Search results for: Convergence rate.
3085 Adaptive Filtering in Subbands for Supervised Source Separation
Authors: Bruna Luisa Ramos Prado Vasques, Mariane Rembold Petraglia, Antonio Petraglia
Abstract:
This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.Keywords: Adaptive filtering, multirate processing, normalized subband adaptive filter, source separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9623084 Interaxial Distance and Convergence Control for Efficient Stereoscopic Shooting using Horizontal Moving 3D Camera Rig
Authors: Seong-Mo An, Rohit Ramesh, Young-Sook Lee, Wan-Young Chung
Abstract:
The proper assessment of interaxial distance and convergence control are important factors in stereoscopic imaging technology to make an efficient 3D image. To control interaxial distance and convergence for efficient 3D shooting, horizontal 3D camera rig is designed using some hardware components like 'LM Guide', 'Goniometer' and 'Rotation Stage'. The horizontal 3D camera rig system can be properly aligned by moving the two cameras horizontally in same or opposite directions, by adjusting the camera angle and finally considering horizontal swing as well as vertical swing. In this paper, the relationship between interaxial distance and convergence angle control are discussed and intensive experiments are performed in order to demonstrate an easy and effective 3D shooting.Keywords: Interaxial, Convergence, Stereoscopic, Horizontal 3D Camera Rig
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26463083 Mapping of C* Elements in Finite Element Method using Transformation Matrix
Authors: G. H. Majzoob, B. Sharifi Hamadani
Abstract:
Mapping between local and global coordinates is an important issue in finite element method, as all calculations are performed in local coordinates. The concern arises when subparametric are used, in which the shape functions of the field variable and the geometry of the element are not the same. This is particularly the case for C* elements in which the extra degrees of freedoms added to the nodes make the elements sub-parametric. In the present work, transformation matrix for C1* (an 8-noded hexahedron element with 12 degrees of freedom at each node) is obtained using equivalent C0 elements (with the same number of degrees of freedom). The convergence rate of 8-noded C1* element is nearly equal to its equivalent C0 element, while it consumes less CPU time with respect to the C0 element. The existence of derivative degrees of freedom at the nodes of C1* element along with excellent convergence makes it superior compared with it equivalent C0 element.Keywords: Mapping, Finite element method, C* elements, Convergence, C0 elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31493082 Localized Meshfree Methods for Solving 3D-Helmholtz Equation
Authors: Reza Mollapourasl, Majid Haghi
Abstract:
In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem.
Keywords: Radial basis functions, Hermite finite difference, Helmholtz equation, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293081 An Expectation of the Rate of Inflation According to Inflation-Unemployment Interaction in Croatia
Authors: Zdravka Aljinović, Snježana Pivac, Boško Šego
Abstract:
According to the interaction of inflation and unemployment, expectation of the rate of inflation in Croatia is estimated. The interaction between inflation and unemployment is shown by model based on three first-order differential i.e. difference equations: Phillips relation, adaptive expectations equation and monetary-policy equation. The resulting equation is second order differential i.e. difference equation which describes the time path of inflation. The data of the rate of inflation and the rate of unemployment are used for parameters estimation. On the basis of the estimated time paths, the stability and convergence analysis is done for the rate of inflation.Keywords: Differencing, inflation, time path, unemployment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16143080 Aliasing Free and Additive Error in Spectra for Alpha Stable Signals
Authors: R. Sabre
Abstract:
This work focuses on the symmetric alpha stable process with continuous time frequently used in modeling the signal with indefinitely growing variance, often observed with an unknown additive error. The objective of this paper is to estimate this error from discrete observations of the signal. For that, we propose a method based on the smoothing of the observations via Jackson polynomial kernel and taking into account the width of the interval where the spectral density is non-zero. This technique allows avoiding the “Aliasing phenomenon” encountered when the estimation is made from the discrete observations of a process with continuous time. We have studied the convergence rate of the estimator and have shown that the convergence rate improves in the case where the spectral density is zero at the origin. Thus, we set up an estimator of the additive error that can be subtracted for approaching the original signal without error.
