Search results for: radial basic function neural networks.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5289

Search results for: radial basic function neural networks.

4749 Methods of Geodesic Distance in Two-Dimensional Face Recognition

Authors: Rachid Ahdid, Said Safi, Bouzid Manaut

Abstract:

In this paper, we present a comparative study of three methods of 2D face recognition system such as: Iso-Geodesic Curves (IGC), Geodesic Distance (GD) and Geodesic-Intensity Histogram (GIH). These approaches are based on computing of geodesic distance between points of facial surface and between facial curves. In this study we represented the image at gray level as a 2D surface in a 3D space, with the third coordinate proportional to the intensity values of pixels. In the classifying step, we use: Neural Networks (NN), K-Nearest Neighbor (KNN) and Support Vector Machines (SVM). The images used in our experiments are from two wellknown databases of face images ORL and YaleB. ORL data base was used to evaluate the performance of methods under conditions where the pose and sample size are varied, and the database YaleB was used to examine the performance of the systems when the facial expressions and lighting are varied.

Keywords: 2D face recognition, Geodesic distance, Iso-Geodesic Curves, Geodesic-Intensity Histogram, facial surface, Neural Networks, K-Nearest Neighbor, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
4748 Echo State Networks for Arabic Phoneme Recognition

Authors: Nadia Hmad, Tony Allen

Abstract:

This paper presents an ESN-based Arabic phoneme recognition system trained with supervised, forced and combined supervised/forced supervised learning algorithms. Mel-Frequency Cepstrum Coefficients (MFCCs) and Linear Predictive Code (LPC) techniques are used and compared as the input feature extraction technique. The system is evaluated using 6 speakers from the King Abdulaziz Arabic Phonetics Database (KAPD) for Saudi Arabia dialectic and 34 speakers from the Center for Spoken Language Understanding (CSLU2002) database of speakers with different dialectics from 12 Arabic countries. Results for the KAPD and CSLU2002 Arabic databases show phoneme recognition performances of 72.31% and 38.20% respectively.

Keywords: Arabic phonemes recognition, echo state networks (ESNs), neural networks (NNs), supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
4747 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine

Authors: Hira Lal Gope, Hidekazu Fukai

Abstract:

The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.

Keywords: Convolutional neural networks, coffee bean, peaberry, sorting, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
4746 Emotion Recognition Using Neural Network: A Comparative Study

Authors: Nermine Ahmed Hendy, Hania Farag

Abstract:

Emotion recognition is an important research field that finds lots of applications nowadays. This work emphasizes on recognizing different emotions from speech signal. The extracted features are related to statistics of pitch, formants, and energy contours, as well as spectral, perceptual and temporal features, jitter, and shimmer. The Artificial Neural Networks (ANN) was chosen as the classifier. Working on finding a robust and fast ANN classifier suitable for different real life application is our concern. Several experiments were carried out on different ANN to investigate the different factors that impact the classification success rate. Using a database containing 7 different emotions, it will be shown that with a proper and careful adjustment of features format, training data sorting, number of features selected and even the ANN type and architecture used, a success rate of 85% or even more can be achieved without increasing the system complicity and the computation time

Keywords: Classification, emotion recognition, features extraction, feature selection, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4698
4745 A Family Cars- Life Cycle Cost (LCC)-Oriented Hybrid Modelling Approach Combining ANN and CBR

Authors: Xiaochuan Chen, Jianguo Yang, Beizhi Li

Abstract:

Design for cost (DFC) is a method that reduces life cycle cost (LCC) from the angle of designers. Multiple domain features mapping (MDFM) methodology was given in DFC. Using MDFM, we can use design features to estimate the LCC. From the angle of DFC, the design features of family cars were obtained, such as all dimensions, engine power and emission volume. At the conceptual design stage, cars- LCC were estimated using back propagation (BP) artificial neural networks (ANN) method and case-based reasoning (CBR). Hamming space was used to measure the similarity among cases in CBR method. Levenberg-Marquardt (LM) algorithm and genetic algorithm (GA) were used in ANN. The differences of LCC estimation model between CBR and artificial neural networks (ANN) were provided. ANN and CBR separately each method has its shortcomings. By combining ANN and CBR improved results accuracy was obtained. Firstly, using ANN selected some design features that affect LCC. Then using LCC estimation results of ANN could raise the accuracy of LCC estimation in CBR method. Thirdly, using ANN estimate LCC errors and correct errors in CBR-s estimation results if the accuracy is not enough accurate. Finally, economically family cars and sport utility vehicle (SUV) was given as LCC estimation cases using this hybrid approach combining ANN and CBR.

