Search results for: precise time domain expanding algorithm.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9683

Search results for: precise time domain expanding algorithm.

3803 The Mechanical Response of a Composite Propellant under Harsh Conditions

Authors: Xin Tong, Jin-sheng Xu, Xiong Chen, Ya Zheng

Abstract:

The aim of this paper is to study the mechanical properties of HTPB (Hydroxyl-terminated polybutadiene) composite propellant under harsh conditions. It describes two tests involving uniaxial tensile tests of various strain rates (ranging from 0.0005 s-1 to 1.5 s-1), temperatures (ranging from 223 K to 343 K) and high-cycle fatigue tests under low-temperature (223 K, frequencies were set at 50, 100, 150 Hz) using DMA (Dynamic Mechanical Analyzer). To highlight the effect of small pre-strain on fatigue properties of HTPB propellant, quasi-static stretching was carried out before fatigue loading, and uniaxial tensile tests at constant strain rates were successively applied. The results reveal that flow stress of propellant increases with reduction in temperature and rise in strain rate, and the strain rate-temperature equivalence relationship could be described by TTSP (time-temperature superposition principle) incorporating a modified WLF equation. Moreover, the rate of performance degradations and damage accumulation of propellant during fatigue tests increased with increasing strain amplitude and loading frequencies, while initial quasi-static loading has a negative effect on fatigue properties by comparing stress-strain relations after fatigue tests.

Keywords: Fatigue, HTPB propellant, tensile properties, time-temperature superposition principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067
3802 Ethereum Based Smart Contracts for Trade and Finance

Authors: Rishabh Garg

Abstract:

Traditionally, business parties build trust with a centralized operating mechanism, such as payment by letter of credit. However, the increase in cyber-attacks and malicious hacking has jeopardized business operations and finance practices. Emerging markets, due to their high banking risks and the large presence of digital financing, are looking for technology that enables transparency and traceability of any transaction in trade, finance or supply chain management. Blockchain systems, in the absence of any central authority, enable transactions across the globe with the help of decentralized applications. DApps consist of a front-end, a blockchain back-end, and middleware, that is, the code that connects the two. The front-end can be a sophisticated web app or mobile app, which is used to implement the functions/methods on the smart contract. Web apps can employ technologies such as HTML, CSS, React and Express. In this wake, fintech and blockchain products are popping up in brokerages, digital wallets, exchanges, post-trade clearance, settlement, middleware, infrastructure and base protocols. The present paper provides a technology driven solution, financial inclusion and innovative working paradigm for business and finance.

Keywords: Authentication, blockchain, channel, cryptography, DApps, data portability, Decentralized Public Key Infrastructure, Ethereum, hash function, Hashgraph, Privilege creep, Proof of Work algorithm, revocation, storage variables, Zero Knowledge Proof.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582
3801 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios

Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong

Abstract:

Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.

Keywords: Decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
3800 A Comparative Understanding of Critical Problems Faced by Pakistani and Indian Transportation Industry

Authors: Saleh Abduallah Saleh, Mohammad Basir Bin Saud, Mohd Azwardi Md Isa

Abstract:

It is very important for a developing nation to developing their infrastructure on the prime priority because their infrastructure particularly their roads and transportation functions as a blood in the system. Almost 1.1 billion populations share the travel and transportation industry in India. On the other hand, the Pakistan transportation industry is also extensive and elevating about 170 million users of transportation. Indian and Pakistani specifically within bus industry are well connected within and between the urban and rural areas. The transportation industry is radically helping the economic alleviation of both countries. Due to high economic instability, unemployment and poverty rate both countries governments are very serious and committed to help for boosting their economy. They believe that any form of transportation development would play a vital role in the development of land, infrastructure which could indirectly support many other industries’ developments, such as tourism, freighting and shipping businesses, just to mention a few. However, it seems that their previous transportation planning in the due course has failed to meet the fast growing demand. As with the span of time, both the countries are looking forward to a long-term, and economical solutions, because the demand is from time to time keep appreciating and reacting according to other key economic drivers. Content analysis method and case study approach is used in this paper and secondary data from the bureau of statistic is used for case analysis. The paper focused on the mobility concerns of the lower and middle-income people in India and Pakistan. The paper is aimed to highlight the weaknesses, opportunities and limitations resulting from low priority industry for a government, which is making the either country's public suffer. The paper has concluded that the main issue is identified as the slow, inappropriate, and unfavorable decisions which are not in favor of long-term country’s economic development and public interest. The paper also recommends to future research avenues for public and private transportation, which is continuously failing to meet the public expectations.

