Search results for: Learning Classifier System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10026

Search results for: Learning Classifier System

9486 E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities

Authors: Sayed Hadi Sadeghi

Abstract:

This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.

Keywords: Support services, e-network practice, Australian universities, United States universities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
9485 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinié

Abstract:

Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. In this context, the automation of this task is urgent. In this work, we compare classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN and Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches.

Keywords: Image segmentation, stuck particles separation, Sobel operator, thresholding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203
9484 A Method for Consensus Building between Teachers and Learners in a Value Co-Creative Learning Service

Authors: Ryota Sugino, Satoshi Mizoguchi, Koji Kimita, Keiichi Muramatsu, Tatsunori Matsui, Yoshiki Shimomura

Abstract:

Improving added value and productivity of services entails improving both value-in-exchange and value-in-use. Value-in-use is realized by value co-creation, where providers and receivers create value together. In higher education services, value-in-use comes from learners achieving learning outcomes (e.g., knowledge and skills) that are consistent with their learning goals. To enhance the learning outcomes of a learner, it is necessary to enhance and utilize the abilities of the teacher along with the abilities of the learner. To do this, however, the learner and the teacher need to build a consensus about their respective roles. Teachers need to provide effective learning content; learners need to choose the appropriate learning strategies by using the learning content through consensus building. This makes consensus building an important factor in value co-creation. However, methods to build a consensus about their respective roles may not be clearly established, making such consensus difficult. In this paper, we propose some strategies for consensus building between a teacher and a learner in value co-creation. We focus on a teacher and learner co-design and propose an analysis method to clarify a collaborative design process to realize value co-creation. We then analyze some counseling data obtained from a university class. This counseling aimed to build a consensus for value-in-use, learning outcomes, and learning strategies between the teacher and the learner.

Keywords: Consensus building, value co-creation, higher education, learning service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
9483 Architecture from Teaching to Learning to Practice: Authentic learning Tasks in Developing Professional Competencies

Authors: N. Utaberta, B. Hassanpour, M. Surat, A. I. Che Ani, N.M. Tawil

Abstract:

The concerns of education and practice of architecture do not necessarily overlap. Indeed the gap between them could be seen increasingly and less frequently bridged. We suggest that changing in architecture education and clarifying the relationship between these two can help to find and address the opportunities and unique positions to bridge this gulf.

Keywords: Architecture education, Learning, Practice, Teaching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
9482 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 613
9481 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning

Authors: Yanwen Li, Shuguo Xie

Abstract:

In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.

Keywords: Gradient image, segmentation and extract, mean-shift algorithm, dictionary learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
9480 A Dictionary Learning Method Based On EMD for Audio Sparse Representation

Authors: Yueming Wang, Zenghui Zhang, Rendong Ying, Peilin Liu

Abstract:

Sparse representation has long been studied and several dictionary learning methods have been proposed. The dictionary learning methods are widely used because they are adaptive. In this paper, a new dictionary learning method for audio is proposed. Signals are at first decomposed into different degrees of Intrinsic Mode Functions (IMF) using Empirical Mode Decomposition (EMD) technique. Then these IMFs form a learned dictionary. To reduce the size of the dictionary, the K-means method is applied to the dictionary to generate a K-EMD dictionary. Compared to K-SVD algorithm, the K-EMD dictionary decomposes audio signals into structured components, thus the sparsity of the representation is increased by 34.4% and the SNR of the recovered audio signals is increased by 20.9%.

Keywords: Dictionary Learning, EMD, K-means Method, Sparse Representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2629
9479 Using Technology to Enhance the Student Assessment Experience

Authors: D. J. Smith, M. A. Qayyum

Abstract:

The use of information tools is a common activity for students of any educational stage when they encounter online learning activities. Finding the relevant information for particular learning tasks is the topic of this paper as it investigates the use of information tools for a group of student participants. The paper describes and discusses the results with particular implications for use in higher education, and the findings suggest that improvement in assessment design and subsequent student learning may be achieved by structuring the purposefulness of information tools usage and online reading behaviors of university students.