Keywords: case-based reasoning, life cycle cost (LCC), artificialneural networks (ANN), family cars

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
4744 Application of Neural Networks for 24-Hour-Ahead Load Forecasting

Authors: Fatemeh Mosalman Yazdi

Abstract:

One of the most important requirements for the operation and planning activities of an electrical utility is the prediction of load for the next hour to several days out, known as short term load forecasting. This paper presents the development of an artificial neural network based short-term load forecasting model. The model can forecast daily load profiles with a load time of one day for next 24 hours. In this method can divide days of year with using average temperature. Groups make according linearity rate of curve. Ultimate forecast for each group obtain with considering weekday and weekend. This paper investigates effects of temperature and humidity on consuming curve. For forecasting load curve of holidays at first forecast pick and valley and then the neural network forecast is re-shaped with the new data. The ANN-based load models are trained using hourly historical. Load data and daily historical max/min temperature and humidity data. The results of testing the system on data from Yazd utility are reported.

Keywords: Artificial neural network, Holiday forecasting, pickand valley load forecasting, Short-term load-forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
4743 Particle Swarm Optimization with Interval-valued Genotypes and Its Application to Neuroevolution

Authors: Hidehiko Okada

Abstract:

The author proposes an extension of particle swarm optimization (PSO) for solving interval-valued optimization problems and applies the extended PSO to evolutionary training of neural networks (NNs) with interval weights. In the proposed PSO, values in the genotypes are not real numbers but intervals. Experimental results show that interval-valued NNs trained by the proposed method could well approximate hidden target functions despite the fact that no training data was explicitly provided.

Keywords: Evolutionary algorithms, swarm intelligence, particle swarm optimization, neural network, interval arithmetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
4742 Design and Implementation of a Neural Network for Real-Time Object Tracking

Authors: Javed Ahmed, M. N. Jafri, J. Ahmad, Muhammad I. Khan

Abstract:

Real-time object tracking is a problem which involves extraction of critical information from complex and uncertain imagedata. In this paper, we present a comprehensive methodology to design an artificial neural network (ANN) for a real-time object tracking application. The object, which is tracked for the purpose of demonstration, is a specific airplane. However, the proposed ANN can be trained to track any other object of interest. The ANN has been simulated and tested on the training and testing datasets, as well as on a real-time streaming video. The tracking error is analyzed with post-regression analysis tool, which finds the correlation among the calculated coordinates and the correct coordinates of the object in the image. The encouraging results from the computer simulation and analysis show that the proposed ANN architecture is a good candidate solution to a real-time object tracking problem.

Keywords: Image processing, machine vision, neural networks, real-time object tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3508
4741 Research on Hybrid Neural Network in Intrusion Detection System

Authors: Jianhua Wang, Yan Yu

Abstract:

This paper presents an intrusion detection system of hybrid neural network model based on RBF and Elman. It is used for anomaly detection and misuse detection. This model has the memory function .It can detect discrete and related aggressive behavior effectively. RBF network is a real-time pattern classifier, and Elman network achieves the memory ability for former event. Based on the hybrid model intrusion detection system uses DARPA data set to do test evaluation. It uses ROC curve to display the test result intuitively. After the experiment it proves this hybrid model intrusion detection system can effectively improve the detection rate, and reduce the rate of false alarm and fail.

Keywords: RBF, Elman, anomaly detection, misuse detection, hybrid neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
4740 Region-Based Image Fusion with Artificial Neural Network

Authors: Shuo-Li Hsu, Peng-Wei Gau, I-Lin Wu, Jyh-Horng Jeng

Abstract:

For most image fusion algorithms separate relationship by pixels in the image and treat them more or less independently. In addition, they have to be adjusted different parameters in different time or weather. In this paper, we propose a region–based image fusion which combines aspects of feature and pixel-level fusion method to replace only by pixel. The basic idea is to segment far infrared image only and to add information of each region from segmented image to visual image respectively. Then we determine different fused parameters according different region. At last, we adopt artificial neural network to deal with the problems of different time or weather, because the relationship between fused parameters and image features are nonlinear. It render the fused parameters can be produce automatically according different states. The experimental results present the method we proposed indeed have good adaptive capacity with automatic determined fused parameters. And the architecture can be used for lots of applications.

