Search results for: Artificial NeuralNetworks
378 Gradual Shot Boundary Detection and Classification Based on Fractal Analysis
Authors: Zeinab Zeinalpour-Tabrizi, Faeze Asdaghi, Mahmooh Fathy, Mohammad Reza Jahed-Motlagh
Abstract:
Shot boundary detection is a fundamental step for the organization of large video data. In this paper, we propose a new method for video gradual shots detection and classification, using advantages of fractal analysis and AIS-based classifier. Proposed features are “vertical intercept" and “fractal dimension" of each frame of videos which are computed using Fourier transform coefficients. We also used a classifier based on Clonal Selection Algorithm. We have carried out our solution and assessed it according to the TRECVID2006 benchmark dataset.
Keywords: shot boundary detection, gradual shots, fractal analysis, artificial immune system, choose Clooney.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924377 A Web Pages Automatic Filtering System
Authors: O. Nouali, A. Saidi, H. Chahrat, A. Krinah, B. Toursel
Abstract:
This article describes a Web pages automatic filtering system. It is an open and dynamic system based on multi agents architecture. This system is built up by a set of agents having each a quite precise filtering task of to carry out (filtering process broken up into several elementary treatments working each one a partial solution). New criteria can be added to the system without stopping its execution or modifying its environment. We want to show applicability and adaptability of the multi-agents approach to the networks information automatic filtering. In practice, most of existing filtering systems are based on modular conception approaches which are limited to centralized applications which role is to resolve static data flow problems. Web pages filtering systems are characterized by a data flow which varies dynamically.Keywords: Agent, Distributed Artificial Intelligence, Multiagents System, Web pages filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377376 The Labeled Classification and its Application
Authors: M. Nemissi, H. Seridi, H. Akdag
Abstract:
This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410375 An Approach to Solving a Permutation Problem of Frequency Domain Independent Component Analysis for Blind Source Separation of Speech Signals
Authors: Masaru Fujieda, Takahiro Murakami, Yoshihisa Ishida
Abstract:
Independent component analysis (ICA) in the frequency domain is used for solving the problem of blind source separation (BSS). However, this method has some problems. For example, a general ICA algorithm cannot determine the permutation of signals which is important in the frequency domain ICA. In this paper, we propose an approach to the solution for a permutation problem. The idea is to effectively combine two conventional approaches. This approach improves the signal separation performance by exploiting features of the conventional approaches. We show the simulation results using artificial data.Keywords: Blind source separation, Independent componentanalysis, Frequency domain, Permutation ambiguity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786374 Aging Behaviour of 6061 Al-15 vol% SiC Composite in T4 and T6 Treatments
Authors: Melby Chacko, Jagannath Nayak
Abstract:
The aging behaviour of 6061 Al-15 vol% SiC composite was investigated using Rockwell B hardness measurement. The composite was solutionized at 350°C and quenched in water. The composite was aged at room temperature (T4 treatment) and also at 140°C, 160°C, 180°C and 200°C (T6 treatment). The natural and artificial aging behaviour of composite was studied using aging curves determined at different temperatures. The aging period for peak aging for different temperatures was identified. The time required for attaining peak aging decreased with increase in the aging temperature. The peak hardness was found to increase with increase with aging temperature and the highest peak hardness was observed at 180ºC. Beyond 180ºC the peak hardness was found to be decreasing.
Keywords: 6061 Al-SiC composite, Aging curve, Rockwell B hardness, T4, T6 treatments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4767373 A Simulator for Robot Navigation Algorithms
Authors: Michael A. Folcik, Bijan Karimi
Abstract:
A robot simulator was developed to measure and investigate the performance of a robot navigation system based on the relative position of the robot with respect to random obstacles in any two dimensional environment. The presented simulator focuses on investigating the ability of a fuzzy-neural system for object avoidance. A navigation algorithm is proposed and used to allow random navigation of a robot among obstacles when the robot faces an obstacle in the environment. The main features of this simulator can be used for evaluating the performance of any system that can provide the position of the robot with respect to obstacles in the environment. This allows a robot developer to investigate and analyze the performance of a robot without implementing the physical robot.Keywords: Applications of Fuzzy Logic and Neural Networksin Robotics, Artificial Intelligence, Embedded Systems, MobileRobots, Robot Navigation, Robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757372 Improved Back Propagation Algorithm to Avoid Local Minima in Multiplicative Neuron Model
Authors: Kavita Burse, Manish Manoria, Vishnu P. S. Kirar
Abstract:
The back propagation algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a training algorithm consisting of a learning rate and a momentum factor. The major drawbacks of above learning algorithm are the problems of local minima and slow convergence speeds. The addition of an extra term, called a proportional factor reduces the convergence of the back propagation algorithm. We have applied the three term back propagation to multiplicative neural network learning. The algorithm is tested on XOR and parity problem and compared with the standard back propagation training algorithm.Keywords: Three term back propagation, multiplicative neuralnetwork, proportional factor, local minima.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2815371 Pineapple Maturity Recognition Using RGB Extraction
Authors: J. I. Asnor, S. Rosnah, Z. W. H. Wan, H. A. B. Badrul
Abstract:
Pineapples can be classified using an index with seven levels of maturity based on the green and yellow color of the skin. As the pineapple ripens, the skin will change from pale green to a golden or yellowish color. The issues that occur in agriculture nowadays are to do with farmers being unable to distinguish between the indexes of pineapple maturity correctly and effectively. There are several reasons for why farmers cannot properly follow the guideline provide by Federal Agriculture Marketing Authority (FAMA) and one of reason is that due to manual inspection done by experts, there are no specific and universal guidelines to be adopted by farmers due to the different points of view of the experts when sorting the pineapples based on their knowledge and experience. Therefore, an automatic system will help farmers to identify pineapple maturity effectively and will become a universal indicator to farmers.Keywords: Artificial Neural Network, Image Processing, Index of Maturity, Pineapple
