Search results for: learning resources
2652 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms
Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang
Abstract:
Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.
Keywords: Bioassay, machine learning, preprocessing, virtual screen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9812651 Enhancements in Blended e-Learning Management System
Authors: Ibrahim S AlNomay, Alaa Jaber, Ghada AlNasser
Abstract:
A learning management system (commonly abbreviated as LMS) is a software application for the administration, documentation, tracking, and reporting of training programs, classroom and online events, e-learning programs, and training content (Ellis 2009). (Hall 2003) defines an LMS as \"software that automates the administration of training events. All Learning Management Systems manage the log-in of registered users, manage course catalogs, record data from learners, and provide reports to management\". Evidence of the worldwide spread of e-learning in recent years is easy to obtain. In April 2003, no fewer than 66,000 fully online courses and 1,200 complete online programs were listed on the TeleCampus portal from TeleEducation (Paulsen 2003). In the report \" The US market in the Self-paced eLearning Products and Services:2010-2015 Forecast and Analysis\" The number of student taken classes exclusively online will be nearly equal (1% less) to the number taken classes exclusively in physical campuses. Number of student taken online course will increase from 1.37 million in 2010 to 3.86 million in 2015 in USA. In another report by The Sloan Consortium three-quarters of institutions report that the economic downturn has increased demand for online courses and programs.Keywords: LMS, Interactive Materials, Exam Centers, Learning Outcomes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15862650 The Influence of Preprocessing Parameters on Text Categorization
Authors: Jan Pomikalek, Radim Rehurek
Abstract:
Text categorization (the assignment of texts in natural language into predefined categories) is an important and extensively studied problem in Machine Learning. Currently, popular techniques developed to deal with this task include many preprocessing and learning algorithms, many of which in turn require tuning nontrivial internal parameters. Although partial studies are available, many authors fail to report values of the parameters they use in their experiments, or reasons why these values were used instead of others. The goal of this work then is to create a more thorough comparison of preprocessing parameters and their mutual influence, and report interesting observations and results.
Keywords: Text categorization, machine learning, electronic documents, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15742649 A Program Based on Artistic and Musical Activities to Acquire Educational Concepts for Children with Learning Difficulties
Authors: Ahmed Amin Mousa, Huda Mazeed, Eman Saad
Abstract:
The study aims to identify the extent of effectiveness of the artistic formation program using some types of pastes to reduce the hyperactivity of the kindergarten children with learning difficulties. The researchers have discussed the aforesaid topic, where the research sample included 120 children of ages between 5 to 6 years, from five schools for special needs, learning disability section, Cairo Governorate. The study used the quasi-empirical method, which depends on designing one group using the pre& post application measurements for the group to validate both, hypothesis and effectiveness of the program. The variables of the study were specified as follows; artistic formation program using Paper Mache as an independent variable, and its effect on the skills of kindergarten child with learning disabilities, as a dependent variable. The researchers utilized the application of an artistic formation program consisting of artistic and musical skills for kindergarten children with learning disabilities. The tools of the study, designed by the researchers, included: observation card used for recording the culling paper using pulp molding skills for kindergarten children with learning difficulties during practicing the artistic formation activity. Additionally, there was a program utilizing Artistic and Musical Activities for kindergarten children with learning disabilities to acquire educational concepts. The study was composed of 20 lessons for fine art activities and 20 lessons for musical activities, with obligation of giving the musical lesson with art lesson in one session to cast on the kindergarten child some educational concepts.
Keywords: musical activities, developing skills, early childhood, educational concepts, learning difficulties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5442648 Language Learning Strategies of Chinese Students at Suan Sunandha Rajabhat University in Thailand
Authors: G. Anugkakul, S. Yordchim
Abstract:
The objectives were to study language learning strategies (LLSs) employed by Chinese students, and the frequency of LLSs they used, and examine the relationship between the use of LLSs and gender. The Strategy Inventory for Language Learning (SILL) by Oxford was administered to thirty-six Chinese students at Suan Sunandha Rajabhat University in Thailand. The data obtained was analyzed using descriptive statistics and chi-square tests. Three useful findings were found on the use of LLSs reported by Chinese students. First, Chinese students used overall LLSs at a high level. Second, among the six strategy groups, Chinese students employed compensation strategy most frequently and memory strategy least frequently. Third, the research results also revealed that gender had significant effect on Chinese Student’s use of overall LLSs.