Keywords: Image fusion, Region-based fusion, Segmentation, Neural network, Multi-sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
4739 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier

Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo

Abstract:

This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.

Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
4738 Evaluation of New Product Development Projects using Artificial Intelligence and Fuzzy Logic

Authors: Orhan Feyzioğlu, Gülçin Büyüközkan

Abstract:

As a vital activity for companies, new product development (NPD) is also a very risky process due to the high uncertainty degree encountered at every development stage and the inevitable dependence on how previous steps are successfully accomplished. Hence, there is an apparent need to evaluate new product initiatives systematically and make accurate decisions under uncertainty. Another major concern is the time pressure to launch a significant number of new products to preserve and increase the competitive power of the company. In this work, we propose an integrated decision-making framework based on neural networks and fuzzy logic to make appropriate decisions and accelerate the evaluation process. We are especially interested in the two initial stages where new product ideas are selected (go/no go decision) and the implementation order of the corresponding projects are determined. We show that this two-staged intelligent approach allows practitioners to roughly and quickly separate good and bad product ideas by making use of previous experiences, and then, analyze a more shortened list rigorously.

Keywords: Decision Making, Neural Networks, Fuzzy Theory and Systems, Choquet Integral, New Product Development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833
4737 Theory of Nanowire Radial p-n-Junction

Authors: Stepan Petrosyan, Ashkhen Yesayan, Suren Nersesyan

Abstract:

We have developed an analytic model for the radial pn-junction in a nanowire (NW) core-shell structure utilizing as a new building block in different semiconductor devices. The potential distribution through the p-n-junction is calculated and the analytical expressions are derived to compute the depletion region widths. We show that the widths of space charge layers, surrounding the core, are the functions of core radius, which is the manifestation of so called classical size effect. The relationship between the depletion layer width and the built-in potential in the asymptotes of infinitely large core radius transforms to square-root dependence specific for conventional planar p-n-junctions. The explicit equation is derived to compute the capacitance of radial p-n-junction. The current-voltage behavior is also carefully determined taking into account the “short base" effects.

Keywords: Snanowire, p-n- junction, barrier capacitance, high injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2787
4736 OCR For Printed Urdu Script Using Feed Forward Neural Network

Authors: Inam Shamsher, Zaheer Ahmad, Jehanzeb Khan Orakzai, Awais Adnan

Abstract:

This paper deals with an Optical Character Recognition system for printed Urdu, a popular Pakistani/Indian script and is the third largest understandable language in the world, especially in the subcontinent but fewer efforts are made to make it understandable to computers. Lot of work has been done in the field of literature and Islamic studies in Urdu, which has to be computerized. In the proposed system individual characters are recognized using our own proposed method/ algorithms. The feature detection methods are simple and robust. Supervised learning is used to train the feed forward neural network. A prototype of the system has been tested on printed Urdu characters and currently achieves 98.3% character level accuracy on average .Although the system is script/ language independent but we have designed it for Urdu characters only.

Keywords: Algorithm, Feed Forward Neural Networks, Supervised learning, Pattern Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3035
4735 Concrete Mix Design Using Neural Network

Authors: Rama Shanker, Anil Kumar Sachan

Abstract:

Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.

Keywords: Aggregate Proportions, Artificial Neural Network, Concrete Grade, Concrete Mix Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
4734 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations

Authors: A. Javed, K. Djidjeli, J. T. Xing

Abstract:

The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.

Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830
4733 A Trainable Neural Network Ensemble for ECG Beat Classification

Authors: Atena Sajedin, Shokoufeh Zakernejad, Soheil Faridi, Mehrdad Javadi, Reza Ebrahimpour

Abstract:

This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study.