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3442370 Impact of Faults in Different Software Systems: A Survey
Authors: Neeraj Mohan, Parvinder S. Sandhu, Hardeep Singh
Abstract:
Software maintenance is extremely important activity in software development life cycle. It involves a lot of human efforts, cost and time. Software maintenance may be further subdivided into different activities such as fault prediction, fault detection, fault prevention, fault correction etc. This topic has gained substantial attention due to sophisticated and complex applications, commercial hardware, clustered architecture and artificial intelligence. In this paper we surveyed the work done in the field of software maintenance. Software fault prediction has been studied in context of fault prone modules, self healing systems, developer information, maintenance models etc. Still a lot of things like modeling and weightage of impact of different kind of faults in the various types of software systems need to be explored in the field of fault severity.
Keywords: Fault prediction, Software Maintenance, Automated Fault Prediction, and Failure Mode Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079369 Autonomous Control of Multiple Mobile Manipulators
Authors: Shonal Singh, Bibhya Sharma, Jito Vanualailai, Avinesh Prasad
Abstract:
This paper considers the autonomous navigation problem of multiple n-link nonholonomic mobile manipulators within an obstacle-ridden environment. We present a set of nonlinear acceleration controllers, derived from the Lyapunov-based control scheme, which generates collision-free trajectories of the mobile manipulators from initial configurations to final configurations in a constrained environment cluttered with stationary solid objects of different shapes and sizes. We demonstrate the efficiency of the control scheme and the resulting acceleration controllers of the mobile manipulators with results through computer simulations of an interesting scenario.Keywords: Artificial potential fields, kinodynamic constraints, Lyapunov-based control scheme, Lyapunov stability, minimum distance technique, nonholonomic manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678368 Bio-Inspired Generalized Global Shape Approach for Writer Identification
Authors: Azah Kamilah Muda, Siti Mariyam Shamsuddin, Maslina Darus
Abstract:
Writer identification is one of the areas in pattern recognition that attract many researchers to work in, particularly in forensic and biometric application, where the writing style can be used as biometric features for authenticating an identity. The challenging task in writer identification is the extraction of unique features, in which the individualistic of such handwriting styles can be adopted into bio-inspired generalized global shape for writer identification. In this paper, the feasibility of generalized global shape concept of complimentary binding in Artificial Immune System (AIS) for writer identification is explored. An experiment based on the proposed framework has been conducted to proof the validity and feasibility of the proposed approach for off-line writer identification.Keywords: Writer identification, generalized global shape, individualistic, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230367 A Fuzzy Mixed Integer Multi-Scenario Portfolio Optimization Model
Authors: M. S. Osman, A. A. Tharwat, I. A. El-Khodary, A. G. Chalabi
Abstract:
In this paper, we propose a multiple objective optimization model with respect to portfolio selection problem for investors looking forward to diversify their equity investments in a number of equity markets. Based on Markowitz-s M-V model we developed a Fuzzy Mixed Integer Multi-Objective Nonlinear Programming Problem (FMIMONLP) to maximize the investors- future gains on equity markets, reach the optimal proportion of the budget to be invested in different equities. A numerical example with a comprehensive analysis on artificial data from several equity markets is presented in order to illustrate the proposed model and its solution method. The model performed well compared with the deterministic version of the model.
Keywords: Equity Markets, Future Scenarios, PortfolioSelection, Multiple Criteria Fuzzy Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975366 Autonomous Control of a Mobile Manipulator
Authors: Shonal Singh, Bibhya Sharma, Jito Vanualailai
Abstract:
This paper considers the design of a motion planner that will simultaneously accomplish control and motion planning of a n-link nonholonomic mobile manipulator, wherein, a n-link holonomic manipulator is coupled with a nonholonomic mobile platform, within an obstacle-ridden environment. This planner, derived from the Lyapunov-based control scheme, generates collision-free trajectories from an initial configuration to a final configuration in a constrained environment cluttered with stationary solid objects of different shapes and sizes. We demonstrate the efficiency of the control scheme and the resulting acceleration controllers of the mobile manipulator with results through computer simulations of an interesting scenario.Keywords: Artificial potential fields, Lyapunov-based control scheme, Lyapunov stability, nonholonomic manipulator, minimum distance technique, kinodynamic constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415365 A Study on Multi-Agent Behavior in a Soccer Game Domain
Authors: S. R. Mohd Shukri, M. K. Mohd Shaukhi
Abstract:
There have been many games developing simulation of soccer games. Many of these games have been designed with highly realistic features to attract more users. Many have also incorporated better artificial intelligent (AI) similar to that in a real soccer game. One of the challenging issues in a soccer game is the cooperation, coordination and negotiation among distributed agents in a multi-agent system. This paper focuses on the incorporation of multi-agent technique in a soccer game domain. The better the cooperation of a multi-agent team, the more intelligent the game will be. Thus, past studies were done on the robotic soccer game because of the better multi-agent system implementation. From this study, a better approach and technique of multi-agent behavior could be select to improve the author-s 2D online soccer game.Keywords: Multi-Agent, Robotic Intelligent, Role Assignment, Formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940364 Work and Religion: Artificial Dichotomy or Competing Interests?