Keywords: Spectral density, stable processes, aliasing, p-adic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5853079 A Note on the Convergence of the Generalized AOR Iterative Method for Linear Systems
Authors: Zhong-xi Gao, Hou-biao Li
Abstract:
Recently, some convergent results of the generalized AOR iterative (GAOR) method for solving linear systems with strictly diagonally dominant matrices are presented in [Darvishi, M.T., Hessari, P.: On convergence of the generalized AOR method for linear systems with diagonally dominant cofficient matrices. Appl. Math. Comput. 176, 128-133 (2006)] and [Tian, G.X., Huang, T.Z., Cui, S.Y.: Convergence of generalized AOR iterative method for linear systems with strictly diagonally dominant cofficient matrices. J. Comp. Appl. Math. 213, 240-247 (2008)]. In this paper, we give the convergence of the GAOR method for linear systems with strictly doubly diagonally dominant matrix, which improves these corresponding results.
Keywords: Diagonally dominant matrix, GAOR method, Linear system, Convergence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13033078 The Convergence Results between Backward USSOR and Jacobi Iterative Matrices
Authors: Zuan-De Wang, Hou-biao Li, Zhong-xi Gao
Abstract:
In this paper, the backward Ussor iterative matrix is proposed. The relationship of convergence between the backward Ussor iterative matrix and Jacobi iterative matrix is obtained, which makes the results in the corresponding references be improved and refined.Moreover,numerical examples also illustrate the effectiveness of these conclusions.
Keywords: Backward USSOR iterative matrix, Jacobi iterative matrix, convergence, spectral radius
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13033077 Convergence Analysis of the Generalized Alternating Two-Stage Method
Authors: Guangbin Wang, Liangliang Li, Fuping Tan
Abstract:
In this paper, we give the generalized alternating twostage method in which the inner iterations are accomplished by a generalized alternating method. And we present convergence results of the method for solving nonsingular linear systems when the coefficient matrix of the linear system is a monotone matrix or an H-matrix.
Keywords: Generalized alternating two-stage method, linear system, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12593076 CFD Study for Normal and Rifled Tube with a Convergence Check
Authors: Sharfi Dirar, Shihab Elhaj, Ahmed El Fatih
Abstract:
Computational fluid dynamics were used to simulate and study the heated water boiler tube for both normal and rifled tube with a refinement of the mesh to check the convergence. The operation condition was taken from GARRI power station and used in a boundary condition accordingly. The result indicates the rifled tube has higher heat transfer efficiency than the normal tube.Keywords: Boiler tube, Convergence Check, Normal Tube, Rifled Tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14633075 Parallel Multisplitting Methods for Singular Linear Systems
Authors: Guangbin Wang, Fuping Tan
Abstract:
In this paper, we discuss convergence of the extrapolated iterative methods for linear systems with the coefficient matrices are singular H-matrices. And we present the sufficient and necessary conditions for convergence of the extrapolated iterative methods. Moreover, we apply the results to the GMAOR methods. Finally, we give one numerical example.
Keywords: Singular H-matrix, linear systems, extrapolated iterative method, GMAOR method, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13513074 Convergence and Comparison Theorems of the Modified Gauss-Seidel Method
Authors: Zhouji Chen
Abstract:
In this paper, the modified Gauss-Seidel method with the new preconditioner for solving the linear system Ax = b, where A is a nonsingular M-matrix with unit diagonal, is considered. The convergence property and the comparison theorems of the proposed method are established. Two examples are given to show the efficiency and effectiveness of the modified Gauss-Seidel method with the presented new preconditioner.