Keywords: English language, Language Learning Strategy, Chinese Students, Gender.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21312647 Language Learning, Drives, and Context: A Grounded Theory of Learning Behavior
Authors: Julian Pigott
Abstract:
This paper presents the Language Learning as a Means of Drive Engagement (LLMDE) theory, derived from a grounded theory analysis of interviews with Japanese university students. According to LLMDE theory, language learning can be understood as a means of engaging one or more of four self-fulfillment drives: the drive to expand one’s horizons (perspective drive); the drive to make a success of oneself (status drive); the drive to engage in interaction with others (communication drive); and the drive to obtain intellectual and affective stimulation (entertainment drive). While many theories of learner psychology focus on conscious agency, LLMDE theory addresses the role of the unconscious. In addition, supplementary thematic analysis of the data revealed the role of context in mediating drive engagement. Unexpected memorable events, for example, play a key role in instigating and, indirectly, in regulating learning, as do institutional and cultural contexts. Given the apparent importance of such factors beyond the immediate control of the learner, and given the pervasive role of habit and drives, it is argued that the concept of motivation merits theoretical reappraisal. Rather than an underlying force determining language learning success or failure, it can be understood to emerge sporadically in consciousness to promote behavioral change, or to protect habitual behavior from disruption.
Keywords: Drives, grounded theory, motivation, significant events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6022646 Use of Smartphone in Practical Classes to Facilitate Teaching and Learning of Microscopic Analysis and Interpretation of Tissues Sections
Authors: Lise P. Labéjof, Krisnayne S. Ribeiro, Jackson A. Santos, Nicolle P. dos Santos
Abstract:
An unrecorded experiment of use of the smartphone as a tool for practical classes of histology is presented in this paper. Behavior and learning of students of science courses at the University were analyzed and compared as well as the mode of teaching of this discipline and the appreciation of the students, using either digital photographs taken by phone or drawings for record microscopic observations, analyze and interpret histological sections of human or animal tissues.Keywords: Cell phone, digital micrographs, learning of sciences, teaching practices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17032645 Machine Learning for Music Aesthetic Annotation Using MIDI Format: A Harmony-Based Classification Approach
Authors: Lin Yang, Zhian Mi, Jiacheng Xiao, Rong Li
Abstract:
Swimming with the tide of deep learning, the field of music information retrieval (MIR) experiences parallel development and a sheer variety of feature-learning models has been applied to music classification and tagging tasks. Among those learning techniques, the deep convolutional neural networks (CNNs) have been widespreadly used with better performance than the traditional approach especially in music genre classification and prediction. However, regarding the music recommendation, there is a large semantic gap between the corresponding audio genres and the various aspects of a song that influence user preference. In our study, aiming to bridge the gap, we strive to construct an automatic music aesthetic annotation model with MIDI format for better comparison and measurement of the similarity between music pieces in the way of harmonic analysis. We use the matrix of qualification converted from MIDI files as input to train two different classifiers, support vector machine (SVM) and Decision Tree (DT). Experimental results in performance of a tag prediction task have shown that both learning algorithms are capable of extracting high-level properties in an end-to end manner from music information. The proposed model is helpful to learn the audience taste and then the resulting recommendations are likely to appeal to a niche consumer.
