Search results for: magnetic resonance image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2026

Search results for: magnetic resonance image

1486 A Data Hiding Model with High Security Features Combining Finite State Machines and PMM method

Authors: Souvik Bhattacharyya, Gautam Sanyal

Abstract:

Recent years have witnessed the rapid development of the Internet and telecommunication techniques. Information security is becoming more and more important. Applications such as covert communication, copyright protection, etc, stimulate the research of information hiding techniques. Traditionally, encryption is used to realize the communication security. However, important information is not protected once decoded. Steganography is the art and science of communicating in a way which hides the existence of the communication. Important information is firstly hidden in a host data, such as digital image, video or audio, etc, and then transmitted secretly to the receiver.In this paper a data hiding model with high security features combining both cryptography using finite state sequential machine and image based steganography technique for communicating information more securely between two locations is proposed. The authors incorporated the idea of secret key for authentication at both ends in order to achieve high level of security. Before the embedding operation the secret information has been encrypted with the help of finite-state sequential machine and segmented in different parts. The cover image is also segmented in different objects through normalized cut.Each part of the encoded secret information has been embedded with the help of a novel image steganographic method (PMM) on different cuts of the cover image to form different stego objects. Finally stego image is formed by combining different stego objects and transmit to the receiver side. At the receiving end different opposite processes should run to get the back the original secret message.

Keywords: Cover Image, Finite state sequential machine, Melaymachine, Pixel Mapping Method (PMM), Stego Image, NCUT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
1485 An Adaptive Mammographic Image Enhancement in Orthogonal Polynomials Domain

Authors: R. Krishnamoorthy, N. Amudhavalli, M.K. Sivakkolunthu

Abstract:

X-ray mammography is the most effective method for the early detection of breast diseases. However, the typical diagnostic signs such as microcalcifications and masses are difficult to detect because mammograms are of low-contrast and noisy. In this paper, a new algorithm for image denoising and enhancement in Orthogonal Polynomials Transformation (OPT) is proposed for radiologists to screen mammograms. In this method, a set of OPT edge coefficients are scaled to a new set by a scale factor called OPT scale factor. The new set of coefficients is then inverse transformed resulting in contrast improved image. Applications of the proposed method to mammograms with subtle lesions are shown. To validate the effectiveness of the proposed method, we compare the results to those obtained by the Histogram Equalization (HE) and the Unsharp Masking (UM) methods. Our preliminary results strongly suggest that the proposed method offers considerably improved enhancement capability over the HE and UM methods.

Keywords: mammograms, image enhancement, orthogonalpolynomials, contrast improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
1484 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feedforward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on selforganizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: Classification, SOFM, neural network, RGB images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
1483 Performance Improvement in the Bivariate Models by using Modified Marginal Variance of Noisy Observations for Image-Denoising Applications

Authors: R. Senthilkumar

Abstract:

Most simple nonlinear thresholding rules for wavelet- based denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. This paper attempts to give a recipe for selecting one of the popular image-denoising algorithms based on VisuShrink, SureShrink, OracleShrink, BayesShrink and BiShrink and also this paper compares different Bivariate models used for image denoising applications. The first part of the paper compares different Shrinkage functions used for image-denoising. The second part of the paper compares different bivariate models and the third part of this paper uses the Bivariate model with modified marginal variance which is based on Laplacian assumption. This paper gives an experimental comparison on six 512x512 commonly used images, Lenna, Barbara, Goldhill, Clown, Boat and Stonehenge. The following noise powers 25dB,26dB, 27dB, 28dB and 29dB are added to the six standard images and the corresponding Peak Signal to Noise Ratio (PSNR) values are calculated for each noise level.

Keywords: BiShrink, Image-Denoising, PSNR, Shrinkage function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
1482 A Genetic Algorithm for Clustering on Image Data

Authors: Qin Ding, Jim Gasvoda

Abstract:

Clustering is the process of subdividing an input data set into a desired number of subgroups so that members of the same subgroup are similar and members of different subgroups have diverse properties. Many heuristic algorithms have been applied to the clustering problem, which is known to be NP Hard. Genetic algorithms have been used in a wide variety of fields to perform clustering, however, the technique normally has a long running time in terms of input set size. This paper proposes an efficient genetic algorithm for clustering on very large data sets, especially on image data sets. The genetic algorithm uses the most time efficient techniques along with preprocessing of the input data set. We test our algorithm on both artificial and real image data sets, both of which are of large size. The experimental results show that our algorithm outperforms the k-means algorithm in terms of running time as well as the quality of the clustering.

