract:

Numerical simulation performed to investigate the behavior of the high pressure hydrogen jetting of air. High pressure hydrogen (30–40 MPa) was injected to air at atmospheric pressure through 2mm orifice. Numerical simulations were performed with Kiva3V code with 2D axisymmetric geometry. Numerical simulations showed that auto ignition of high pressure hydrogen to air are possible due to molecular diffusion. Auto ignition was predicted at hydrogen-air contact surface due to mass and energy exchange between high temperature hydrogen and air heated by shock wave.

Keywords: Spontaneous Ignition, Diffusion Ignition, Hydrogen ignition, Hydrogen Jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
2849 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method

Authors: Anjali Verma, Ram Jiwari, Jitender Kumar

Abstract:

This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.

Keywords: Shallow water wave equation, Exact solutions, (G'/G) expansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
2848 Performance Analysis of a Single-Phase Thermosyphon Solar Water Heating System

Authors: S. Sadhishkumar, T. Balusamy

Abstract:

A single-phase closed thermosyphon has been fabricated and experimented to utilize solar energy for water heating. The working fluid of the closed thermosyphon is heated at the flatplate collector and the hot water goes to the water tank due to density gradient caused by temperature differences. This experimental work was done using insulated water tank and insulated connecting pipe between the tank and the flat-plate collector. From the collected data, performance parameters such as instantaneous collector efficiency and heat removal factor are calculated. In this study, the effects of glazing were also observed. The water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using insulated water tank and insulated connecting pipe are 17°C in a period of 5 hours and 60% respectively. Whereas the water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using non-insulated water tank and non-insulated connecting pipe are 14°C in a period of 5 hours and 39% respectively.

Keywords: Solar water heating systems, Single-phase thermosyphon, Flat-plate collector, Insulated tank and pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3132
2847 Comparative Study on Status and Development of Transient Flow Analysis Including Simple Surge Tank

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar

Abstract:

This paper presents the problem of modeling and simulating of transient phenomena in conveying pipeline systems based on the rigid column and full elastic methods. Transient analysis is important and one of the more challenging and complicated flow problem in the design and the operation of water pipeline systems. Transient can produce large pressure forces and rapid fluid acceleration into a water pipeline system, these disturbances may result in device failures, system fatigue or pipe ruptures, and even the dirty water intrusion. Several methods have been introduced and used to analyze transient flow, an accurate analysis and suitable protection devices should be used to protect water pipeline systems. The fourth-order Runge-Kutta method has been used to solve the dynamic and continuity equations in the rigid column method, while the characteristics method used to solve these equations in the full elastic method. The results obtained provide that the model is an efficient tool for flow transient analysis and provide approximately identical results by using these two methods. Moreover; using the simple surge tank ”open surge tank” reduces the unfavorable effects of transients.

Keywords: Elastic method, Flow transient, Open surge tank, Pipeline, Protection devices, Numerical model, Rigid column method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2992
2846 Ankh Key Broadband Array Antenna for 5G Applications

Authors: Noha M. Rashad, W. Swelam, M. H. Abd ElAzeem

Abstract:

A simple design of array antenna is presented in this paper, supporting millimeter wave applications which can be used in short range wireless communications such as 5G applications. This design enhances the use of V-band, according to IEEE standards, as the antenna works in the 70 GHz band with bandwidth more than 11 GHz and peak gain more than 13 dBi. The design is simulated using different numerical techniques achieving a very good agreement.

Keywords: 5G Technology, array antenna, microstrip, millimeter wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963
2845 Real-time Interactive Ocean Wave Simulation using Multithread

Authors: K. Prachumrak, T. Kanchanapornchai

Abstract:

This research simulates one of the natural phenomena, the ocean wave. Our goal is to be able to simulate the ocean wave at real-time rate with the water surface interacting with objects. The wave in this research is calm and smooth caused by the force of the wind above the ocean surface. In order to make the simulation of the wave real-time, the implementation of the GPU and the multithreading techniques are used here. Based on the fact that the new generation CPUs, for personal computers, have multi cores, they are useful for the multithread. This technique utilizes more than one core at a time. This simulation is programmed by C language with OpenGL. To make the simulation of the wave look more realistic, we applied an OpenGL technique called cube mapping (environmental mapping) to make water surface reflective and more realistic.