Keywords: Information tools, assessment, online learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
9478 Improving the Quality of e-learning Courses in Higher Education through Student Satisfaction

Authors: Susana Lemos, Neuza Pedro

Abstract:

Thepurpose of the research is to characterize the levels of satisfaction of the students in e-learning post-graduate courses, taking into account specific dimensions of the course which were considered as benchmarks for the quality of this type of online learning initiative, as well as the levels of satisfaction towards each specific indicator identified in each dimension. It was also an aim of this study to understand how thesedimensions relate to one another. Using a quantitative research approach in the collection and analysis of the data, the study involves the participation of the students who attended on e-learning course in 2010/2011. The conclusions of this study suggest that online students present relatively high levels of satisfaction, which points towards a positive experience during the course. It is possible to note that there is a correlation between the different dimensions studied, consequently leading to different improvement strategies. Ultimately, this investigation aims to contribute to the promotion of quality and the success of e-learning initiatives in Higher Education.

Keywords: e-learning, higher education, quality, students satisfaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
9477 Use of Semantic Networks as Learning Material and Evaluation of the Approach by Students

Authors: Philippe A. Martin

Abstract:

This article first summarizes reasons why current approaches supporting Open Learning and Distance Education need to be complemented by tools permitting lecturers, researchers and students to cooperatively organize the semantic content of Learning related materials (courses, discussions, etc.) into a fine-grained shared semantic network. This first part of the article also quickly describes the approach adopted to permit such a collaborative work. Then, examples of such semantic networks are presented. Finally, an evaluation of the approach by students is provided and analyzed.

Keywords: knowledge sharing, knowledge evaluation, e-learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
9476 Determination of the Gain in Learning the Free-Fall Motion of Bodies by Applying the Resource of Previous Concepts

Authors: Ricardo Merlo

Abstract:

In this paper, we analyzed the different didactic proposals for teaching about the free fall motion of bodies available online. An important aspect was the interpretation of the direction and sense of the acceleration of gravity and of the falling velocity of a body, which is why we found different applications of the Cartesian reference system used and also different graphical presentations of the velocity as a function of time and of the distance traveled vertically by the body in the period of time that it was dropped from a height h0. In this framework, a survey of previous concepts was applied to a voluntary group of first-year university students of an Engineering degree before and after the development of the class of the subject in question. Then, Hake's index (0.52) was determined, which resulted in an average learning gain from the meaningful use of the reference system and the respective graphs of velocity versus time and height versus time.

Keywords: Didactic gain, free–fall, physics teaching, previous knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219
9475 Integrating Agents and Computational Intelligence Techniques in E-learning Environments

Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis

Abstract:

In this contribution a newly developed elearning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.

Keywords: E-learning environments, intelligent agents, user modeling, Bayesian Networks, computational intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
9474 Collaborative Web Platform for Rich Media Educational Material Creation

Authors: I. Alberdi, H. Iribas, A. Martin, N. Aginako

Abstract:

This paper describes a platform that faces the main research areas for e-learning educational contents. Reusability tackles the possibility to use contents in different courses reducing costs and exploiting available data from repositories. In our approach the production of educational material is based on templates to reuse learning objects. In terms of interoperability the main challenge lays on reaching the audience through different platforms. E-learning solution must track social consumption evolution where nowadays lots of multimedia contents are accessed through the social networks. Our work faces it by implementing a platform for generation of multimedia presentations focused on the new paradigm related to social media. The system produces videos-courses on top of web standard SMIL (Synchronized Multimedia Integration Language) ready to be published and shared. Regarding interfaces it is mandatory to satisfy user needs and ease communication. To overcome it the platform deploys virtual teachers that provide natural interfaces while multimodal features remove barriers to pupils with disabilities.