Keywords: Bus transportation industries, transportation demand, government parallel initiatives, road and traffic congestions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
3799 Arduino Pressure Sensor Cushion for Tracking and Improving Sitting Posture

Authors: Andrew Hwang

Abstract:

The average American worker sits for thirteen hours a day, often with poor posture and infrequent breaks, which can lead to health issues and back problems. The Smart Cushion was created to alert individuals of their poor postures, and may potentially alleviate back problems and correct poor posture. The Smart Cushion is a portable, rectangular, foam cushion, with five strategically placed pressure sensors, that utilizes an Arduino Uno circuit board and specifically designed software, allowing it to collect data from the five pressure sensors and store the data on an SD card. The data is then compiled into graphs and compared to controlled postures. Before volunteers sat on the cushion, their levels of back pain were recorded on a scale from 1-10. Data was recorded for an hour during sitting, and then a new, corrected posture was suggested. After using the suggested posture for an hour, the volunteers described their level of discomfort on a scale from 1-10. Different patterns of sitting postures were generated that were able to serve as early warnings of potential back problems. By using the Smart Cushion, the areas where different volunteers were applying the most pressure while sitting could be identified, and the sitting postures could be corrected. Further studies regarding the relationships between posture and specific regions of the body are necessary to better understand the origins of back pain; however, the Smart Cushion is sufficient for correcting sitting posture and preventing the development of additional back pain.

Keywords: Arduino Sketch Algorithm, biomedical technology, pressure sensors, Smart Cushion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
3798 Numerical Study on CO2 Pollution in an Ignition Chamber by Oxygen Enrichment

Authors: Zohreh Orshesh

Abstract:

In this study, a 3D combustion chamber was simulated using FLUENT 6.32. Aims to obtain accurate information about the profile of the combustion in the furnace and also check the effect of oxygen enrichment on the combustion process. Oxygen enrichment is an effective way to reduce combustion pollutant. The flow rate of air to fuel ratio is varied as 1.3, 3.2 and 5.1 and the oxygen enriched flow rates are 28, 54 and 68 lit/min. Combustion simulations typically involve the solution of the turbulent flows with heat transfer, species transport and chemical reactions. It is common to use the Reynolds-averaged form of the governing equation in conjunction with a suitable turbulence model. The 3D Reynolds Averaged Navier Stokes (RANS) equations with standard k-ε turbulence model are solved together by Fluent 6.3 software. First order upwind scheme is used to model governing equations and the SIMPLE algorithm is used as pressure velocity coupling. Species mass fractions at the wall are assumed to have zero normal gradients.Results show that minimum mole fraction of CO2 happens when the flow rate ratio of air to fuel is 5.1. Additionally, in a fixed oxygen enrichment condition, increasing the air to fuel ratio will increase the temperature peak. As a result, oxygen-enrichment can reduce the CO2 emission at this kind of furnace in high air to fuel rates.

Keywords: Combustion chamber, Oxygen enrichment, Reynolds Averaged Navier- Stokes, CO2 emission

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
3797 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test

Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany

Abstract:

Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.

Keywords: Accelerated life test, inverse power law, lithium ion battery, reliability evaluation, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 835
3796 Performance of Steel Frame with a Viscoelastic Damper Device under Earthquake Excitation

Authors: M. H. Mehrabi, S. S. Ghodsi, Zainah Ibrahim, Meldi Suhatril

Abstract:

Standard routes for upgrading existing buildings to improve their seismic response can be expensive in terms of both time and cost due to the modifications required to the foundations. As a result, interest has grown in the installation of viscoelastic dampers (VEDs) in mid and high-rise buildings. Details of a low-cost viscoelastic passive control device, the rotary rubber braced damper (RRBD), are presented in this paper. This design has the added benefits of being lightweight and simple to install. Experimental methods and finite element modeling were used to assess the performance of the proposed VED design and its effect on building response during earthquakes. The analyses took into account the behaviors of non-linear materials and large deformations. The results indicate that the proposed RRBD provides high levels of energy absorption, ensuring the stable cyclical response of buildings in all scenarios considered. In addition, time history analysis was employed in this study to evaluate the RRBD’s ability to control the displacements and accelerations experienced by steel frame structures. It was demonstrated that the device responds well even at low displacements, highlighting its suitability for use in seismic events of varying severity.