Keywords: Harmonic analysis, machine learning, music classification and tagging, MIDI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7582644 Online Learning Activities Kit on Plants in Thai Literature in Compliance with the School Botanical Garden of Plant Genetic Conservation Project under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn
Authors: Pornpapatsorn Princhankol, Kannika Udnunkarn
Abstract:
This research was aimed to develop and determine the quality of online learning activities kit as well as to examine the learning achievement of students and their satisfaction towards the kit through authentic assessment. The tools in this research contained online learning activities kit on plant in Thai literature in compliance with the School Botanical Garden of Plant Genetic Conservation Project under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn, the assessment form, the learning achievement test, the satisfaction form and the authentic assessment form. The population consisted of 40 students in the second range of primary years (Prathomsuksa 4 to 6) at Ban Khao Rak School, Suratthani Province, Thailand. The research results showed that the content quality of the developed online learning activities kit as assessed by the experts was 4.70 on average or at very high level. The pre-test and post-test comparison was made to examine the learning achievement and it revealed that the post-test score was higher than the pre-test score with statistical significance at the .01 level. The satisfaction of the sampling group towards the online learning activities kit was 4.74 or at the highest level. The authentic assessment showed an average of 1.69 or at good level. Therefore, the online learning activities kit on plant in Thai literature in compliance with the School Botanical Garden of Plant Genetic Conservation Project under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn could be used in real classroom situations.Keywords: Online learning activities kit, Plants in Thai literature, School Botanical garden
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13762643 A Study on the Factors Affecting Student Behavior Intention to Attend Robotics Courses at the Primary and Secondary School Levels
Authors: Jingwen Shan
Abstract:
In order to explore the key factors affecting the robot program learning intention of school students, this study takes the technology acceptance model as the theoretical basis and invites 167 students from Jiading District of Shanghai as the research subjects. In the robot course, the model of school students on their learning behavior is constructed. By verifying the causal path relationship between variables, it is concluded that teachers can enhance students’ perceptual usefulness to robotics courses by enhancing subjective norms, entertainment perception, and reducing technical anxiety, such as focusing on the gradual progress of programming and analyzing learner characteristics. Students can improve perceived ease of use by enhancing self-efficacy. At the same time, robot hardware designers can optimize in terms of entertainment and interactivity, which will directly or indirectly increase the learning intention of the robot course. By changing these factors, the learning behavior of primary and secondary school students can be more sustainable.
Keywords: TAM, learning behavior intentions, robot courses, primary and secondary school students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6382642 Critical Analysis of Decision Making Experience with a Machine Learning Approach in Playing Ayo Game
Authors: Ibidapo O. Akinyemi, Ezekiel F. Adebiyi, Harrison O. D. Longe
Abstract:
The major goal in defining and examining game scenarios is to find good strategies as solutions to the game. A plausible solution is a recommendation to the players on how to play the game, which is represented as strategies guided by the various choices available to the players. These choices invariably compel the players (decision makers) to execute an action following some conscious tactics. In this paper, we proposed a refinement-based heuristic as a machine learning technique for human-like decision making in playing Ayo game. The result showed that our machine learning technique is more adaptable and more responsive in making decision than human intelligence. The technique has the advantage that a search is astutely conducted in a shallow horizon game tree. Our simulation was tested against Awale shareware and an appealing result was obtained.Keywords: Decision making, Machine learning, Strategy, Ayo game.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12912641 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances
Authors: Violeta Damjanovic-Behrendt
Abstract:
This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.
Keywords: Security, internet of things, cloud computing, Stackelberg security game, machine learning, Naïve Q-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16432640 Basic Science Medical Students’ Perception of a Formative Peer Assessment Model for Reinforcing the Learning of Physical Examination Skills During the COVID-19 Pandemic Online Learning Period
Authors: Neilal A. Isaac, Madison Edwards, Kirthana Sugunathevan, Mohan Kumar
Abstract:
The COVID-19 pandemic challenged the education system and forced medical schools to transition to online learning. With this transition, one of the major concerns for students and educators was to ensure that Physical Examination (PE) skills were still being mastered. Thus, the formative peer assessment model was designed to enhance the learning of PE skills during the COVID-19 pandemic in the online learning landscape. Year 1 and year 2 students enrolled in clinical skills courses at the University of Medicine and Health Sciences, St. Kitts were asked to record themselves demonstrating PE skills with a healthy patient volunteer after every skills class. Each student was assigned to exchange feedback with one peer in the course. At the end of the first two semesters of this learning activity, a cross-sectional survey was conducted for the two cohorts of year-1 and year-2 students. The year-1 cohorts most frequently rated the peer assessment exercise as 4 on a 5-point Likert scale, with a mean score of 3.317 [2.759, 3.875]. The year-2 cohorts most frequently rated the peer assessment exercise as 4 on a 5-point Likert scale, with a mean score of 3.597 [2.978, 4.180]. Students indicated that guidance from faculty, flexible deadlines, and detailed and timely feedback from peers were areas for improvement in this process.
