Search results for: motion trajectories.
250 Pre-Eliminary Design Adjustable Workstation for Piston Assembly Line Considering Anthropometric for Indonesian People
Authors: T. Yuri M. Zagloel, Inaki M. Hakim, A. M. Syarafi
Abstract:
Manufacturing process has been considered as one of the most important activity in business process. It correlates with productivity and quality of the product so industries could fulfill customer’s demand. With the increasing demand from customer, industries must improve their manufacturing ability such as shorten lead-time and reduce wastes on their process. Lean manufacturing has been considered as one of the tools to waste elimination in manufacturing or service industry. Workforce development is one practice in lean manufacturing that can reduce waste generated from operator such as waste of unnecessary motion. Anthropometric approach is proposed to determine the recommended measurement in operator’s work area. The method will get some dimensions from Indonesia people that related to piston workstation. The result from this research can be obtained new design for the work area considering ergonomic aspect.Keywords: Adjustable, anthropometric, ergonomic, waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608249 Experimental Simulation of Soil Boundary Condition for Dynamic Studies
Authors: Omar.S. Qaftan, T. T. Sabbagh
Abstract:
This paper studies the free-field response by adopting a flexible membrane container as soil boundary for experimental shaking table tests. The influence of the soil container boundary on the soil behaviour and the dynamic soil properties under seismic effect were examined. A flexible container with 1/50 scale factor was adopted in the experimental tests, including construction, instrumentation, and determination of the results of dynamic tests on a shaking table. Horizontal face displacements and accelerations were analysed to determine the influence of the container boundary on the performance of the soil. The outputs results show that the flexible boundary container allows more displacement and larger accelerations. The soil in a rigid wall container cannot deform as similar as the soil in the real field does. Therefore, the response of flexible container tested is believed to be more reliable for soil boundary than that in the rigid container.Keywords: Soil, boundary, seismic, earthquake, ground motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102248 Non-Linear Vibration and Stability Analysis of an Axially Moving Beam with Rotating-Prismatic Joint
Authors: M. Najafi, F. Rahimi Dehgolan
Abstract:
In this paper, the dynamic modeling of a single-link flexible beam with a tip mass is given by using Hamilton's principle. The link has been rotational and translational motion and it was assumed that the beam is moving with a harmonic velocity about a constant mean velocity. Non-linearity has been introduced by including the non-linear strain to the analysis. Dynamic model is obtained by Euler-Bernoulli beam assumption and modal expansion method. Also, the effects of rotary inertia, axial force, and associated boundary conditions of the dynamic model were analyzed. Since the complex boundary value problem cannot be solved analytically, the multiple scale method is utilized to obtain an approximate solution. Finally, the effects of several conditions on the differences among the behavior of the non-linear term, mean velocity on natural frequencies and the system stability are discussed.
Keywords: Non-linear vibration, stability, axially moving beam, bifurcation, multiple scales method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340247 Vibration of Functionally Graded Cylindrical Shells under Effects Clamped-Clamped Boundary Conditions
Authors: M.R.Alinaghizadehand, M.R.Isvandzibaei
Abstract:
Study of the vibration cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is important. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of clampedclamped boundary conditions.Keywords: Vibration, FGM, Cylindrical shell, Hamilton's principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533246 Intelligent Swarm-Finding in Formation Control of Multi-Robots to Track a Moving Target
Authors: Anh Duc Dang, Joachim Horn
Abstract:
This paper presents a new approach to control robots, which can quickly find their swarm while tracking a moving target through the obstacles of the environment. In this approach, an artificial potential field is generated between each free-robot and the virtual attractive point of the swarm. This artificial potential field will lead free-robots to their swarm. The swarm-finding of these free-robots dose not influence the general motion of their swarm and nor other robots. When one singular robot approaches the swarm then its swarm-search will finish, and it will further participate with its swarm to reach the position of the target. The connections between member-robots with their neighbors are controlled by the artificial attractive/repulsive force field between them to avoid collisions and keep the constant distances between them in ordered formation. The effectiveness of the proposed approach has been verified in simulations.