Keywords: Dynamic response, passive control, performance test, seismic protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 945
3795 Pattern Matching Based on Regular Tree Grammars

Authors: Riad S. Jabri

Abstract:

Pattern matching based on regular tree grammars have been widely used in many areas of computer science. In this paper, we propose a pattern matcher within the framework of code generation, based on a generic and a formalized approach. According to this approach, parsers for regular tree grammars are adapted to a general pattern matching solution, rather than adapting the pattern matching according to their parsing behavior. Hence, we first formalize the construction of the pattern matches respective to input trees drawn from a regular tree grammar in a form of the so-called match trees. Then, we adopt a recently developed generic parser and tightly couple its parsing behavior with such construction. In addition to its generality, the resulting pattern matcher is characterized by its soundness and efficient implementation. This is demonstrated by the proposed theory and by the derived algorithms for its implementation. A comparison with similar and well-known approaches, such as the ones based on tree automata and LR parsers, has shown that our pattern matcher can be applied to a broader class of grammars, and achieves better approximation of pattern matches in one pass. Furthermore, its use as a machine code selector is characterized by a minimized overhead, due to the balanced distribution of the cost computations into static ones, during parser generation time, and into dynamic ones, during parsing time.

Keywords: Bottom-up automata, Code selection, Pattern matching, Regular tree grammars, Match trees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
3794 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions

Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren

Abstract:

Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.

Keywords: Fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
3793 Combined Feature Based Hyperspectral Image Classification Technique Using Support Vector Machines

Authors: Mrs.K.Kavitha, S.Arivazhagan

Abstract:

A spatial classification technique incorporating a State of Art Feature Extraction algorithm is proposed in this paper for classifying a heterogeneous classes present in hyper spectral images. The classification accuracy can be improved if and only if both the feature extraction and classifier selection are proper. As the classes in the hyper spectral images are assumed to have different textures, textural classification is entertained. Run Length feature extraction is entailed along with the Principal Components and Independent Components. A Hyperspectral Image of Indiana Site taken by AVIRIS is inducted for the experiment. Among the original 220 bands, a subset of 120 bands is selected. Gray Level Run Length Matrix (GLRLM) is calculated for the selected forty bands. From GLRLMs the Run Length features for individual pixels are calculated. The Principle Components are calculated for other forty bands. Independent Components are calculated for next forty bands. As Principal & Independent Components have the ability to represent the textural content of pixels, they are treated as features. The summation of Run Length features, Principal Components, and Independent Components forms the Combined Features which are used for classification. SVM with Binary Hierarchical Tree is used to classify the hyper spectral image. Results are validated with ground truth and accuracies are calculated.

Keywords: Multi-class, Run Length features, PCA, ICA, classification and Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
3792 Heat Treatment of Aluminum Alloy 7449

Authors: Suleiman E. Al-lubani, Mohammad E. Matarneh, Hussien M. Al-Wedyan, Ala M. Rayes

Abstract:

Aluminum alloy has an extensive range of industrial application due to its consistent mechanical properties and structural integrity. The heat treatment by precipitation technique affected the Magnesium, Silicon Manganese and copper crystals dissolved in the Aluminum alloy. The crystals dislocated to precipitate on the crystal’s boundaries of the Aluminum alloy when given a thermal energy increased its hardness. In this project various times and temperature were varied to find out the best combination of these variables to increase the precipitation of the metals on the Aluminum crystal’s boundaries which will lead to get the highest hardness. These specimens are then tested for their hardness and tensile strength. It is noticed that when the temperature increases, the precipitation increases and consequently the hardness increases. A threshold temperature value (264C0) of Aluminum alloy should not be reached due to the occurrence of recrystalization which causes the crystal to grow. This recrystalization process affected the ductility of the alloy and decrease hardness. In addition, and while increasing the temperature the alloy’s mechanical properties will decrease. The mechanical properties, namely tensile and hardness properties are investigated according to standard procedures. In this research, different temperature and time have been applied to increase hardening.The highest hardness at 100°c in 6 hours equals to 207.31 HBR, while at the same temperature and time the lowest elongation equals to 146.5.