Keywords: Interactive wave, ocean wave, wind effect, multithread

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
2844 Hydrodynamic Performance of a Moored Barge in Irregular Wave

Authors: Srinivasan Chandrasekaran, Shihas A. Khader

Abstract:

Motion response of floating structures is of great concern in marine engineering. Nonlinearity is an inherent property of any floating bodies subjected to irregular waves. These floating structures are continuously subjected to environmental loadings from wave, current, wind etc. This can result in undesirable motions of the vessel which may challenge the operability. For a floating body to remain in its position, it should be able to induce a restoring force when displaced. Mooring is provided to enable this restoring force. This paper discusses the hydrodynamic performance and motion characteristics of an 8 point spread mooring system applied to a pipe laying barge operating in the West African sea. The modelling of the barge is done using a computer aided-design (CAD) software RHINOCEROS. Irregular waves are generated using a suitable wave spectrum. Both frequency domain and time domain analysis is done. Numerical simulations based on potential theory are carried out to find the responses and hydrodynamic performance of the barge in both free floating as well as moored conditions. Initially, potential flow frequency domain analysis is done to obtain the Response Amplitude Operator (RAO) which gives an idea about the structural motion in free floating state. RAOs for different wave headings are analyzed. In the following step, a time domain analysis is carried out to obtain the responses of the structure in the moored condition. In this study, wave induced motions are only taken into consideration. Wind and current loads are ruled out and shall be included in further studies. For the current study, 2000 seconds simulation is taken. The results represent wave induced motion responses, mooring line tensions and identify critical mooring lines.

Keywords: Irregular wave, moored barge, time domain analysis, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
2843 High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

Authors: Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang

Abstract:

This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in 'x' by discontinuous approximations. This method combines mainly two key ideas which are based on the finite volume and finite element methods. The physics of wave propagation being accounted for by means of Riemann problems and accuracy is obtained by means of high-order polynomial approximations within the elements. High order accurate Low Storage Explicit Runge Kutta (LSERK) method is used for temporal discretization in 't' that allows the method to be nonlinearly stable regardless of its accuracy. The resulting RKDG methods are stable and high-order accurate. The L1 ,L2 and L∞ error norm analysis shows that the scheme is highly accurate and effective. Hence, the method is well suited to achieve high order accurate solution for the scalar wave equation and other hyperbolic equations.

Keywords: Nodal Discontinuous Galerkin Method, RKDG, Scalar Wave Equation, LSERK

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
2842 Nonlinear Effects in Bubbly Liquid with Shock Waves

Authors: Raisa Kh. Bolotnova, Marat N. Galimzianov, Andrey S. Topolnikov, Uliana O. Agisheva, Valeria A. Buzina

Abstract:

The paper presents the results of theoretical and numerical modeling of propagation of shock waves in bubbly liquids related to nonlinear effects (realistic equation of state, chemical reactions, two-dimensional effects). On the basis on the Rankine- Hugoniot equations the problem of determination of parameters of passing and reflected shock waves in gas-liquid medium for isothermal, adiabatic and shock compression of the gas component is solved by using the wide-range equation of state of water in the analitic form. The phenomenon of shock wave intensification is investigated in the channel of variable cross section for the propagation of a shock wave in the liquid filled with bubbles containing chemically active gases. The results of modeling of the wave impulse impact on the solid wall covered with bubble layer are presented.

Keywords: bubbly liquid, cavitation, equation of state, shock wave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
2841 The Radial Pulse Wave and Blood Viscosity

Authors: Hyunhee Ryu, Young Ju Jeon, Jaeuk U. Kim, Hae Jung Lee, Yu Jung Lee, Jong Yeol Kim

Abstract:

The aim of this study was to investigate the effect of blood viscosity on the radial pulse wave. For this, we obtained the radial pulse wave of 15 males with abnormal high hematocrit level and 47 males with normal hematocrit level at the age of thirties and forties. Various variables of the radial pulse wave between two groups were analyzed and compared by Student's T test. There are significant differences in several variables about height, time and area of the pulse wave. The first peak of the radial pulse wave was higher in abnormal high hematocrit group, but the third peak was higher and longer in normal hematocrit group. Our results suggest that the radial pulse wave can be used for diagnosis of high blood viscosity and more clinical application.

Keywords: Radial pulse wave, Blood viscosity, Hematocrit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
2840 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos

Abstract:

A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.

Keywords: Layered Structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
2839 CFD Simulations for Studying Flow Behaviors in Dipping Tank in Continuous Latex Gloves Production Lines

Authors: W. Koranuntachai, T. Chantrasmi, U. Nontakaew

Abstract:

Medical latex gloves are made from the latex compound in production lines. Latex dipping is considered one of the most important processes that directly affect the final product quality. In a continuous production line, a chain conveyor carries the formers through the process and partially submerges them into an open channel flow in a latex dipping tank. In general, the conveyor speed is determined by the desired production capacity, and the latex-dipping tank can then be designed accordingly. It is important to understand the flow behavior in the dipping tank in order to achieve high quality in the process. In this work, Computational Fluid Dynamics (CFD) was used to simulate the flow past an array of formers in a simplified latex dipping process. The computational results showed both the flow structure and the vortex generation between two formers. The maximum shear stress over the surface of the formers was used as the quality metric of the latex-dipping process when adjusting operation parameters.

Keywords: medical latex gloves, latex dipping, dipping tank, computational fluid dynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538