Keywords: Formation control, potential field method, obstacle avoidance, swarm intelligence, multi-agent systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187245 Application of Artificial Neural Network for the Prediction of Pressure Distribution of a Plunging Airfoil
Authors: F. Rasi Maezabadi, M. Masdari, M. R. Soltani
Abstract:
Series of experimental tests were conducted on a section of a 660 kW wind turbine blade to measure the pressure distribution of this model oscillating in plunging motion. In order to minimize the amount of data required to predict aerodynamic loads of the airfoil, a General Regression Neural Network, GRNN, was trained using the measured experimental data. The network once proved to be accurate enough, was used to predict the flow behavior of the airfoil for the desired conditions. Results showed that with using a few of the acquired data, the trained neural network was able to predict accurate results with minimal errors when compared with the corresponding measured values. Therefore with employing this trained network the aerodynamic coefficients of the plunging airfoil, are predicted accurately at different oscillation frequencies, amplitudes, and angles of attack; hence reducing the cost of tests while achieving acceptable accuracy.Keywords: Airfoil, experimental, GRNN, Neural Network, Plunging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656244 Simulation and Analysis of the Shift Process for an Automatic Transmission
Authors: Kei-Lin Kuo
Abstract:
The automatic transmission (AT) is one of the most important components of many automobile transmission systems. The shift quality has a significant influence on the ride comfort of the vehicle. During the AT shift process, the joint elements such as the clutch and bands engage or disengage, linking sets of gears to create a fixed gear ratio. Since these ratios differ between gears in a fixed gear ratio transmission, the motion of the vehicle could change suddenly during the shift process if the joint elements are engaged or disengaged inappropriately, additionally impacting the entire transmission system and increasing the temperature of connect elements.The objective was to establish a system model for an AT powertrain using Matlab/Simulink. This paper further analyses the effect of varying hydraulic pressure and the associated impact on shift quality during both engagment and disengagement of the joint elements, proving that shift quality improvements could be achieved with appropriate hydraulic pressure control.Keywords: Automatic transmission, Simulation and analysis, Shift quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4512243 A Study on Evaluation of Strut Type Suspension Noise Caused by Rubber Degradation
Authors: Gugyong Kim, Sugnsu Kang, Yongjun Lee, Sooncheol Park, Wonwook Jung
Abstract:
When cars are released from the factory, strut noises are very small and therefore it is difficult to perceive them. As the use time and travel distance increase, however, strut noises get larger so as to cause users much uneasiness. The noises generated at the field include engine noises and flow noises and therefore it is difficult to clearly discern the noises generated from struts. This study developed a test method which can reproduce field strut noises in the lab. Using the newly developed noise evaluation test, this study analyzed the effects that insulator performance degradation and failure can have on car noises. The study also confirmed that the insulator durability test by the simple back-and-forth motion cannot completely reflect the state of the parts failure in the field. Based on this, the study also confirmed that field noises can be reproduced through a durability test that considers heat aging.
Keywords: Insulator, noise, performance degradation, strut
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721242 Exoskeleton for Hemiplegic Patients: Mechatronic Approach to Move One Disabled Lower Limb
Authors: Alaoui Hamza, Moutacalli Mohamed Tarik, Chebak Ahmed
Abstract:
The number of people suffering from hemiplegia is growing each year. This lower limb disability affects all the aspects of their lives by taking away their autonomy. This implicates their close relatives, as well as the health system to provide the necessary care they need. The integration of exoskeletons in the medical field became a promising solution to resolve this issue. This paper presents an exoskeleton designed to help hemiplegic people get back the sensation and ability of normal walking. For this purpose, three step models have been created. The first step allows a simple forward movement of the leg. The second method is designed to overcome some obstacles in the patient path, and finally the third step model gives the patient total control over the device. Each of the control methods was designed to offer a solution to the challenges that the patients may face during the walking process.Keywords: Ability of normal walking, exoskeleton, hemiplegic patients, lower limb motion, mechatronics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654241 Inverse Dynamics of the Mould Base of Blow Molding Machines