Keywords: Aluminum alloy, recrystalization process, heat treatment, hardness properties, precipitation, intergranular breakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4076
3791 An Efficient Biometric Cryptosystem using Autocorrelators

Authors: R. Bremananth, A. Chitra

Abstract:

Cryptography provides the secure manner of information transmission over the insecure channel. It authenticates messages based on the key but not on the user. It requires a lengthy key to encrypt and decrypt the sending and receiving the messages, respectively. But these keys can be guessed or cracked. Moreover, Maintaining and sharing lengthy, random keys in enciphering and deciphering process is the critical problem in the cryptography system. A new approach is described for generating a crypto key, which is acquired from a person-s iris pattern. In the biometric field, template created by the biometric algorithm can only be authenticated with the same person. Among the biometric templates, iris features can efficiently be distinguished with individuals and produces less false positives in the larger population. This type of iris code distribution provides merely less intra-class variability that aids the cryptosystem to confidently decrypt messages with an exact matching of iris pattern. In this proposed approach, the iris features are extracted using multi resolution wavelets. It produces 135-bit iris codes from each subject and is used for encrypting/decrypting the messages. The autocorrelators are used to recall original messages from the partially corrupted data produced by the decryption process. It intends to resolve the repudiation and key management problems. Results were analyzed in both conventional iris cryptography system (CIC) and non-repudiation iris cryptography system (NRIC). It shows that this new approach provides considerably high authentication in enciphering and deciphering processes.

Keywords: Autocorrelators, biometrics cryptography, irispatterns, wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
3790 UV-Cured Coatings Based on Acrylated Epoxidized Soybean Oil and Epoxy Carboxylate

Authors: Alaaddin Cerit, Suheyla Kocaman, Ulku Soydal

Abstract:

During the past two decades, photoinitiated polymerization has been attracting a great interest in terms of scientific and industrial activity. The wide recognition of UV treatment in the polymer industry results not only from its many practical applications but also from its advantage for low-cost processes. Unlike most thermal curing systems, radiation-curable systems can polymerize at room temperature without additional heat, and the curing is completed in a very short time. The advantage of cationic UV technology is that post-cure can continue in the ‘dark’ after radiation. In this study, bio-based acrylated epoxidized soybean oil (AESO) was cured with UV radiation using radicalic photoinitiator Irgacure 184. Triarylsulphonium hexafluoroantimonate was used as cationic photoinitiator for curing of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. The effect of curing time and the amount of initiators on the curing degree and thermal properties were investigated. The thermal properties of the coating were analyzed after crosslinking UV irradiation. The level of crosslinking in the coating was evaluated by FTIR analysis. Cationic UV-cured coatings demonstrated excellent adhesion and corrosion resistance properties. Therefore, our study holds a great potential with its simple and low-cost applications.

Keywords: Acrylated epoxidized soybean oil, epoxy carboxylate, thermal properties, UV-curing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
3789 Event Information Extraction System (EIEE): FSM vs HMM

Authors: Shaukat Wasi, Zubair A. Shaikh, Sajid Qasmi, Hussain Sachwani, Rehman Lalani, Aamir Chagani

Abstract:

Automatic Extraction of Event information from social text stream (emails, social network sites, blogs etc) is a vital requirement for many applications like Event Planning and Management systems and security applications. The key information components needed from Event related text are Event title, location, participants, date and time. Emails have very unique distinctions over other social text streams from the perspective of layout and format and conversation style and are the most commonly used communication channel for broadcasting and planning events. Therefore we have chosen emails as our dataset. In our work, we have employed two statistical NLP methods, named as Finite State Machines (FSM) and Hidden Markov Model (HMM) for the extraction of event related contextual information. An application has been developed providing a comparison among the two methods over the event extraction task. It comprises of two modules, one for each method, and works for both bulk as well as direct user input. The results are evaluated using Precision, Recall and F-Score. Experiments show that both methods produce high performance and accuracy, however HMM was good enough over Title extraction and FSM proved to be better for Venue, Date, and time.

Keywords: Emails, Event Extraction, Event Detection, Finite state machines, Hidden Markov Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
3788 A 10 Giga VPN Accelerator Board for Trust Channel Security System

Authors: Ki Hyun Kim, Jang-Hee Yoo, Kyo Il Chung

Abstract:

This paper proposes a VPN Accelerator Board (VPN-AB), a virtual private network (VPN) protocol designed for trust channel security system (TCSS). TCSS supports safety communication channel between security nodes in internet. It furnishes authentication, confidentiality, integrity, and access control to security node to transmit data packets with IPsec protocol. TCSS consists of internet key exchange block, security association block, and IPsec engine block. The internet key exchange block negotiates crypto algorithm and key used in IPsec engine block. Security Association blocks setting-up and manages security association information. IPsec engine block treats IPsec packets and consists of networking functions for communication. The IPsec engine block should be embodied by H/W and in-line mode transaction for high speed IPsec processing. Our VPN-AB is implemented with high speed security processor that supports many cryptographic algorithms and in-line mode. We evaluate a small TCSS communication environment, and measure a performance of VPN-AB in the environment. The experiment results show that VPN-AB gets a performance throughput of maximum 15.645Gbps when we set the IPsec protocol with 3DES-HMAC-MD5 tunnel mode.