Keywords: COVID-19 pandemic, distant learning, online medical education, peer assessment, physical examination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3882639 Cooperative Learning: A Case Study on Teamwork through Community Service Project
Authors: Priyadharshini Ahrumugam
Abstract:
Cooperative groups through much research have been recognized to churn remarkable achievements instead of solitary or individualistic efforts. Based on Johnson and Johnson’s model of cooperative learning, the five key components of cooperation are positive interdependence, face-to-face promotive interaction, individual accountability, social skills, and group processing. In 2011, the Malaysian Ministry of Higher Education (MOHE) introduced the Holistic Student Development policy with the aim to develop morally sound individuals equipped with lifelong learning skills. The Community Service project was included in the improvement initiative. The purpose of this study is to assess the relationship of team-based learning in facilitating particularly students’ positive interdependence and face-to-face promotive interaction. The research methods involve in-depth interviews with the team leaders and selected team members, and a content analysis of the undergraduate students’ reflective journals. A significant positive relationship was found between students’ progressive outlook towards teamwork and the highlighted two components. The key findings show that students have gained in their individual learning and work results through teamwork and interaction with other students. The inclusion of Community Service as a MOHE subject resonates with cooperative learning methods that enhances supportive relationships and develops students’ social skills together with their professional skills.Keywords: Community service, cooperative learning, positive interdependence, teamwork.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22022638 Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality
Authors: Guojian Cheng, Tianshi Liu, Jiaxin Han, Zheng Wang
Abstract:
The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen-s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappings are topology preserving, feature mappings and probability distribution approximation of input patterns. To overcome some limitations of SOFM, e.g., a fixed number of neural units and a topology of fixed dimensionality, Growing Self-Organizing Neural Network (GSONN) can be used. GSONN can change its topological structure during learning. It grows by learning and shrinks by forgetting. To speed up the training and convergence, a new variant of GSONN, twin growing cell structures (TGCS) is presented here. This paper first gives an introduction to competitive learning, SOFM and its variants. Then, we discuss some GSONN with fixed dimensionality, which include growing cell structures, its variants and the author-s model: TGCS. It is ended with some testing results comparison and conclusions.Keywords: Artificial neural networks, Competitive learning, Growing cell structures, Self-organizing feature maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15422637 Water Resources Vulnerability Assessment to Climate Change in a Semi-Arid Basin of South India
Authors: K. Shimola, M. Krishnaveni
Abstract:
This paper examines vulnerability assessment of water resources in a semi-arid basin using the 4-step approach. The vulnerability assessment framework is developed to study the water resources vulnerability which includes the creation of GIS-based vulnerability maps. These maps represent the spatial variability of the vulnerability index. This paper introduces the 4-step approach to assess vulnerability that incorporates a new set of indicators. The approach is demonstrated using a framework composed of a precipitation data for (1975–2010) period, temperature data for (1965–2010) period, hydrological model outputs and the water resources GIS data base. The vulnerability assessment is a function of three components such as exposure, sensitivity and adaptive capacity. The current water resources vulnerability is assessed using GIS based spatio-temporal information. Rainfall Coefficient of Variation, monsoon onset and end date, rainy days, seasonality indices, temperature are selected for the criterion ‘exposure’. Water yield, ground water recharge, evapotranspiration (ET) are selected for the criterion ‘sensitivity’. Type of irrigation and storage structures are selected for the criterion ‘Adaptive capacity’. These indicators were mapped and integrated in GIS environment using overlay analysis. The five sub-basins, namely Arjunanadhi, Kousiganadhi, Sindapalli-Uppodai and Vallampatti Odai, fall under medium vulnerability profile, which indicates that the basin is under moderate stress of water resources. The paper also explores prioritization of sub-basinwise adaptation strategies to climate change based on the vulnerability indices.