Keywords: Clustering, data mining, genetic algorithm, image data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
1481 Improved Posterized Color Images based on Color Quantization and Contrast Enhancement

Authors: Oh-Yeol Kwon, Sung-Il Chien

Abstract:

A conventional image posterization method occasionally fails to preserve the shape and color of objects due to the uneffective color reduction. This paper proposes a new image posterizartion method by using modified color quantization for preserving the shape and color of objects and color contrast enhancement for improving lightness contrast and saturation. Experiment results show that our proposed method can provide visually more satisfactory posterization result than that of the conventional method.

Keywords: Color contrast enhancement, color quantization, color segmentation, image posterization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
1480 Weld Defect Detection in Industrial Radiography Based Digital Image Processing

Authors: N. Nacereddine, M. Zelmat, S. S. Belaïfa, M. Tridi

Abstract:

Industrial radiography is a famous technique for the identification and evaluation of discontinuities, or defects, such as cracks, porosity and foreign inclusions found in welded joints. Although this technique has been well developed, improving both the inspection process and operating time, it does suffer from several drawbacks. The poor quality of radiographic images is due to the physical nature of radiography as well as small size of the defects and their poor orientation relatively to the size and thickness of the evaluated parts. Digital image processing techniques allow the interpretation of the image to be automated, avoiding the presence of human operators making the inspection system more reliable, reproducible and faster. This paper describes our attempt to develop and implement digital image processing algorithms for the purpose of automatic defect detection in radiographic images. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of global and local preprocessing and segmentation methods must be appropriated.

Keywords: Digital image processing, global and localapproaches, radiographic film, weld defect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4072
1479 Image Compression Using Multiwavelet and Multi-Stage Vector Quantization

Authors: S. Esakkirajan, T. Veerakumar, V. Senthil Murugan, P. Navaneethan

Abstract:

The existing image coding standards generally degrades at low bit-rates because of the underlying block based Discrete Cosine Transform scheme. Over the past decade, the success of wavelets in solving many different problems has contributed to its unprecedented popularity. Due to implementation constraints scalar wavelets do not posses all the properties such as orthogonality, short support, linear phase symmetry, and a high order of approximation through vanishing moments simultaneously, which are very much essential for signal processing. New class of wavelets called 'Multiwavelets' which posses more than one scaling function overcomes this problem. This paper presents a new image coding scheme based on non linear approximation of multiwavelet coefficients along with multistage vector quantization. The performance of the proposed scheme is compared with the results obtained from scalar wavelets.

Keywords: Image compression, Multiwavelets, Multi-stagevector quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
1478 Magnetohydrodynamic Mixed Convective Flow in a Cavity

Authors: R.YadollahiFarsani, B. Ghasemi

Abstract:

A magnetohydrodynamic mixed convective flow in a cavity was studied in this paper. The lower surface of cavity was heated from below whereas other walls of the cavity were thermally isolated. The governing two-dimensional flow equations have been solved by using finite volume code. The effects of magnetic field were studied on flow and temperature field and heat transfer performance at a wide range of parameters, Such as Hartmann (0≤Ha≤100) and Reynolds (1≤Re≤100) numbers. The results showed that as Hartman number increases the Nusselt number, representing heat transfer from the cavity decreases.

Keywords: Cavity, Magnetic Field, Mixed Convection, Magnetohydrodynamic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
1477 Study of Current Sheath Velocities in Tridimensional with Sahand Plasma Focus

Authors: M.A. Mohammadi, H.Alinejad, A.Piri

Abstract:

The current sheath dynamics in plasma focus facilities is the most important factors. In this paper the current sheath velocity at three dimensional with Sahand plasma focus facility is investigated. For this purpose the discharge is produced in argon gas with deposited energy lying in the range of 20-37kJ. The current sheath is monitored using two tridimensional magnetic probes. These probes installed near the surface of the interior electrode (anode) at 125mm from the anode axis (pinch place). The effect of gas pressure on the current sheath velocity also is investigated.

Keywords: Plasma focus, Current sheath, magnetic probe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
1476 Data Hiding by Vector Quantization in Color Image

Authors: Yung-Gi Wu

Abstract:

With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.