Keywords: TCSS(Trust Channel Security System), VPN(VirtualPrivate Network), IPsec, SSL, Security Processor, Securitycommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
3787 Ranking of Inventory Policies Using Distance Based Approach Method

Authors: Gupta Amit, Kumar Ramesh, Tewari P. C.

Abstract:

Globalization is putting enormous pressure on the business organizations specially manufacturing one to rethink the supply chain in innovative manners. Inventory consumes major portion of total sale revenue. Effective and efficient inventory management plays a vital role for the successful functioning of any organization. Selection of inventory policy is one of the important purchasing activities. This paper focuses on selection and ranking of alternative inventory policies. A deterministic quantitative model based on Distance Based Approach (DBA) method has been developed for evaluation and ranking of inventory policies. We have employed this concept first time for this type of the selection problem. Four inventory policies economic order quantity (EOQ), just in time (JIT), vendor managed inventory (VMI) and monthly policy are considered. Improper selection could affect a company’s competitiveness in terms of the productivity of its facilities and quality of its products. The ranking of inventory policies is a multi-criteria problem. There is a need to first identify the selection criteria and then processes the information with reference to relative importance of attributes for comparison. Criteria values for each inventory policy can be obtained either analytically or by using a simulation technique or they are linguistic subjective judgments defined by fuzzy sets, like, for example, the values of criteria. A methodology is developed and applied to rank the inventory policies.

Keywords: Inventory Policy, Ranking, DBA, Selection criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
3786 Detecting Geographically Dispersed Overlay Communities Using Community Networks

Authors: Madhushi Bandara, Dharshana Kasthurirathna, Danaja Maldeniya, Mahendra Piraveenan

Abstract:

Community detection is an extremely useful technique in understanding the structure and function of a social network. Louvain algorithm, which is based on Newman-Girman modularity optimization technique, is extensively used as a computationally efficient method extract the communities in social networks. It has been suggested that the nodes that are in close geographical proximity have a higher tendency of forming communities. Variants of the Newman-Girman modularity measure such as dist-modularity try to normalize the effect of geographical proximity to extract geographically dispersed communities, at the expense of losing the information about the geographically proximate communities. In this work, we propose a method to extract geographically dispersed communities while preserving the information about the geographically proximate communities, by analyzing the ‘community network’, where the centroids of communities would be considered as network nodes. We suggest that the inter-community link strengths, which are normalized over the community sizes, may be used to identify and extract the ‘overlay communities’. The overlay communities would have relatively higher link strengths, despite being relatively apart in their spatial distribution. We apply this method to the Gowalla online social network, which contains the geographical signatures of its users, and identify the overlay communities within it.

Keywords: Social networks, community detection, modularity optimization, geographically dispersed communities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
3785 In vitro Effects of Amygdalin on the Functional Competence of Rabbit Spermatozoa

Authors: Marek Halenár, Eva Tvrdá, Tomáš Slanina, Ľubomír Ondruška, Eduard Kolesár, Peter Massányi, Adriana Kolesárová

Abstract:

The present in vitro study was designed to reveal whether amygdalin (AMG) is able to cause changes to the motility, viability and mitochondrial activity of rabbit spermatozoa. New Zealand White rabbits (n = 10) aged four months were used in the study. Semen samples were collected from each animal and used for the in vitro incubation. The samples were divided into five equal parts and diluted with saline supplemented with 0, 0.5, 1, 2.5 and 5 mg/mL AMG. At times 0h, 3h and 5h spermatozoa motion parameters were assessed using the SpermVision™ computer-aided sperm analysis (CASA) system, cell viability was examined with the metabolic activity (MTT) assay, and the eosin-nigrosin staining technique was used to evaluate the viability of rabbit spermatozoa. All AMG concentrations exhibited stimulating effects on the spermatozoa activity, as shown by a significant preservation of the motility (P<0.05 with respect to 0.5 mg/mL and 1 mg/mL AMG; Time 5 h) and mitochondrial activity (P< 0.05 in case of 0.5 mg/mL AMG; P< 0.01 in case of 1 mg/mL AMG; P < 0.001 with respect to 2.5 mg/mL and 5 mg/mL AMG; Time 5 h). None of the AMG doses supplemented had any significant impact of the spermatozoa viability. In conclusion, the data revealed that short-term co-incubation of spermatozoa with AMG may result in a higher preservation of the sperm structural integrity and functional activity.