Keywords: ECG beat Classification; Combining Classifiers;Premature Ventricular Contraction (PVC); Multi Layer Perceptrons;Wavelet Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
4732 Evaluating Performance of Quality-of-Service Routing in Large Networks

Authors: V. Narasimha Raghavan, M. Venkatesh, T. Peer Meera Labbai, Praveen Dwarakanath Prabhu

Abstract:

The performance and complexity of QoS routing depends on the complex interaction between a large set of parameters. This paper investigated the scaling properties of source-directed link-state routing in large core networks. The simulation results show that the routing algorithm, network topology, and link cost function each have a significant impact on the probability of successfully routing new connections. The experiments confirm and extend the findings of other studies, and also lend new insight designing efficient quality-of-service routing policies in large networks.

Keywords: QoS, Link-State Routing, Dijkstra, Path Selection, Path Computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
4731 Detection of Diabetic Symptoms in Retina Images Using Analog Algorithms

Authors: Daniela Matei, Radu Matei

Abstract:

In this paper a class of analog algorithms based on the concept of Cellular Neural Network (CNN) is applied in some processing operations of some important medical images, namely retina images, for detecting various symptoms connected with diabetic retinopathy. Some specific processing tasks like morphological operations, linear filtering and thresholding are proposed, the corresponding template values are given and simulations on real retina images are provided.

Keywords: Diabetic retinopathy, pathology detection, cellular neural networks, analog algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079
4730 Application New Approach with Two Networks Slow and Fast on the Asynchronous Machine

Authors: Samia Salah, M’hamed Hadj Sadok, Abderrezak Guessoum

Abstract:

In this paper, we propose a new modular approach called neuroglial consisting of two neural networks slow and fast which emulates a biological reality recently discovered. The implementation is based on complex multi-time scale systems; validation is performed on the model of the asynchronous machine. We applied the geometric approach based on the Gerschgorin circles for the decoupling of fast and slow variables, and the method of singular perturbations for the development of reductions models.

This new architecture allows for smaller networks with less complexity and better performance in terms of mean square error and convergence than the single network model.

Keywords: Gerschgorin’s Circles, Neuroglial Network, Multi time scales systems, Singular perturbation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
4729 A New Internal Architecture Based on Feature Selection for Holonic Manufacturing System

Authors: Jihan Abdulazeez Ahmed, Adnan Mohsin Abdulazeez Brifcani

Abstract:

This paper suggests a new internal architecture of holon based on feature selection model using the combination of Bees Algorithm (BA) and Artificial Neural Network (ANN). BA is used to generate features while ANN is used as a classifier to evaluate the produced features. Proposed system is applied on the Wine dataset, the statistical result proves that the proposed system is effective and has the ability to choose informative features with high accuracy.

Keywords: Artificial Neural Networks, Holonic Approach, Feature Selection, Bee Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
4728 Multistage Condition Monitoring System of Aircraft Gas Turbine Engine

Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev

Abstract:

Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows drawing conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stageby- stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.

Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
4727 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing

Authors: Yehjune Heo

Abstract:

As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.

Keywords: Anti-spoofing, CNN, fingerprint recognition, loss function, optimizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420
4726 Adaptive Pulse Coupled Neural Network Parameters for Image Segmentation

Authors: Thejaswi H. Raya, Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

For over a decade, the Pulse Coupled Neural Network (PCNN) based algorithms have been successfully used in image interpretation applications including image segmentation. There are several versions of the PCNN based image segmentation methods, and the segmentation accuracy of all of them is very sensitive to the values of the network parameters. Most methods treat PCNN parameters like linking coefficient and primary firing threshold as global parameters, and determine them by trial-and-error. The automatic determination of appropriate values for linking coefficient, and primary firing threshold is a challenging problem and deserves further research. This paper presents a method for obtaining global as well as local values for the linking coefficient and the primary firing threshold for neurons directly from the image statistics. Extensive simulation results show that the proposed approach achieves excellent segmentation accuracy comparable to the best accuracy obtainable by trial-and-error for a variety of images.

Keywords: Automatic Selection of PCNN Parameters, Image Segmentation, Neural Networks, Pulse Coupled Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
4725 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals

Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou

Abstract:

In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.