Keywords: Data hiding, vector quantization, watermark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
1475 Influence of an External Magnetic Field on the Acoustomagnetoelectric Field in a Rectangular Quantum Wire with an Infinite Potential by Using a Quantum Kinetic Equation

Authors: N. Q. Bau, N. V. Nghia

Abstract:

The acoustomagnetoelectric (AME) field in a rectangular quantum wire with an infinite potential (RQWIP) is calculated in the presence of an external magnetic field (EMF) by using the quantum kinetic equation for the distribution function of electrons system interacting with external phonons and electrons scattering with internal acoustic phonon in a RQWIP. We obtained ananalytic expression for the AME field in the RQWIP in the presence of the EMF. The dependence of AME field on the frequency of external acoustic wave, the temperature T of system, the cyclotron frequency of the EMF and the intensity of the EMF is obtained. Theoretical results for the AME field are numerically evaluated, plotted and discussed for a specific RQWIP GaAs/GaAsAl. This result has shown that the dependence of the AME field on intensity of the EMF is nonlinearly and it is many distinct maxima in the quantized magnetic region. We also compared received fields with those for normal bulk semiconductors, quantum well and quantum wire to show the difference. The influence of an EMF on AME field in a RQWIP is newly developed.

Keywords: Rectangular quantum wire, acoustomagnetoelectric field, electron-phonon interaction, kinetic equation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
1474 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier

Authors: Atanu K Samanta, Asim Ali Khan

Abstract:

Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.

Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
1473 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner

Authors: A. Umemuro, M. Sato, M. Narita, S. Hori, S. Sakurai, T. Nakayama, A. Nakazawa, T. Ogura

Abstract:

Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.

Keywords: EEG scanner, eye-detector, mammography, observers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 361
1472 A New Approach for Image Segmentation using Pillar-Kmeans Algorithm

Authors: Ali Ridho Barakbah, Yasushi Kiyoki

Abstract:

This paper presents a new approach for image segmentation by applying Pillar-Kmeans algorithm. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after optimized by Pillar Algorithm. The Pillar algorithm considers the pillars- placement which should be located as far as possible from each other to withstand against the pressure distribution of a roof, as identical to the number of centroids amongst the data distribution. This algorithm is able to optimize the K-means clustering for image segmentation in aspects of precision and computation time. It designates the initial centroids- positions by calculating the accumulated distance metric between each data point and all previous centroids, and then selects data points which have the maximum distance as new initial centroids. This algorithm distributes all initial centroids according to the maximum accumulated distance metric. This paper evaluates the proposed approach for image segmentation by comparing with K-means and Gaussian Mixture Model algorithm and involving RGB, HSV, HSL and CIELAB color spaces. The experimental results clarify the effectiveness of our approach to improve the segmentation quality in aspects of precision and computational time.

Keywords: Image segmentation, K-means clustering, Pillaralgorithm, color spaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3372
1471 Design of a Three Phase Active Power Filter with Sliding Mode Control and Energy Feedback

Authors: M. Nayeripour, T. Niknam

Abstract:

Nonlinear and unbalance loads in three phase networks create harmonics and losses. Active and passive filters are used for elimination or reduction of these effects. Passive filters have some limitations. For example, they are designed only for a specific frequency and they may cause to resonance in the network at the point of common coupling. The other drawback of a passive filter is that the sizes of required elements are normally large. The active filter can improve some of limitations of passive filter for example; they can eliminate more than one harmonic and don't cause resonance in the network. In this paper inverter analysis have been done simultaneously in three phase and the RL impedance of the line have been considered. A sliding mode control based on energy feedback of capacitors is employed in the design with this method, the dynamic speed of the filter is improved effectively and harmonics and load unbalance is compensating quickly.

Keywords: Shunt active filter, harmonic, inverter, sliding mode control, energy feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
1470 Hit-or-Miss Transform as a Tool for Similar Shape Detection

Authors: Osama Mohamed Elrajubi, Idris El-Feghi, Mohamed Abu Baker Saghayer

Abstract:

This paper describes an identification of specific shapes within binary images using the morphological Hit-or-Miss Transform (HMT). Hit-or-Miss transform is a general binary morphological operation that can be used in searching of particular patterns of foreground and background pixels in an image. It is actually a basic operation of binary morphology since almost all other binary morphological operators are derived from it. The input of this method is a binary image and a structuring element (a template which will be searched in a binary image) while the output is another binary image. In this paper a modification of Hit-or-Miss transform has been proposed. The accuracy of algorithm is adjusted according to the similarity of the template and the sought template. The implementation of this method has been done by C language. The algorithm has been tested on several images and the results have shown that this new method can be used for similar shape detection.