Authors: Vigen Arakelian
Abstract:
This paper deals with the study of devices for displacement of the mould base of blow-molding machines. The displacement of the mould in the studied case is carried out by a linear actuator, which ensures the descent of the mould base and by extension springs, which return the letter in the initial position. The aim of this paper is to study the inverse dynamics of the device for displacement of the mould base of blow-molding machines and to determine its optimum parameters for higher rate of production. In the other words, it is necessary to solve the inverse dynamic problem to find the equation of motion linking applied forces with displacements. This makes it possible to determine the stiffness coefficient of the spring to turn the mold base back to the initial position for a given time. The obtained results are illustrated by a numerical example. It is shown that applying a spring with stiffness returns the mould base of the blow molding machine into the initial position in 0.1 sec.Keywords: Design, blow-molding machines, dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691240 Finite Element Modeling of Rotating Mixing of Toothpaste
Authors: Inamullah Bhatti, Ahsanullah Baloch, Khadija Qureshi
Abstract:
The objective of this research is to examine the shear thinning behaviour of mixing flow of non-Newtonian fluid like toothpaste in the dissolution container with rotating stirrer. The problem under investigation is related to the chemical industry. Mixing of fluid is performed in a cylindrical container with rotating stirrer, where stirrer is eccentrically placed on the lid of the container. For the simulation purpose the associated motion of the fluid is considered as revolving of the container, with stick stirrer. For numerical prediction, a time-stepping finite element algorithm in a cylindrical polar coordinate system is adopted based on semi-implicit Taylor-Galerkin/pressure-correction scheme. Numerical solutions are obtained for non-Newtonian fluids employing power law model. Variations with power law index have been analysed, with respect to the flow structure and pressure drop.
Keywords: finite element simulation, mixing fluid, rheology, rotating flow, toothpaste
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257239 An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes
Authors: S. Niksarlioglu, F. Kulahci
Abstract:
Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.
Keywords: Earthquake, Modeling, Prediction, Radon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012238 Multi-View Neural Network Based Gait Recognition
Authors: Saeid Fazli, Hadis Askarifar, Maryam Sheikh Shoaie
Abstract:
Human identification at a distance has recently gained growing interest from computer vision researchers. Gait recognition aims essentially to address this problem by identifying people based on the way they walk [1]. Gait recognition has 3 steps. The first step is preprocessing, the second step is feature extraction and the third one is classification. This paper focuses on the classification step that is essential to increase the CCR (Correct Classification Rate). Multilayer Perceptron (MLP) is used in this work. Neural Networks imitate the human brain to perform intelligent tasks [3].They can represent complicated relationships between input and output and acquire knowledge about these relationships directly from the data [2]. In this paper we apply MLP NN for 11 views in our database and compare the CCR values for these views. Experiments are performed with the NLPR databases, and the effectiveness of the proposed method for gait recognition is demonstrated.Keywords: Human motion analysis, biometrics, gait recognition, principal component analysis, MLP neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105237 Five-axis Strip Machining with Barrel Cutter Based On Tolerance Constraint for Sculptured Surfaces
Authors: YaoAn Lu, QingZhen Bi, BaoRui Du, ShuLin Chen, LiMin Zhu, Kai Huang
Abstract:
Taking the design tolerance into account, this paper presents a novel efficient approach to generate iso-scallop tool path for five-axis strip machining with a barrel cutter. The cutter location is first determined on the scallop surface instead of the design surface, and then the cutter is adjusted to locate the optimal tool position based on the differential rotation of the tool axis and satisfies the design tolerance simultaneously. The machining strip width and error are calculated with the aid of the grazing curve of the cutter. Based on the proposed tool positioning algorithm, the tool paths are generated by keeping the scallop height formed by adjacent tool paths constant. An example is conducted to confirm the validity of the proposed method.