Keywords: Amygdalin, CASA, mitochondrial activity, motility, rabbits, spermatozoa, viability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159
3784 A Model Driven Based Method for Scheduling Analysis and HW/SW Partitioning

Authors: Yessine Hadj Kacem, Adel Mahfoudhi, Hedi Tmar, Mohamed Abid

Abstract:

Unified Modeling Language (UML) extensions for real time embedded systems (RTES) co-design, are taking a growing interest by a great number of industrial and research communities. The extension mechanism is provided by UML profiles for RTES. It aims at improving an easily-understood method of system design for non-experts. On the other hand, one of the key items of the co- design methods is the Hardware/Software partitioning and scheduling tasks. Indeed, it is mandatory to define where and when tasks are implemented and run. Unfortunately the main goals of co-design are not included in the usual practice of UML profiles. So, there exists a need for mapping used models to an execution platform for both schedulability test and HW/SW partitioning. In the present work, test schedulability and design space exploration are performed at an early stage. The proposed approach adopts Model Driven Engineering MDE. It starts from UML specification annotated with the recent profile for the Modeling and Analysis of Real Time Embedded systems MARTE. Following refinement strategy, transformation rules allow to find a feasible schedule that satisfies timing constraints and to define where tasks will be implemented. The overall approach is experimented for the design of a football player robot application.

Keywords: MDE, UML profile, scheduling analysis, HW/SW partitioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
3783 Fingerprint on Ballistic after Shooting

Authors: Narong Kulnides

Abstract:

This research involved fingerprints on ballistics after shooting. Two objectives of research were as follow; (1) to study the duration of the existence of latent fingerprints on .38, .45, 9 mm and .223 cartridge case after shooting, and (2) to compare the effectiveness of the detection of latent fingerprints by Black Powder, Super Glue, Perma Blue and Gun Bluing. The latent fingerprint appearance were studied on .38, .45, 9 mm. and .223 cartridge cases before and after shooting with Black Powder, Super Glue, Perma Blue and Gun Bluing. The detection times were 3 minute, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78 and 84 hours respectively. As a result of the study, it can be conclude that

  1. Before shooting, the detection of latent fingerprints on 38, .45, and 9 mm. and .223 cartridge cases with Black Powder, Super Glue, Perma Blue and Gun Bluing can detect the fingerprints at all detection times.
  2. After shooting, the detection of latent fingerprints on .38, .45, 9 mm. and .223 cartridge cases with Black Powder, Super Glue did not appear. The detection of latent fingerprints on .38, .45, 9 mm. cartridge cases with Perma Blue and Gun Bluing were found 100% of the time and the detection of latent fingerprints on .223 cartridge cases with Perma Blue and Gun Bluing were found 40% and 46.67% of the time, respectively.

Keywords: Ballistic, Fingerprint, Shooting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2590
3782 Technology for Enhancing the Learning and Teaching Experience in Higher Education

Authors: Sara M. Ismael, Ali H. Al-Badi

Abstract:

The rapid development and growth of technology has changed the method of obtaining information for educators and learners. Technology has created a new world of collaboration and communication among people. Incorporating new technology into the teaching process can enhance learning outcomes. Billions of individuals across the world are now connected together, and are cooperating and contributing their knowledge and intelligence. Time is no longer wasted in waiting until the teacher is ready to share information as learners can go online and get it immediatelt.

The objectives of this paper are to understand the reasons why changes in teaching and learning methods are necessary, to find ways of improving them, and to investigate the challenges that present themselves in the adoption of new ICT tools in higher education institutes.

 To achieve these objectives two primary research methods were used: questionnaires, which were distributed among students at higher educational institutes and multiple interviews with faculty members (teachers) from different colleges and universities, which were conducted to find out why teaching and learning methodology should change.

The findings show that both learners and educators agree that educational technology plays a significant role in enhancing instructors’ teaching style and students’ overall learning experience; however, time constraints, privacy issues, and not being provided with enough up-to-date technology do create some challenges.