Keywords: Hit-or/and-Miss Operator/Transform, HMT, binary morphological operation, shape detection, binary images processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5127
1469 The Effect of Forest Fires on Physical Properties and Magnetic Susceptibility of Semi-Arid Soils in North-Eastern, Libya

Authors: G. S. Eldiabani, W. H. G. Hale, C. P. Heron

Abstract:

Forest areas are particularly susceptible to fires, which are often manmade. One of the most fire affected forest regions in the world is the Mediterranean. Libya, in the Mediterranean region, has soils that are considered to be arid except in a small area called Aljabal Alakhdar (Green mountain), which is the geographic area covered by this study. Like other forests in the Mediterranean it has suffered extreme degradation. This is mainly due to people removing fire wood, or sometimes converting forested areas to agricultural use, as well as fires which may alter several soil chemical and physical properties. The purpose of this study was to evaluate the effects of fires on the physical properties of soil of Aljabal Alakhdar forest in the north-east of Libya. The physical properties of soil following fire in two geographic areas have been determined, with those subjected to the fire compared to those in adjacent unburned areas in one coastal and one mountain site. Physical properties studied were: soil particle size (soil texture), soil water content, soil porosity and soil particle density. For the first time in Libyan soils, the effect of burning on the magnetic susceptibility properties of soils was also tested. The results showed that the soils in both study sites, irrespective of burning or depth fell into the category of a silt loam texture, low water content, homogeneity of porosity of the soil profiles, relatively high soil particle density values and there is a much greater value of the soil magnetic susceptibility in the top layer from both sites except for the soil water content and magnetic susceptibility, fire has not had a clear effect on the soils’ physical properties.

Keywords: Aljabal Alakhdar, the coastal site, the mountain site, fire effect, soil particle size, soil water content, soil porosity, soil particle density, soil magnetic susceptibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650
1468 Error Effects on SAR Image Resolution using Range Doppler Imaging Algorithm

Authors: Su Su Yi Mon, Fang Jiancheng

Abstract:

Synthetic Aperture Radar (SAR) is an imaging radar form by taking full advantage of the relative movement of the antenna with respect to the target. Through the simultaneous processing of the radar reflections over the movement of the antenna via the Range Doppler Algorithm (RDA), the superior resolution of a theoretical wider antenna, termed synthetic aperture, is obtained. Therefore, SAR can achieve high resolution two dimensional imagery of the ground surface. In addition, two filtering steps in range and azimuth direction provide accurate enough result. This paper develops a simulation in which realistic SAR images can be generated. Also, the effect of velocity errors in the resulting image has also been investigated. Taking some velocity errors into account, the simulation results on the image resolution would be presented. Most of the times, algorithms need to be adjusted for particular datasets, or particular applications.

Keywords: Synthetic Aperture Radar (SAR), Range Doppler Algorithm (RDA), Image Resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3347
1467 Super Resolution Blind Reconstruction of Low Resolution Images using Wavelets based Fusion

Authors: Liyakathunisa, V. K. Ananthashayana

Abstract:

Crucial information barely visible to the human eye is often embedded in a series of low resolution images taken of the same scene. Super resolution reconstruction is the process of combining several low resolution images into a single higher resolution image. The ideal algorithm should be fast, and should add sharpness and details, both at edges and in regions without adding artifacts. In this paper we propose a super resolution blind reconstruction technique for linearly degraded images. In our proposed technique the algorithm is divided into three parts an image registration, wavelets based fusion and an image restoration. In this paper three low resolution images are considered which may sub pixels shifted, rotated, blurred or noisy, the sub pixel shifted images are registered using affine transformation model; A wavelet based fusion is performed and the noise is removed using soft thresolding. Our proposed technique reduces blocking artifacts and also smoothens the edges and it is also able to restore high frequency details in an image. Our technique is efficient and computationally fast having clear perspective of real time implementation.