Keywords: Preconditioned linear system, M-matrix, Convergence, Comparison theorem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15043073 Dynamic Routing to Multiple Destinations in IP Networks using Hybrid Genetic Algorithm (DRHGA)
Authors: K. Vijayalakshmi, S. Radhakrishnan
Abstract:
In this paper we have proposed a novel dynamic least cost multicast routing protocol using hybrid genetic algorithm for IP networks. Our protocol finds the multicast tree with minimum cost subject to delay, degree, and bandwidth constraints. The proposed protocol has the following features: i. Heuristic local search function has been devised and embedded with normal genetic operation to increase the speed and to get the optimized tree, ii. It is efficient to handle the dynamic situation arises due to either change in the multicast group membership or node / link failure, iii. Two different crossover and mutation probabilities have been used for maintaining the diversity of solution and quick convergence. The simulation results have shown that our proposed protocol generates dynamic multicast tree with lower cost. Results have also shown that the proposed algorithm has better convergence rate, better dynamic request success rate and less execution time than other existing algorithms. Effects of degree and delay constraints have also been analyzed for the multicast tree interns of search success rate.
Keywords: Dynamic Group membership change, Hybrid Genetic Algorithm, Link / node failure, QoS Parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14483072 Comparison of Two Types of Preconditioners for Stokes and Linearized Navier-Stokes Equations
Authors: Ze-Jun Hu, Ting-Zhu Huang, Ning-Bo Tan
Abstract:
To solve saddle point systems efficiently, several preconditioners have been published. There are many methods for constructing preconditioners for linear systems from saddle point problems, for instance, the relaxed dimensional factorization (RDF) preconditioner and the augmented Lagrangian (AL) preconditioner are used for both steady and unsteady Navier-Stokes equations. In this paper we compare the RDF preconditioner with the modified AL (MAL) preconditioner to show which is more effective to solve Navier-Stokes equations. Numerical experiments indicate that the MAL preconditioner is more efficient and robust, especially, for moderate viscosities and stretched grids in steady problems. For unsteady cases, the convergence rate of the RDF preconditioner is slightly faster than the MAL perconditioner in some circumstances, but the parameter of the RDF preconditioner is more sensitive than the MAL preconditioner. Moreover the convergence rate of the MAL preconditioner is still quite acceptable. Therefore we conclude that the MAL preconditioner is more competitive than the RDF preconditioner. These experiments are implemented with IFISS package.
Keywords: Navier-Stokes equations, Krylov subspace method, preconditioner, dimensional splitting, augmented Lagrangian preconditioner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18773071 Organizational Strategy for Technology Convergence
Authors: Seongykyoon Jeong, Sungki Lee, Jaeyun Kim, Seunghun Oh, Kiho Kwak
Abstract:
The purpose of this article is to identify the practical strategies of R&D (research and development) entities for developing converging technology in organizational context. Based on the multi-assignation technological domains of patents derived from entire government-supported R&D projects for 13 years, we find that technology convergence is likely to occur when a university solely develops technology or when university develops technology as one of the collaborators. These results reflect the important role of universities in developing converging technology
Keywords: Interdisciplinary, Research and development strategy, Technology convergence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19323070 The Convergence Theorems for Mixing Random Variable Sequences
Authors: Yan-zhao Yang
Abstract:
In this paper, some limit properties for mixing random variables sequences were studied and some results on weak law of large number for mixing random variables sequences were presented. Some complete convergence theorems were also obtained. The results extended and improved the corresponding theorems in i.i.d random variables sequences.Keywords: Complete convergence, mixing random variables, weak law of large numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16223069 Weak Convergence of Mann Iteration for a Hybrid Pair of Mappings in a Banach Space
Authors: Alemayehu Geremew Negash
Abstract:
We prove the weak convergence of Mann iteration for a hybrid pair of maps to a common fixed point of a selfmap f and a multivalued f nonexpansive mapping T in Banach space E.