Keywords: E-books, educational technology, educators, e-learning, learners, social media, Web 2.0, LMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
3781 The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment

Authors: Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane

Abstract:

Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence (AI) is invaluable in identifying crime. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISAs). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The proposed framework development is implemented using the Java Agent Development Framework, Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISAs and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5% of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy.

Keywords: Artificial intelligence, computer science, criminal investigation, digital forensics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
3780 Monte Carlo and Biophysics Analysis in a Criminal Trial

Authors: Luca Indovina, Carmela Coppola, Carlo Altucci, Riccardo Barberi, Rocco Romano

Abstract:

In this paper a real court case, held in Italy at the Court of Nola, in which a correct physical description, conducted with both a Monte Carlo and biophysical analysis, would have been sufficient to arrive at conclusions confirmed by documentary evidence, is considered. This will be an example of how forensic physics can be useful in confirming documentary evidence in order to reach hardly questionable conclusions. This was a libel trial in which the defendant, Mr. DS (Defendant for Slander), had falsely accused one of his neighbors, Mr. OP (Offended Person), of having caused him some damages. The damages would have been caused by an external plaster piece that would have detached from the neighbor’s property and would have hit Mr DS while he was in his garden, much more than a meter far away from the facade of the building from which the plaster piece would have detached. In the trial, Mr. DS claimed to have suffered a scratch on his forehead, but he never showed the plaster that had hit him, nor was able to tell from where the plaster would have arrived. Furthermore, Mr. DS presented a medical certificate with a diagnosis of contusion of the cerebral cortex. On the contrary, the images of Mr. OP’s security cameras do not show any movement in the garden of Mr. DS in a long interval of time (about 2 hours) around the time of the alleged accident, nor do they show any people entering or coming out from the house of Mr. DS in the same interval of time. Biophysical analysis shows that both the diagnosis of the medical certificate and the wound declared by the defendant, already in conflict with each other, are not compatible with the fall of external plaster pieces too small to be found. The wind was at a level 1 of the Beaufort scale, that is, unable to raise even dust (level 4 of the Beaufort scale). Therefore, the motion of the plaster pieces can be described as a projectile motion, whereas collisions with the building cornice can be treated using Newtons law of coefficients of restitution. Numerous numerical Monte Carlo simulations show that the pieces of plaster would not have been able to reach even the garden of Mr. DS, let alone a distance over 1.30 meters. Results agree with the documentary evidence (images of Mr. OP’s security cameras) that Mr. DS could not have been hit by plaster pieces coming from Mr. OP’s property.

Keywords: Biophysical analysis, Monte Carlo simulations, Newton’s law of restitution, projectile motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
3779 Customer Segmentation Model in E-commerce Using Clustering Techniques and LRFM Model: The Case of Online Stores in Morocco

Authors: Rachid Ait daoud, Abdellah Amine, Belaid Bouikhalene, Rachid Lbibb

Abstract:

Given the increase in the number of e-commerce sites, the number of competitors has become very important. This means that companies have to take appropriate decisions in order to meet the expectations of their customers and satisfy their needs. In this paper, we present a case study of applying LRFM (length, recency, frequency and monetary) model and clustering techniques in the sector of electronic commerce with a view to evaluating customers’ values of the Moroccan e-commerce websites and then developing effective marketing strategies. To achieve these objectives, we adopt LRFM model by applying a two-stage clustering method. In the first stage, the self-organizing maps method is used to determine the best number of clusters and the initial centroid. In the second stage, kmeans method is applied to segment 730 customers into nine clusters according to their L, R, F and M values. The results show that the cluster 6 is the most important cluster because the average values of L, R, F and M are higher than the overall average value. In addition, this study has considered another variable that describes the mode of payment used by customers to improve and strengthen clusters’ analysis. The clusters’ analysis demonstrates that the payment method is one of the key indicators of a new index which allows to assess the level of customers’ confidence in the company's Website.

Keywords: Customer value, LRFM model, Cluster analysis, Self-Organizing Maps method (SOM), K-means algorithm, loyalty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6253
3778 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining  the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.

Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 525
3777 Semantic Modeling of Management Information: Enabling Automatic Reasoning on DMTF-CIM

Authors: Fernando Alonso, Rafael Fernandez, Sonia Frutos, Javier Soriano

Abstract:

CIM is the standard formalism for modeling management information developed by the Distributed Management Task Force (DMTF) in the context of its WBEM proposal, designed to provide a conceptual view of the managed environment. In this paper, we propose the inclusion of formal knowledge representation techniques, based on Description Logics (DLs) and the Web Ontology Language (OWL), in CIM-based conceptual modeling, and then we examine the benefits of such a decision. The proposal is specified as a CIM metamodel level mapping to a highly expressive subset of DLs capable of capturing all the semantics of the models. The paper shows how the proposed mapping can be used for automatic reasoning about the management information models, as a design aid, by means of new-generation CASE tools, thanks to the use of state-of-the-art automatic reasoning systems that support the proposed logic and use algorithms that are sound and complete with respect to the semantics. Such a CASE tool framework has been developed by the authors and its architecture is also introduced. The proposed formalization is not only useful at design time, but also at run time through the use of rational autonomous agents, in response to a need recently recognized by the DMTF.

Keywords: CIM, Knowledge-based Information Models, Ontology Languages, OWL, Description Logics, Integrated Network Management, Intelligent Agents, Automatic Reasoning Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
3776 Exploring the Applicability of a Rapid Health Assessment in India

Authors: Claudia Carbajal, Jija Dutt, Smriti Pahwa, Sumukhi Vaid, Karishma Vats

Abstract:

ASER Centre, the research and assessment arm of Pratham Education Foundation sees measurement as the first stage of action. ASER uses primary research to push and give empirical foundations to policy discussions at a multitude of levels. At a household level, common citizens use a simple assessment (a floor-level test) to measure learning across rural India. This paper presents the evidence on the applicability of an ASER approach to the health sector. A citizen-led assessment was designed and executed that collected information from young mothers with children up to a year of age. The pilot assessments were rolled-out in two different models: Paid surveyors and student volunteers. The survey covered three geographic areas: 1,239 children in the Jaipur District of Rajasthan, 2,086 in the Rae Bareli District of Uttar Pradesh, and 593 children in the Bhuj Block in Gujarat. The survey tool was designed to study knowledge of health-related issues, daily practices followed by young mothers and access to relevant services and programs. It provides insights on behaviors related to infant and young child feeding practices, child and maternal nutrition and supplementation, water and sanitation, and health services. Moreover, the survey studies the reasons behind behaviors giving policy-makers actionable pathways to improve implementation of social sector programs. Although data on health outcomes are available, this approach could provide a rapid annual assessment of health issues with indicators that are easy to understand and act upon so that measurements do not become an exclusive domain of experts. The results give many insights into early childhood health behaviors and challenges. Around 98% of children are breastfed, and approximately half are not exclusively breastfed (for the first 6 months). Government established diet diversity guidelines are met for less than 1 out of 10 children. Although most households are satisfied with the quality of drinking water, most tested households had contaminated water.

Keywords: Citizen-led assessment, infant and young children feeding, maternal nutrition, rapid health assessment supplementation, water and sanitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
3775 Application of GA Optimization in Analysis of Variable Stiffness Composites

Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani

Abstract:

Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.

Keywords: Beam structures, layerwise, optimization, variable angle tow, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 653
3774 Development and Characterization of Wheat Bread with Lupin Flour

Authors: Paula M. R. Correia, Marta Gonzaga, Luis M. Batista, Luísa Beirão-Costa, Raquel F. P. Guiné

Abstract:

The purpose of the present work was to develop an innovative food product with good textural and sensorial characteristics. The product, a new type of bread, was prepared with wheat (90%) and lupin (10%) flours, without the addition of any conservatives. Several experiences were also done to find the most appropriate proportion of lupin flour. The optimized product was characterized considering the rheological, physical-chemical and sensorial properties. The water absorption of wheat flour with 10% of lupin was higher than that of the normal wheat flours, and Wheat Ceres flour presented the lower value, with lower dough development time and high stability time. The breads presented low moisture but a considerable water activity. The density of bread decreased with the introduction of lupin flour. The breads were quite white, and during storage the colour parameters decreased. The lupin flour clearly increased the number of alveolus, but the total area increased significantly just for the Wheat Cerealis bread. The addition of lupin flour increased the hardness and chewiness of breads, but the elasticity did not vary significantly. Lupin bread was sensorially similar to wheat bread produced with WCerealis flour, and the main differences are the crust rugosity, colour and alveolus characteristics.

Keywords: Lupin flour, physical-chemical properties, sensorial analysis, wheat flour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545