Keywords: Strip machining, barrel cutter, iso-scallop tool path, sculptured surfaces, differential motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529236 Numerical Simulation of Flow and Combustionin an Axisymmetric Internal Combustion Engine
Authors: Nureddin Dinler, Nuri Yucel
Abstract:
Improving the performance of internal combustion engines is one of the major concerns of researchers. Experimental studies are more expensive than computational studies. Also using computational techniques allows one to obtain all the required data for the cylinder, some of which could not be measured. In this study, an axisymmetric homogeneous charged spark ignition engine was modeled. Fluid motion and combustion process were investigated numerically. Turbulent flow conditions were considered. Standard k- ε turbulence model for fluid flow and eddy break-up model for turbulent combustion were utilized. The effects of valve angle on the fluid flow and combustion are analyzed for constant air/fuel and compression ratios. It is found that, velocities and strength of tumble increases in-cylinder flow and due to increase in turbulence strength, the flame propagation is faster for small valve angles.Keywords: CFD simulation, eddy break-up model, k-εturbulence model, reciprocating engine flow and combustion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251235 Abrupt Scene Change Detection
Authors: Priyadarshinee Adhikari, Neeta Gargote, Jyothi Digge, B.G. Hogade
Abstract:
A number of automated shot-change detection methods for indexing a video sequence to facilitate browsing and retrieval have been proposed in recent years. This paper emphasizes on the simulation of video shot boundary detection using one of the methods of the color histogram wherein scaling of the histogram metrics is an added feature. The difference between the histograms of two consecutive frames is evaluated resulting in the metrics. Further scaling of the metrics is performed to avoid ambiguity and to enable the choice of apt threshold for any type of videos which involves minor error due to flashlight, camera motion, etc. Two sample videos are used here with resolution of 352 X 240 pixels using color histogram approach in the uncompressed media. An attempt is made for the retrieval of color video. The simulation is performed for the abrupt change in video which yields 90% recall and precision value.Keywords: Abrupt change, color histogram, ground-truthing, precision, recall, scaling, threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103234 Numerical Investigation of Baffle Effect on the Flow in a Rectangular Primary Sedimentation Tank
Authors: M. Shahrokhi, F. Rostami, M.A. Md Said, S. Syafalni
Abstract:
It is essential to have a uniform and calm flow field for a settling tank to have high performance. In general, the recirculation zones always occurred in sedimentation tanks. The presence of these regions may have different effects. The nonuniformity of the velocity field, the short-circuiting at the surface and the motion of the jet at the bed of the tank that occurs because of the recirculation in the sedimentation layer, are affected by the geometry of the tank. There are some ways to decrease the size of these dead zones, which would increase the performance. One of the ways is to use a suitable baffle configuration. In this study, the presence of baffle with different position has been investigated by a finite volume method, with VOF (Volume of Fluid) model. Besides, the k-ε turbulence model is used in the numerical calculations. The results indicate that the best position of the baffle is obtained when the volume of the recirculation region is minimized or is divided to smaller part and the flow field trend to be uniform in the settling zone.Keywords: Sedimentation tanks, Baffle, Numerical Modeling, VOF, Circulation Zone
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728233 Sloshing-Induced Overflow Assessment of the Seismically-Isolated Nuclear Tanks
Authors: Kihyon Kwon, Hyun T. Park, Gil Y. Chung, Sang-Hoon Lee
Abstract:
This paper focuses on assessing sloshing-induced overflow of the seismically-isolated nuclear tanks based on Fluid-Structure Interaction (FSI) analysis. Typically, fluid motion in the seismically-isolated nuclear tank systems may be rather amplified and even overflowed under earthquake. Sloshing-induced overflow in those structures has to be reliably assessed and predicted since it can often cause critical damages to humans and environments. FSI analysis is herein performed to compute the total cumulative overflowed water volume more accurately, by coupling ANSYS with CFX for structural and fluid analyses, respectively. The approach is illustrated on a nuclear liquid storage tank, Spent Fuel Pool (SFP), forgiven conditions under consideration: different liquid levels, Peak Ground Accelerations (PGAs), and post earthquakes.