Keywords: Affine Transforms, Denoiseing, DWT, Fusion, Image registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670
1466 Seed-Based Region Growing (SBRG) vs Adaptive Network-Based Inference System (ANFIS) vs Fuzzyc-Means (FCM): Brain Abnormalities Segmentation

Authors: Shafaf Ibrahim, Noor Elaiza Abdul Khalid, Mazani Manaf

Abstract:

Segmentation of Magnetic Resonance Imaging (MRI) images is the most challenging problems in medical imaging. This paper compares the performances of Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS) and Fuzzy c-Means (FCM) in brain abnormalities segmentation. Controlled experimental data is used, which designed in such a way that prior knowledge of the size of the abnormalities are known. This is done by cutting various sizes of abnormalities and pasting it onto normal brain tissues. The normal tissues or the background are divided into three different categories. The segmentation is done with fifty seven data of each category. The knowledge of the size of the abnormalities by the number of pixels are then compared with segmentation results of three techniques proposed. It was proven that the ANFIS returns the best segmentation performances in light abnormalities, whereas the SBRG on the other hand performed well in dark abnormalities segmentation.

Keywords: Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS), Fuzzy c-Means (FCM), Brain segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
1465 Evaluation of Ultrasonic C-Scan Images by Fractal Dimension

Authors: S. Samanta, D. Datta, S. S. Gautam

Abstract:

In this paper, quantitative evaluation of ultrasonic Cscan images through estimation of their Fractal Dimension (FD) is discussed. Necessary algorithm for evaluation of FD of any 2-D digitized image is implemented by developing a computer code. For the evaluation purpose several C-scan images of the Kevlar composite impacted by high speed bullet and glass fibre composite having flaw in the form of inclusion is used. This analysis automatically differentiates a C-scan image showing distinct damage zone, from an image that contains no such damage.

Keywords: C-scan, Impact, Fractal Dimension, Kevlar composite and Inclusion Flaw

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
1464 Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation

Authors: Abdolvahab Ehsani Rad, Mohd Shafry Mohd Rahim, Alireza Norouzi

Abstract:

Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result.

Keywords: Integral production, level set method, morphological operation, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4232
1463 Unsupervised Segmentation by Hidden Markov Chain with Bi-dimensional Observed Process

Authors: Abdelali Joumad, Abdelaziz Nasroallah

Abstract:

In unsupervised segmentation context, we propose a bi-dimensional hidden Markov chain model (X,Y) that we adapt to the image segmentation problem. The bi-dimensional observed process Y = (Y 1, Y 2) is such that Y 1 represents the noisy image and Y 2 represents a noisy supplementary information on the image, for example a noisy proportion of pixels of the same type in a neighborhood of the current pixel. The proposed model can be seen as a competitive alternative to the Hilbert-Peano scan. We propose a bayesian algorithm to estimate parameters of the considered model. The performance of this algorithm is globally favorable, compared to the bi-dimensional EM algorithm through numerical and visual data.

Keywords: Image segmentation, Hidden Markov chain with a bi-dimensional observed process, Peano-Hilbert scan, Bayesian approach, MCMC methods, Bi-dimensional EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
1462 Multichannel Image Mosaicing of Stem Cells

Authors: Alessandro Bevilacqua, Alessandro Gherardi, Filippo Piccinini

Abstract:

Image mosaicing techniques are usually employed to offer researchers a wider field of view of microscopic image of biological samples. a mosaic is commonly achieved using automated microscopes and often with one “color" channel, whether it refers to natural or fluorescent analysis. In this work we present a method to achieve three subsequent mosaics of the same part of a stem cell culture analyzed in phase contrast and in fluorescence, with a common non-automated inverted microscope. The mosaics obtained are then merged together to mark, in the original contrast phase images, nuclei and cytoplasm of the cells referring to a mosaic of the culture, rather than to single images. The experiments carried out prove the effectiveness of our approach with cultures of cells stained with calcein (green/cytoplasm and nuclei) and hoechst (blue/nuclei) probes.

Keywords: Microscopy, image mosaicing, fluorescence, stem cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
1461 A Differential Calculus Based Image Steganography with Crossover

Authors: Srilekha Mukherjee, Subha Ash, Goutam Sanyal

Abstract:

Information security plays a major role in uplifting the standard of secured communications via global media. In this paper, we have suggested a technique of encryption followed by insertion before transmission. Here, we have implemented two different concepts to carry out the above-specified tasks. We have used a two-point crossover technique of the genetic algorithm to facilitate the encryption process. For each of the uniquely identified rows of pixels, different mathematical methodologies are applied for several conditions checking, in order to figure out all the parent pixels on which we perform the crossover operation. This is done by selecting two crossover points within the pixels thereby producing the newly encrypted child pixels, and hence the encrypted cover image. In the next lap, the first and second order derivative operators are evaluated to increase the security and robustness. The last lap further ensures reapplication of the crossover procedure to form the final stego-image. The complexity of this system as a whole is huge, thereby dissuading the third party interferences. Also, the embedding capacity is very high. Therefore, a larger amount of secret image information can be hidden. The imperceptible vision of the obtained stego-image clearly proves the proficiency of this approach.