Keywords: Continuous wavelet transform, convolution neural network, gated recurrent unit, health indicators, remaining useful life.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 767
4724 Optimization of a Three-Term Backpropagation Algorithm Used for Neural Network Learning

Authors: Yahya H. Zweiri

Abstract:

The back-propagation algorithm calculates the weight changes of an artificial neural network, and a two-term algorithm with a dynamically optimal learning rate and a momentum factor is commonly used. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third term increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and optimization approaches for evaluating the learning parameters are required to facilitate the application of the three terms BP algorithm. This paper considers the optimization of the new back-propagation algorithm by using derivative information. A family of approaches exploiting the derivatives with respect to the learning rate, momentum factor and proportional factor is presented. These autonomously compute the derivatives in the weight space, by using information gathered from the forward and backward procedures. The three-term BP algorithm and the optimization approaches are evaluated using the benchmark XOR problem.

Keywords: Neural Networks, Backpropagation, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
4723 Basic Tendency Model in Complete Factor Synergetics of Complex Systems

Authors: Li Zong-Cheng

Abstract:

The deviation between the target state variable and the practical state variable should be used to form the state tending factor of complex systems, which can reflect the process for the complex system to tend rationalization. Relating to the system of basic equations of complete factor synergetics consisting of twenty nonlinear stochastic differential equations, the two new models are considered to set, which should be called respectively the rationalizing tendency model and the non- rationalizing tendency model. Therefore we can extend the theory of programming with the objective function & constraint condition suitable only for the realm of man-s activities into the new analysis with the tendency function & constraint condition suitable for all the field of complex system.

Keywords: complex system, complete factor synergetics, basicequation, rationalizing tendency model, non-rationalizing tendencymodel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
4722 Spatial Analysis and Statistics for Zoning of Urban Areas

Authors: Benedetto Manganelli, Beniamino Murgante

Abstract:

The use of statistical data and of the neural networks, capable of elaborate a series of data and territorial info, have allowed the making of a model useful in the subdivision of urban places into homogeneous zone under the profile of a social, real estate, environmental and urbanist background of a city. The development of homogeneous zone has fiscal and urbanist advantages. The tools in the model proposed, able to be adapted to the dynamic changes of the city, allow the application of the zoning fast and dynamic.

Keywords: Homogeneous Urban Areas, Multidimensional Scaling, Neural Network, Real Estate Market, Urban Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
4721 Web Pages Aesthetic Evaluation Using Low-Level Visual Features

Authors: Maryam Mirdehghani, S. Amirhassan Monadjemi

Abstract:

Web sites are rapidly becoming the preferred media choice for our daily works such as information search, company presentation, shopping, and so on. At the same time, we live in a period where visual appearances play an increasingly important role in our daily life. In spite of designers- effort to develop a web site which be both user-friendly and attractive, it would be difficult to ensure the outcome-s aesthetic quality, since the visual appearance is a matter of an individual self perception and opinion. In this study, it is attempted to develop an automatic system for web pages aesthetic evaluation which are the building blocks of web sites. Based on the image processing techniques and artificial neural networks, the proposed method would be able to categorize the input web page according to its visual appearance and aesthetic quality. The employed features are multiscale/multidirectional textural and perceptual color properties of the web pages, fed to perceptron ANN which has been trained as the evaluator. The method is tested using university web sites and the results suggested that it would perform well in the web page aesthetic evaluation tasks with around 90% correct categorization.

Keywords: Web Page Design, Web Page Aesthetic, Color Spaces, Texture, Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
4720 Reconfiguration of Deregulated Distribution Network for Minimizing Energy Supply Cost by using Multi-Objective BGA

Authors: H. Kazemi Karegar, S. Jalilzadeh, V. Nabaei, A. Shabani

Abstract:

In this paper, the problem of finding the optimal topological configuration of a deregulated distribution network is considered. The new features of this paper are proposing a multiobjective function and its application on deregulated distribution networks for finding the optimal configuration. The multi-objective function will be defined for minimizing total Energy Supply Costs (ESC) and energy losses subject to load flow constraints. The optimal configuration will be obtained by using Binary Genetic Algorithm (BGA).The proposed method has been tested to analyze a sample and a practical distribution networks.

Keywords: Binary Genetic Algorithm, Deregulated Distribution Network, Minimizing Cost, Reconfiguration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412