Keywords: FSI analysis, seismically-isolated nuclear tank system, sloshing-induced overflow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2876232 Receding Horizon Filtering for Mobile Robot Systems with Cross-Correlated Sensor Noises
Authors: Il Young Song, Du Yong Kim, Vladimir Shin
Abstract:
This paper reports on a receding horizon filtering for mobile robot systems with cross-correlated sensor noises and uncertainties. Also, the effect of uncertain parameters in the state of the tracking error model performance is considered. A distributed fusion receding horizon filter is proposed. The distributed fusion filtering algorithm represents the optimal linear combination of the local filters under the minimum mean square error criterion. The derivation of the error cross-covariances between the local receding horizon filters is the key of this paper. Simulation results of the tracking mobile robot-s motion demonstrate high accuracy and computational efficiency of the distributed fusion receding horizon filter.Keywords: Distributed fusion, fusion formula, Kalman filter, multisensor, receding horizon, wheeled mobile robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199231 Weak Instability in Direct Integration Methods for Structural Dynamics
Authors: Shuenn-Yih Chang, Chiu-Li Huang
Abstract:
Three structure-dependent integration methods have been developed for solving equations of motion, which are second-order ordinary differential equations, for structural dynamics and earthquake engineering applications. Although they generally have the same numerical properties, such as explicit formulation, unconditional stability and second-order accuracy, a different performance is found in solving the free vibration response to either linear elastic or nonlinear systems with high frequency modes. The root cause of this different performance in the free vibration responses is analytically explored herein. As a result, it is verified that a weak instability is responsible for the different performance of the integration methods. In general, a weak instability will result in an inaccurate solution or even numerical instability in the free vibration responses of high frequency modes. As a result, a weak instability must be prohibited for time integration methods.Keywords: Dynamic analysis, high frequency, integration method, overshoot, weak instability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 673230 Spectral Assessing of Topographic Effects on Seismic Behavior of Trapezoidal Hill
Authors: M. Amelsakhi, A. Sohrabi-Bidar, A. Shareghi
Abstract:
One of the most important issues about the structural damages caused by earthquake is the evaluating of the spectral response of the site on which the construction is built. This fact has demonstrated during many earlier earthquakes and many researchers’ reports have concerned with it. According to these reports, features of the site materials and geometry of the ground surface are considered the main factors. This study concentrates on the specific form of topographies like hills. Assessing of spectral responses of different points on the hills and beside demonstrates considerable differences between 1D and 2D methods of geotechnical analyses. A general trend of amplifications on the top of the hills and de-amplifications near the toe of the hills has been appeared within the acceleration, velocity and displacement response spectrums of horizontal motion. Evaluating of spectral responses of different sizes of the hills revealed that as much as the hill-size enlarges differences between spectral responses of 1D and 2D analyses transfers to longer range of periods and becomes wider.
Keywords: Topography effect, Amplification ratio, Response spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890229 Modeling of a Stewart Platform for Analyzing One Directional Dynamics for Spacecraft Docking Operations
Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams
Abstract:
A one-directional dynamic model of a Stewart Platform was developed to assist NASA in analyzing the dynamic response in spacecraft docking operations. A simplified mechanical drawing was created, capturing the physical structure's main features. A simplified schematic diagram was developed into a lumped mass model from the mechanical drawing. Three differential equations were derived according to the schematic diagram. A Simulink diagram was created using MATLAB to represent the three equations. System parameters, including spring constants and masses, are derived in detail from the physical system. The model can be used for further analysis via computer simulation in predicting dynamic response in its main docking direction, i.e., up-and-down motion.
Keywords: Stewart platform, docking operation, spacecraft, spring constant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67228 Unsteady Aerodynamics of Multiple Airfoils in Configuration
Authors: Hossain Aziz, Rinku Mukherjee
Abstract:
A potential flow model is used to study the unsteady flow past two airfoils in configuration, each of which is suddenly set into motion. The airfoil bound vortices are modeled using lumped vortex elements and the wake behind the airfoil is modeled by discrete vortices. This consists of solving a steady state flow problem at each time-step where unsteadiness is incorporated through the “zero normal flow on a solid surface" boundary condition at every time instant. Additionally, along with the “zero normal flow on a solid surface" boundary condition Kelvin-s condition is used to compute the strength of the latest wake vortex shed from the trailing edge of the airfoil. Location of the wake vortices is updated at each time-step to get the wake shape at each time instant. Results are presented to show the effect of airfoil-airfoil interaction and airfoil-wake interaction on the aerodynamic characteristics of each airfoil.Keywords: Aerodynamics, Airfoils, Configuration, Unsteady.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059227 Internal Loading Distribution in Statically Loaded Ball Bearings Subjected to a Centric Thrust Load: Alternative Approach