Keywords: Common fixed point, Mann iteration, Multivalued mapping, weak convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16383068 Relaxing Convergence Constraints in Local Priority Hysteresis Switching Logic
Authors: Mubarak Alhajri
Abstract:
This paper addresses certain inherent limitations of local priority hysteresis switching logic. Our main result establishes that under persistent excitation assumption, it is possible to relax constraints requiring strict positivity of local priority and hysteresis switching constants. Relaxing these constraints allows the adaptive system to reach optimality which implies the performance improvement. The unconstrained local priority hysteresis switching logic is examined and conditions for global convergence are derived.Keywords: Adaptive control, convergence, hysteresis constant, hysteresis switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8913067 Application of Adaptive Genetic Algorithm in Function Optimization
Authors: Panpan Xu, Shulin Sui
Abstract:
The crossover probability and mutation probability are the two important factors in genetic algorithm. The adaptive genetic algorithm can improve the convergence performance of genetic algorithm, in which the crossover probability and mutation probability are adaptively designed with the changes of fitness value. We apply adaptive genetic algorithm into a function optimization problem. The numerical experiment represents that adaptive genetic algorithm improves the convergence speed and avoids local convergence.
Keywords: Genetic algorithm, Adaptive genetic algorithm, Function optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17233066 Improved Back Propagation Algorithm to Avoid Local Minima in Multiplicative Neuron Model
Authors: Kavita Burse, Manish Manoria, Vishnu P. S. Kirar
Abstract:
The back propagation algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a training algorithm consisting of a learning rate and a momentum factor. The major drawbacks of above learning algorithm are the problems of local minima and slow convergence speeds. The addition of an extra term, called a proportional factor reduces the convergence of the back propagation algorithm. We have applied the three term back propagation to multiplicative neural network learning. The algorithm is tested on XOR and parity problem and compared with the standard back propagation training algorithm.Keywords: Three term back propagation, multiplicative neuralnetwork, proportional factor, local minima.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28153065 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques
Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan
Abstract:
Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.
Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21713064 Mechanical Quadrature Methods and Their Extrapolations for Solving First Kind Boundary Integral Equations of Anisotropic Darcy-s Equation
Authors: Xin Luo, Jin Huang, Chuan-Long Wang
Abstract:
The mechanical quadrature methods for solving the boundary integral equations of the anisotropic Darcy-s equations with Dirichlet conditions in smooth domains are presented. By applying the collectively compact theory, we prove the convergence and stability of approximate solutions. The asymptotic expansions for the error show that the methods converge with the order O (h3), where h is the mesh size. Based on these analysis, extrapolation methods can be introduced to achieve a higher convergence rate O (h5). An a posterior asymptotic error representation is derived in order to construct self-adaptive algorithms. Finally, the numerical experiments show the efficiency of our methods.
Keywords: Darcy's equation, anisotropic, mechanical quadrature methods, extrapolation methods, a posteriori error estimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15653063 Convergence of a One-step Iteration Scheme for Quasi-asymptotically Nonexpansive Mappings
Authors: Safeer Hussain Khan
Abstract:
In this paper, we use a one-step iteration scheme to approximate common fixed points of two quasi-asymptotically nonexpansive mappings. We prove weak and strong convergence theorems in a uniformly convex Banach space. Our results generalize the corresponding results of Yao and Chen [15] to a wider class of mappings while extend those of Khan, Abbas and Khan [4] to an improved one-step iteration scheme without any condition and improve upon many others in the literature.
Keywords: One-step iteration scheme, asymptotically quasi non expansive mapping, common fixed point, condition (a'), weak and strong convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14503062 Advances on the Understanding of Sequence Convergence Seen from the Perspective of Mathematical Working Spaces
Authors: Paula Verdugo-Hernández, Patricio Cumsille
Abstract:
We analyze a first-class on the convergence of real number sequences, named hereafter sequences, to foster exploration and discovery of concepts through graphical representations before engaging students in proving. The main goal was to differentiate between sequences and continuous functions-of-a-real-variable and better understand concepts at an initial stage. We applied the analytic frame of Mathematical Working Spaces, which we expect to contribute to extending to sequences since, as far as we know, it has only developed for other objects, and which is relevant to analyze how mathematical work is built systematically by connecting the epistemological and cognitive perspectives, and involving the semiotic, instrumental, and discursive dimensions.