Keywords: Collaborative, multimedia e-learning, reusability, SMIL, virtual teacher

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
9473 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: Classification, machine learning, time representation, stock prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
9472 Face Recognition Using Discrete Orthogonal Hahn Moments

Authors: Fatima Akhmedova, Simon Liao

Abstract:

One of the most critical decision points in the design of a face recognition system is the choice of an appropriate face representation. Effective feature descriptors are expected to convey sufficient, invariant and non-redundant facial information. In this work we propose a set of Hahn moments as a new approach for feature description. Hahn moments have been widely used in image analysis due to their invariance, nonredundancy and the ability to extract features either globally and locally. To assess the applicability of Hahn moments to Face Recognition we conduct two experiments on the Olivetti Research Laboratory (ORL) database and University of Notre-Dame (UND) X1 biometric collection. Fusion of the global features along with the features from local facial regions are used as an input for the conventional k-NN classifier. The method reaches an accuracy of 93% of correctly recognized subjects for the ORL database and 94% for the UND database.

Keywords: Face Recognition, Hahn moments, Recognition-by-parts, Time-lapse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
9471 Methods of Forming Informational Culture Students

Authors: Altynbek Moshkalov

Abstract:

Along with the basic features of students\' culture information, with its widely usage oriented on implementation of the new information technologies in educational process that determines the search for ways of pointing to the similarity of interdisciplinary connections content, aims and objectives of the study. In this regard, the article questions about students\' information culture, and also presented information about the aims and objectives of the information culture process among students. In the formation of a professional interest in relevant information, which is an opportunity to assist in informing the professional activities of the essence of effective use of interactive methods and innovative technologies in the learning process. The result of the experiment proves the effectiveness of the information culture process of students in training the system of higher education based on the credit technology. The main purpose of this paper is a comprehensive review of students\' information culture.

Keywords: Information culture, methods of information culture of students, educational system of the credit technology, distance learning, information of interest, information and communication technologies and tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
9470 A Family of Distributions on Learnable Problems without Uniform Convergence

Authors: César Garza

Abstract:

In supervised binary classification and regression problems, it is well-known that learnability is equivalent to uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.

Keywords: Statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 358
9469 The Use of a Tactical Simulator as a Learning Resource at the Norwegian Military Academy

Authors: O. Boe, A. Langaard Jensen

Abstract:

The Norwegian Military Academy (Army) has been using a tactical simulator for the last two years. During this time there has been some discussion concerning how to use the simulator most efficiently and what type of learning one achieves by using the simulator. The problem that is addressed in this paper is how simulators can be used as a learning resource for students concerned with developing their military profession. The aim of this article is to create a wider consciousness regarding the use of a simulator while educating officers in a military profession. The article discusses the use of simulators from two different perspectives. The first perspective deals with using the simulator as a computer game, and the second perspective looks at the simulator as a socio-cultural artefact. Furthermore the article discusses four different ways the simulator can be looked upon as a useful learning resource when educating students of a military profession.

Keywords: Learning, military, profession, simulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219
9468 Eye Location Based on Structure Feature for Driver Fatigue Monitoring

Authors: Qiong Wang

Abstract:

One of the most important problems to solve is eye location for a driver fatigue monitoring system. This paper presents an efficient method to achieve fast and accurate eye location in grey level images obtained in the real-word driving conditions. The structure of eye region is used as a robust cue to find possible eye pairs. Candidates of eye pair at different scales are selected by finding regions which roughly match with the binary eye pair template. To obtain real one, all the eye pair candidates are then verified by using support vector machines. Finally, eyes are precisely located by using binary vertical projection and eye classifier in eye pair images. The proposed method is robust to deal with illumination changes, moderate rotations, glasses wearing and different eye states. Experimental results demonstrate its effectiveness.

Keywords: eye location, structure feature, driver fatiguemonitoring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
9467 Using LabVIEW Software in an Introductory Residual Current Device Course

Authors: B. Rajkumarsingh, S. Goolaup, A. Galleegadoo

Abstract:

Laboratory classes in Electrical Engineering are often hampered by safety issues, as students have to work on high voltage lines. One solution is to make use of virtual laboratory simulations, to help students understand the concepts taught in their coursework. In this context, we have conceived and implemented virtual lab experiments in connection with the study of earthing arrangements. In this work, software was developed, which aid student in understanding the working of a residual current device (RCD) in a TT earthing system. Various parameters, such as the earthing resistances, leakage currents and harmonics were included for a TT system with RCD connection.