Authors: Mário C. Ricci
Abstract:
An alternative iterative computational procedure is proposed for internal normal ball loads calculation in statically loaded single-row, angular-contact ball bearings, subjected to a known thrust load, which is applied in the inner ring at the geometric bearing center line. An accurate method for curvature radii at contacts with inner and outer raceways in the direction of the motion is used. Numerical aspects of the iterative procedure are discussed. Numerical examples results for a 218 angular-contact ball bearing have been compared with those from the literature. Twenty figures are presented showing the geometrical features, the behavior of the convergence variables and the following parameters as functions of the thrust load: normal ball loads, contact angle, distance between curvature centers, and normal ball and axial deflections.Keywords: Ball, Bearing, Static, Load, Iterative, Numerical, Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472226 Low-Cost Robotic-Assisted Laparoscope
Authors: Ege Can Onal, Enver Ersen, Meltem Elitas
Abstract:
Laparoscopy is a surgical operation, well known as keyhole surgery. The operation is performed through small holes, hence, scars of a patient become much smaller, patients can recover in a short time and the hospital stay becomes shorter in comparison to an open surgery. Several tools are used at laparoscopic operations; among them, the laparoscope has a crucial role. It provides the vision during the operation, which will be the main focus in here. Since the operation area is very small, motion of the surgical tools might be limited in laparoscopic operations compared to traditional surgeries. To overcome this limitation, most of the laparoscopic tools have become more precise, dexterous, multi-functional or automated. Here, we present a robotic-assisted laparoscope that is controlled with pedals directly by a surgeon. Thus, the movement of the laparoscope might be controlled better, so there will not be a need to calibrate the camera during the operation. The need for an assistant that controls the movement of the laparoscope will be eliminated. The duration of the laparoscopic operation might be shorter since the surgeon will directly operate the camera.
Keywords: Laparoscope, laparoscopy, low-cost, minimally invasive surgery, robotic-assisted surgery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949225 Vibration of Functionally Graded Cylindrical Shells under Free-Free Boundary Conditions
Authors: A.R.Tahmasebi Birgani, M.Hosseinjani Zamenjani, M.R.Isvandzibaei
Abstract:
In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free boundary conditions.
Keywords: Vibration, FGM, Cylindrical shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633224 Intelligent Control and Modelling of a Micro Robot for In-pipe Application
Authors: Y. Sabzehmeidani, M. Mailah, M. Hussein, A. R. Tavakolpour
Abstract:
In this paper, a worm-like micro robot designed for inpipe application with intelligent active force control (AFC) capability is modelled and simulated. The motion of the micro robot is based on an impact drive mechanism (IDM) that is actuated using piezoelectric device. The trajectory tracking performance of the modelled micro robot is initially experimented via a conventional proportionalintegral- derivative (PID) controller in which the dynamic response of the robot system subjected to different input excitations is investigated. Subsequently, a robust intelligent method known as active force control with fuzzy logic (AFCFL) is later incorporated into the PID scheme to enhance the system performance by compensating the unwanted disturbances due to the interaction of the robot with its environment. Results show that the proposed AFCFL scheme is far superior than the PID control counterpart in terms of the system-s tracking capability in the wake of the disturbances.Keywords: Active Force Control, Micro Robot, Fuzzy Logic, In-pipe Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724223 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Y. A. Adla, R. Soubra, M. Kasab, M. O. Diab, A. Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals out of which 11 were chosen based on their Intraclass Correlation Coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, five features were introduced to the Linear Discriminant Analysis classifier and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90% respectively.
Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452222 Improvement on a CNC Gantry Machine Structure Design for Higher Machining Speed Capability
Authors: Ahmed A. D. Sarhan, S. R. Besharaty, Javad Akbaria, M. Hamdi
Abstract:
The capability of CNC gantry milling machines in manufacturing long components has caused the expanded use of such machines. On the other hand, the machines’ gantry rigidity can reduce under severe loads or vibration during operation. Indeed, the quality of machining is dependent on the machine’s dynamic behavior throughout the operating process. For this reason, these types of machines have always been used widely and are not efficient. Therefore, they can usually be employed for rough machining and may not produce adequate surface finishing. In this paper, a CNC gantry milling machine with the potential to produce good surface finish has been designed and analyzed. The lowest natural frequency of this machine is 202 Hz corresponding to 12000 rpm at all motion amplitudes with a full range of suitable frequency responses. Meanwhile, the maximum deformation under dead loads for the gantry machine is 0.565*m, indicating that this machine tool is capable of producing higher product quality.
Keywords: Finite element, frequency response, gantry design, gantry machine, static and dynamic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6034221 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions
Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi
Abstract:
This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.
Keywords: Beam on nonlinear Winkler foundation method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213