Keywords: Steganography, Crossover, Differential Calculus, Peak Signal to Noise Ratio, Cross-correlation Coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
1460 Asymptotic Stabilization of an Active Magnetic Bearing System using LMI-based Sliding Mode Control

Authors: Abdul Rashid Husain, Mohamad Noh Ahmad, Abdul Halim Mohd. Yatim

Abstract:

In this paper, stabilization of an Active Magnetic Bearing (AMB) system with varying rotor speed using Sliding Mode Control (SMC) technique is considered. The gyroscopic effect inherited in the system is proportional to rotor speed in which this nonlinearity effect causes high system instability as the rotor speed increases. Also, transformation of the AMB dynamic model into a new class of uncertain system shows that this gyroscopic effect lies in the mismatched part of the system matrix. Moreover, the current gain parameter is allowed to be varied in a known bound as an uncertainty in the input matrix. SMC design method is proposed in which the sufficient condition that guarantees the global exponential stability of the reduced-order system is represented in Linear Matrix Inequality (LMI). Then, a new chattering-free control law is established such that the system states are driven to reach the switching surface and stay on it thereafter. The performance of the controller applied to the AMB model is demonstrated through simulation works under various system conditions.

Keywords: Active Magnetic Bearing (AMB), Sliding ModeControl (SMC), Linear Matrix Inequality (LMI), mismatcheduncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
1459 Threshold Based Region Incrementing Secret Sharing Scheme for Color Images

Authors: P. Mohamed Fathimal, P. Arockia Jansi Rani

Abstract:

In this era of online communication, which transacts data in 0s and 1s, confidentiality is a priced commodity. Ensuring safe transmission of encrypted data and their uncorrupted recovery is a matter of prime concern. Among the several techniques for secure sharing of images, this paper proposes a k out of n region incrementing image sharing scheme for color images. The highlight of this scheme is the use of simple Boolean and arithmetic operations for generating shares and the Lagrange interpolation polynomial for authenticating shares. Additionally, this scheme addresses problems faced by existing algorithms such as color reversal and pixel expansion. This paper regenerates the original secret image whereas the existing systems regenerates only the half toned secret image.

Keywords: Threshold Secret Sharing Scheme, Access Control, Steganography, Authentication, Secret Image Sharing, XOR, Pixel Expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136
1458 A Two-Stage Multi-Agent System to Predict the Unsmoothed Monthly Sunspot Numbers

Authors: Mak Kaboudan

Abstract:

A multi-agent system is developed here to predict monthly details of the upcoming peak of the 24th solar magnetic cycle. While studies typically predict the timing and magnitude of cycle peaks using annual data, this one utilizes the unsmoothed monthly sunspot number instead. Monthly numbers display more pronounced fluctuations during periods of strong solar magnetic activity than the annual sunspot numbers. Because strong magnetic activities may cause significant economic damages, predicting monthly variations should provide different and perhaps helpful information for decision-making purposes. The multi-agent system developed here operates in two stages. In the first, it produces twelve predictions of the monthly numbers. In the second, it uses those predictions to deliver a final forecast. Acting as expert agents, genetic programming and neural networks produce the twelve fits and forecasts as well as the final forecast. According to the results obtained, the next peak is predicted to be 156 and is expected to occur in October 2011- with an average of 136 for that year.

Keywords: Computational techniques, discrete wavelet transformations, solar cycle prediction, sunspot numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
1457 2D Image Processing for DSO Astrophotography

Authors: R. Suszynski, K. Wawryn, R. Wirski

Abstract:

The new concept of two–dimensional (2D) image processing implementation for auto-guiding system is shown in this paper. It is dedicated to astrophotography and operates with astronomy CCD guide cameras or with self-guided dual-detector CCD cameras and ST4 compatible equatorial mounts. This idea was verified by MATLAB model, which was used to test all procedures and data conversions. Next the circuit prototype was implemented at Altera MAX II CPLD device and tested for real astronomical object images. The digital processing speed of CPLD prototype board was sufficient for correct equatorial mount guiding in real-time system.

Keywords: DSO astrophotography, image processing, twodimensionalconvolution method, two-dimensional filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276