Keywords: Adaptive capacity, exposure, overlay analysis, sensitivity, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11242636 Improving the Reusability and Interoperability of E-Learning Material
Authors: D. Del Corso, A. Tartaglia, E. Tresso, M. Cambiolo, L. Forno, G. Morrone
Abstract:
A key requirement for e-learning materials is reusability and interoperability, that is the possibility to use at least part of the contents in different courses, and to deliver them trough different platforms. These features make possible to limit the cost of new packages, but require the development of material according to proper specifications. SCORM (Sharable Content Object Reference Model) is a set of guidelines suitable for this purpose. A specific adaptation project has been started to make possible to reuse existing materials. The paper describes the main characteristics of SCORM specification, and the procedure used to modify the existing material.Keywords: SCORM, e-learning, standard, educational effectiveness, assessment, methodology, open access.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13142635 iSEA: A Mobile Based Learning Application for History and Culture Knowledge Enhancement for the ASEAN Region
Authors: Maria Visitacion N. Gumabay, Byron Joseph A. Hallar, Annjeannette Alain D. Galang
Abstract:
This study was intended to provide a more efficient and convenient way for mobile users to enhance their knowledge about ASEAN countries. The researchers evaluated the utility of the developed crossword puzzle application and assessed the general usability of its user interface for its intended purpose and audience of users. The descriptive qualitative research method for the research design and the Mobile-D methodology was employed for the development of the software application output. With a generally favorable reception from its users, the researchers concluded that the iSEA Mobile Based Learning Application can be considered ready for general deployment and use. It was also concluded that additional studies can also be done to make a more complete assessment of the knowledge gained by its users before and after using the application.
Keywords: Mobile learning, e-learning, crossword, ASEAN, iSEA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15212634 TanSSe-L System PIM Manual Transformation to Moodle as a TanSSe-L System Specific PIM
Authors: Kalinga Ellen A., Bagile Burchard B.
Abstract:
Tanzania Secondary Schools e-Learning (TanSSe-L) system is a customized learning management system (LMS) developed to enable ICT support in teaching and learning functions. Methodologies involved in the development of TanSSe-L system are Object oriented system analysis and design with UML to create and model TanSSe-L system database structure in the form of a design class diagram, Model Driven Architecture (MDA) to provide a well defined process in TanSSe-L system development, where MDA conceptual layers were integrated with system development life cycle and customization of open source learning management system which was used during implementation stage to create a timely functional TanSSe-L system. Before customization, a base for customization was prepared. This was the manual transformation from TanSSe-L system platform independent models (PIM) to TanSSe-L system specific PIM. This paper presents how Moodle open source LMS was analyzed and prepared to be the TanSSe-L system specific PIM as applied by MDA.
Keywords: Customization, e-Learning, MDA Transformation, Moodle, Secondary Schools, Tanzania.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20182633 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact
Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed
Abstract:
Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).
Keywords: Classification, Bayesian network; structure learning, K2 algorithm, expert knowledge, surface water analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5122632 Individual Learning and Collaborative Knowledge Building with Shared Digital Artifacts
Authors: Joachim Kimmerle, Johannes Moskaliuk, Ulrike Cress
Abstract:
The development of Internet technology in recent years has led to a more active role of users in creating Web content. This has significant effects both on individual learning and collaborative knowledge building. This paper will present an integrative framework model to describe and explain learning and knowledge building with shared digital artifacts on the basis of Luhmann-s systems theory and Piaget-s model of equilibration. In this model, knowledge progress is based on cognitive conflicts resulting from incongruities between an individual-s prior knowledge and the information which is contained in a digital artifact. Empirical support for the model will be provided by 1) applying it descriptively to texts from Wikipedia, 2) examining knowledge-building processes using a social network analysis, and 3) presenting a survey of a series of experimental laboratory studies.
Keywords: Individual learning, collaborative knowledge building, systems theory, equilibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16302631 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.
Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13102630 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems
Authors: Ali Reza Mehrabian, Caro Lucas
Abstract:
In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20902629 New Concept for the Overall use of Renewable Energy
Authors: Chang-Hsien Tai, Uzu-Kuei Hsu, Jr-Ming Miao, Yong-Jhou Lin
Abstract:
The development and application of wind power for renewable energy has attracted growing interest in recent years. Renewable energy sources are attracting much alteration as they can reduce both environmental damage and dependence on fossil fuels. With the growing need for sustainable energy supplies, a case is made for decentralized, stand-alone power supplies (SAPS) as an alternative to power grids. In the era which traditional petroleum energy resource decreasing and the green house affect significant increasing, the development and usage of regenerative resources is inevitable. Due to the contribution of the pioneers, the development of regenerative resources already has a remarkable achievement; however, in the view of economy and quantity, it is still a long road for regenerative energy to replace traditional petroleum energy. In our prospective, in stead of investigate larger regenerative energy equipment, it is much wiser to think about the blind side and breakthrough of the current technique.Keywords: regenerative resources, hybrid system, transfer, storage, phase change
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16612628 Educational Quiz Board Games for Adaptive E-Learning
Authors: Boyan Bontchev, Dessislava Vassileva
Abstract:
Internet computer games turn to be more and more attractive within the context of technology enhanced learning. Educational games as quizzes and quests have gained significant success in appealing and motivating learners to study in a different way and provoke steadily increasing interest in new methods of application. Board games are specific group of games where figures are manipulated in competitive play mode with race conditions on a surface according predefined rules. The article represents a new, formalized model of traditional quizzes, puzzles and quests shown as multimedia board games which facilitates the construction process of such games. Authors provide different examples of quizzes and their models in order to demonstrate the model is quite general and does support not only quizzes, mazes and quests but also any set of teaching activities. The execution process of such models is explained and, as well, how they can be useful for creation and delivery of adaptive e-learning courseware.Keywords: Quiz, board game, e-learning, adaptive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24222627 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model
Authors: Youngjae Jin, Daeshik Kim
Abstract:
This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in VerilogHDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.