Keywords: Convergence, graphical representations, Mathematical Working Spaces, paradigms of real analysis, real number sequences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5073061 Convergence and Divergence in Telephone Conversations: A Case of Persian
Authors: Anna Mirzaiyan, Vahid Parvaresh, Mahmoud Hashemian, Masoud Saeedi
Abstract:
People usually have a telephone voice, which means they adjust their speech to fit particular situations and to blend in with other interlocutors. The question is: Do we speak differently to different people? This possibility has been suggested by social psychologists within Accommodation Theory [1]. Converging toward the speech of another person can be regarded as a polite speech strategy while choosing a language not used by the other interlocutor can be considered as the clearest example of speech divergence [2]. The present study sets out to investigate such processes in the course of everyday telephone conversations. Using Joos-s [3] model of formality in spoken English, the researchers try to explore convergence to or divergence from the addressee. The results propound the actuality that lexical choice, and subsequently, patterns of style vary intriguingly in concordance with the person being addressed.Keywords: Convergence, divergence, lexical formality, speechaccommodation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35173060 Some Results on Parallel Alternating Methods
Authors: Guangbin Wang, Fuping Tan
Abstract:
In this paper, we investigate two parallel alternating methods for solving the system of linear equations Ax = b and give convergence theorems for the parallel alternating methods when the coefficient matrix is a nonsingular H-matrix. Furthermore, we give one example to show our results.
Keywords: Nonsingular H-matrix, parallel alternating method, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11033059 Improving Convergence of Parameter Tuning Process of the Additive Fuzzy System by New Learning Strategy
Authors: Thi Nguyen, Lee Gordon-Brown, Jim Peterson, Peter Wheeler
Abstract:
An additive fuzzy system comprising m rules with n inputs and p outputs in each rule has at least t m(2n + 2 p + 1) parameters needing to be tuned. The system consists of a large number of if-then fuzzy rules and takes a long time to tune its parameters especially in the case of a large amount of training data samples. In this paper, a new learning strategy is investigated to cope with this obstacle. Parameters that tend toward constant values at the learning process are initially fixed and they are not tuned till the end of the learning time. Experiments based on applications of the additive fuzzy system in function approximation demonstrate that the proposed approach reduces the learning time and hence improves convergence speed considerably.Keywords: Additive fuzzy system, improving convergence, parameter learning process, unsupervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15133058 Therapeutic Product Preparation Bioprocess Modeling
Authors: Mihai Caramihai, Irina Severin, Ana Aurelia Chirvase, Adrian Onu, Cristina Tanase, Camelia Ungureanu
Abstract:
An immunomodulator bioproduct is prepared in a batch bioprocess with a modified bacterium Pseudomonas aeruginosa. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The optimal bioprocess parameters were determined: temperature – 37 0C, agitation speed - 300 rpm, aeration rate – 40 L/min, pressure – 0.5 bar, Dow Corning Antifoam M-max. 4 % of the medium volume, duration - 6 hours. This kind of bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying. The aim of the paper is to present (by comparison) different models based on experimental data. The analysis criteria were modeling error and convergence rate. The estimated values and the modeling analysis were done by using the Table Curve 2D. The preliminary conclusions indicate Andrews-s model with a maximum specific growth rate of the bacterium in the range of 0.8 h-1.Keywords: bioprocess modeling, Pseudomonas aeruginosa, kinetic models,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17063057 Some Results on Parallel Alternating Two-stage Methods
Authors: Guangbin Wang, Xue Li
Abstract:
In this paper, we present parallel alternating two-stage methods for solving linear system Ax=b, where A is a symmetric positive definite matrix. And we give some convergence results of these methods for nonsingular linear system.Keywords: alternating two-stage, convergence, linear system, parallel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11873056 Fixed Points of Contractive-Like Operators by a Faster Iterative Process
Authors: Safeer Hussain Khan
Abstract:
In this paper, we prove a strong convergence result using a recently introduced iterative process with contractive-like operators. This improves andgeneralizes corresponding results in the literature in two ways: iterativeprocess is faster, operators are more general. At the end, we indicatethat the results can also be proved with the iterative process witherror terms.
Keywords: Contractive-like operator, iterative process, fixed point, strong convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711