Keywords: TT system, RCD, LabVIEW, Learning aids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
9466 The Effects of the Inference Process in Reading Texts in Arabic

Authors: May George

Abstract:

Inference plays an important role in the learning process and it can lead to a rapid acquisition of a second language. When learning a non-native language i.e., a critical language like Arabic, the students depend on the teacher’s support most of the time to learn new concepts. The students focus on memorizing the new vocabulary and stress on learning all the grammatical rules. Hence, the students became mechanical and cannot produce the language easily. As a result, they are unable to predicate the meaning of words in the context by relying heavily on the teacher, in that they cannot link their prior knowledge or even identify the meaning of the words without the support of the teacher. This study explores how the teacher guides students learning during the inference process and what are the processes of learning that can direct student’s inference.

Keywords: Inference, Reading, Arabic, and Language Acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
9465 Toward a Use of Ontology to Reinforcing Semantic Classification of Message Based On LSA

Authors: S. Lgarch, M. Khalidi Idrissi, S. Bennani

Abstract:

For best collaboration, Asynchronous tools and particularly the discussion forums are the most used thanks to their flexibility in terms of time. To convey only the messages that belong to a theme of interest of the tutor in order to help him during his tutoring work, use of a tool for classification of these messages is indispensable. For this we have proposed a semantics classification tool of messages of a discussion forum that is based on LSA (Latent Semantic Analysis), which includes a thesaurus to organize the vocabulary. Benefits offered by formal ontology can overcome the insufficiencies that a thesaurus generates during its use and encourage us then to use it in our semantic classifier. In this work we propose the use of some functionalities that a OWL ontology proposes. We then explain how functionalities like “ObjectProperty", "SubClassOf" and “Datatype" property make our classification more intelligent by way of integrating new terms. New terms found are generated based on the first terms introduced by tutor and semantic relations described by OWL formalism.

Keywords: Classification of messages, collaborative communication tools, discussion forum, e-learning, formal description, latente semantic analysis, ontology, owl, semantic relations, semantic web, thesaurus, tutoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
9464 A Robust Deterministic Energy Smart-Grid Decisional Algorithm for Agent-Based Management

Authors: C. Adam, G. Henri, T. Levent, J.-B. Mauro, A. -L. Mayet

Abstract:

This paper is concerning the application of a deterministic decisional pattern to a multi-agent system which would provide intelligence to a distributed energy smart grid at local consumer level. Development of multi-agent application involves agent specifications, analysis, design and realization. It can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach to control the smart grid system in a decentralized competitive approach. The proposed algorithmic solution results from a deterministic dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems. Through memory of collected past tries, the algorithm monotonically converges to very steep system operation point in attraction basin resulting from weak system nonlinearity. In this sense, system is given by (local) constitutive elementary rules the intelligence of its global existence so that it can self-organize toward optimal operating sequence.

Keywords: Decentralized Competitive System, Distributed Smart Grid, Multi-Agent System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
9463 Connectionist Approach to Generic Text Summarization

Authors: Rajesh S.Prasad, U. V. Kulkarni, Jayashree.R.Prasad

Abstract:

As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance.

Keywords: Artificial Neural Networks (ANN); Computational Intelligence (CI); Connectionist Text Summarizer ECTS (ECTS); Evolving Connectionist systems; Evolving systems; Fuzzy systems (FS); Part of Speech (POS) disambiguation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
9462 Improved Closed Set Text-Independent Speaker Identification by Combining MFCC with Evidence from Flipped Filter Banks

Authors: Sandipan Chakroborty, Anindya Roy, Goutam Saha

Abstract:

A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for SI applications. However, due to the structure of its filter bank, it captures vocal tract characteristics more effectively in the lower frequency regions. This paper proposes a new set of features using a complementary filter bank structure which improves distinguishability of speaker specific cues present in the higher frequency zone. Unlike high level features that are difficult to extract, the proposed feature set involves little computational burden during the extraction process. When combined with MFCC via a parallel implementation of speaker models, the proposed feature set outperforms baseline MFCC significantly. This proposition is validated by experiments conducted on two different kinds of public databases namely YOHO (microphone speech) and POLYCOST (telephone speech) with Gaussian Mixture Models (GMM) as a Classifier for various model orders.