Keywords: Auto-encoder, Behavior model simulation, Digital hardware design, Pre-route simulation, Unsupervised feature learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26902626 Estimation Method for the Construction of Hydrogen Society with Various Biomass Resources in Japan-Project of Cost Reductions in Biomass Transport and Feasibility for Hydrogen Station with Biomass-
Authors: Masaki Tajima, Kenji Imou, Shinya Yokoyama
Abstract:
It was determined that woody biomass and livestock excreta can be utilized as hydrogen resources and hydrogen produced from such sources can be used to fill fuel cell vehicles (FCVs) at hydrogen stations. It was shown that the biomass transport costs for hydrogen production may be reduced the costs for co-generation. In the Tokyo Metropolitan Area, there are only a few sites capable of producing hydrogen from woody biomass in amounts greater than 200 m3/h-the scale required for a hydrogen station to be operationally practical. However, in the case of livestock excreta, it was shown that 15% of the municipalities in this area are capable of securing sufficient biomass to be operationally practical for hydrogen production. The differences in feasibility of practical operation depend on the type of biomass.
Keywords: Biomass Resources, Hydrogen Production, Hydrogen Station, Transport Cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14042625 Using Scrum in an Online Smart Classroom Environment: A Case Study
Authors: Ye Wei, Sitalakshmi Venkatraman, Fahri Benli, Fiona Wahr
Abstract:
The present digital world poses many challenges to various stakeholders in the education sector. In particular, lecturers of higher education (HE) are faced with the problem of ensuring that students are able to achieve the required learning outcomes despite rapid changes taking place worldwide. Different strategies are adopted to retain student engagement and commitment in classrooms to address the differences in learning habits, preferences and styles of the digital generation of students recently. Further, with the onset of coronavirus disease (COVID-19) pandemic, online classroom has become the most suitable alternate mode of teaching environment to cope with lockdown restrictions. These changes have compounded the problems in the learning engagement and short attention span of HE students. New Agile methodologies that have been successfully employed to manage projects in different fields are gaining prominence in the education domain. In this paper, we present the application of Scrum as an agile methodology to enhance student learning and engagement in an online smart classroom environment. We demonstrate the use of our proposed approach using a case study to teach key topics in information technology that require students to gain technical and business-related data analytics skills.
Keywords: Agile methodology, Scrum, online learning, smart classroom environment, student engagement, active learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3952624 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15962623 Performance Analysis of Learning Automata-Based Routing Algorithms in Sparse Graphs
Authors: Z.Farhadpour, Mohammad.R.Meybodi
Abstract:
A number of routing algorithms based on learning automata technique have been proposed for communication networks. How ever, there has been little work on the effects of variation of graph scarcity on the performance of these algorithms. In this paper, a comprehensive study is launched to investigate the performance of LASPA, the first learning automata based solution to the dynamic shortest path routing, across different graph structures with varying scarcities. The sensitivity of three main performance parameters of the algorithm, being average number of processed nodes, scanned edges and average time per update, to variation in graph scarcity is reported. Simulation results indicate that the LASPA algorithm can adapt well to the scarcity variation in graph structure and gives much better outputs than the existing dynamic and fixed algorithms in terms of performance criteria.Keywords: Learning automata, routing, algorithm, sparse graph
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357