Keywords: Complementary Information, Filter Bank, GMM, IMFCC, MFCC, Speaker Identification, Speaker Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306
9461 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations

Authors: Gilbert Makanda, Roelf Sypkens

Abstract:

A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.

Keywords: Differential equations, knowledge acquisition, least squares nonlinear, dynamical systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916
9460 Factors Affecting Happiness Learning of Students of Faculty of Management Science, Suan Sunandha Rajabhat University

Authors: Somtop Keawchuer

Abstract:

The objectives of this research are to compare the satisfaction of students, towards the happiness learning, sorted by their personal profiles, and to figure out the factors that affect the students’ happiness learning. This paper used survey method to collect data from 362 students. The survey was mainly conducted in the Faculty of Management Science, Suan Sunandha Rajabhat University, including 3,443 students. The statistics used for interpreting the results included the frequencies, percentages, standard deviations and One-way ANOVA. The findings revealed that the students are aware and satisfaction that all the factors in 3 categories (knowledge, skill and attitude) influence the happiness learning at the highest levels. The comparison of the satisfaction levels of the students toward their happiness learning leads to the results that the students with different genders, ages, years of study, and majors of the study have the similar satisfaction at the high level.

Keywords: Happiness Learning, Satisfaction, Students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3942
9459 Analysis of Image Segmentation Techniques for Diagnosis of Dental Caries in X-ray Images

Authors: V. Geetha, K. S. Aprameya

Abstract:

Early diagnosis of dental caries is essential for maintaining dental health. In this paper, method for diagnosis of dental caries is proposed using Laplacian filter, adaptive thresholding, texture analysis and Support Vector Machine (SVM) classifier. Analysis of the proposed method is compared with Otsu thresholding, watershed segmentation and active contouring method. Adaptive thresholding has comparatively better performance with 96.9% accuracy and 96.1% precision. The results are validated using statistical method, two-way ANOVA, at significant level of 5%, that shows the interaction of proposed method on performance parameter measures are significant. Hence the proposed technique could be used for detection of dental caries in automated computer assisted diagnosis system.

Keywords: Computer assisted diagnosis, dental caries, dental radiography, image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
9458 Prioritizing Influential Factors on the Promotion of Virtual Training System

Authors: Nader Gharibnavaz, Mostafa Mosadeghi, Naser Gharibnavaz

Abstract:

In today's world where everything is rapidly changing and information technology is high in development, many features of culture, society, politic and economy has changed. The advent of information technology and electronic data transmission lead to easy communication and fields like e-learning and e-commerce, are accessible for everyone easily. One of these technologies is virtual training. The "quality" of such kind of education systems is critical. 131 questionnaires were prepared and distributed among university student in Toba University. So the research has followed factors that affect the quality of learning from the perspective of staff, students, professors and this type of university. It is concluded that the important factors in virtual training are the quality of professors, the quality of staff, and the quality of the university. These mentioned factors were the most prior factors in this education system and necessary for improving virtual training.

Keywords: Training , Virtual Training, Strategic Positioning, Positioning Mapping, Unique Selling Proposition, Strong Brands, Indoors industry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
9457 The Para-Universe of Collaborative Group Work in Today-s University Classrooms: Strategies to Help Ensure Success

Authors: Karen Armstrong

Abstract:

Group work, projects and discussions are important components of teacher education courses whether they are face-toface, blended or exclusively online formats. This paper examines the varieties of tasks and challenges with this learning format in a face to face class teacher education class providing specific examples of both failure and success from both the student and instructor perspective. The discussion begins with a brief history of collaborative and cooperative learning, moves to an exploration of the promised benefits and then takes a look at some of the challenges which can arise specifically from the use of new technologies. The discussion concludes with guidelines and specific suggestions.

Keywords: collaborative learning, cooperative computersupported collaborative learning (CSCL), e-learning, group dynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590