Authors: Philip T. Roundy
Abstract:
Prior research has examined the relationship between religiosity, religious involvement, and involvement in secular, civic organizations. However, research has not examined the influence of religious involvement on secular, non-civic organizations (i.e. work organizations). This study examines the link between religiosity, religious involvement, and the three-component model of organizational commitment. More specifically, the author hypothesizes that individuals high in religiosity (and religious involvement) will have lower affective, continuance, and normative commitment than less religious (or non-religious) individuals. In addition, it is hypothesized that this relationship is moderated by a third factor: organizational spirituality. Further, the author hypothesizes that for organizations that are spiritual the negative relationship between religiosity and job commitment will be weakened or even negated.Keywords: Job Commitment, Organizational Spirituality, Religiosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825363 Application of Neural Networks in Power Systems; A Review
Authors: M. Tarafdar Haque, A.M. Kashtiban
Abstract:
The electric power industry is currently undergoing an unprecedented reform. One of the most exciting and potentially profitable recent developments is increasing usage of artificial intelligence techniques. The intention of this paper is to give an overview of using neural network (NN) techniques in power systems. According to the growth rate of NNs application in some power system subjects, this paper introduce a brief overview in fault diagnosis, security assessment, load forecasting, economic dispatch and harmonic analyzing. Advantages and disadvantages of using NNs in above mentioned subjects and the main challenges in these fields have been explained, too.
Keywords: Neural network, power system, security assessment, fault diagnosis, load forecasting, economic dispatch, harmonic analyzing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7805362 Prediction of Cardiovascular Disease by Applying Feature Extraction
Authors: Nebi Gedik
Abstract:
Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.
Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134361 Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)
Authors: Hajir Karimi, Fakheri Yousefi, Mahmood Reza Rahimi
Abstract:
An accurate and proficient artificial neural network (ANN) based genetic algorithm (GA) is developed for predicting of nanofluids viscosity. A genetic algorithm (GA) is used to optimize the neural network parameters for minimizing the error between the predictive viscosity and the experimental one. The experimental viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 to 343.15 K and volume fraction up to 15% were used from literature. The result of this study reveals that GA-NN model is outperform to the conventional neural nets in predicting the viscosity of nanofluids with mean absolute relative error of 1.22% and 1.77% for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results of this work have also been compared with others models. The findings of this work demonstrate that the GA-NN model is an effective method for prediction viscosity of nanofluids and have better accuracy and simplicity compared with the others models.Keywords: genetic algorithm, nanofluids, neural network, viscosity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083360 Application of BP Neural Network Model in Sports Aerobics Performance Evaluation
Authors: Shuhe Shao
Abstract:
This article provides partial evaluation index and its standard of sports aerobics, including the following 12 indexes: health vitality, coordination, flexibility, accuracy, pace, endurance, elasticity, self-confidence, form, control, uniformity and musicality. The three-layer BP artificial neural network model including input layer, hidden layer and output layer is established. The result shows that the model can well reflect the non-linear relationship between the performance of 12 indexes and the overall performance. The predicted value of each sample is very close to the true value, with a relative error fluctuating around of 5%, and the network training is successful. It shows that BP network has high prediction accuracy and good generalization capacity if being applied in sports aerobics performance evaluation after effective training.Keywords: BP neural network, sports aerobics, performance, evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618359 Dynamic Model of a Buck Converter with a Sliding Mode Control
Authors: S. Chonsatidjamroen , K-N. Areerak, K-L. Areerak
Abstract:
This paper presents the averaging model of a buck converter derived from the generalized state-space averaging method. The sliding mode control is used to regulate the output voltage of the converter and taken into account in the model. The proposed model requires the fast computational time compared with those of the full topology model. The intensive time-domain simulations via the exact topology model are used as the comparable model. The results show that a good agreement between the proposed model and the switching model is achieved in both transient and steady-state responses. The reported model is suitable for the optimal controller design by using the artificial intelligence techniques.Keywords: Generalized state-space averaging method, buck converter, sliding mode control, modeling, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2990358 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: Personal information, deep learning, auto fill, NLP, document analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861357 Fractal - Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan Lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for preprocessing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based preprocessing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.
Keywords: Wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063356 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network
Authors: A. Morsli, A.Tlemçani, N. Ould Cherchali, M. S. Boucherit
Abstract:
This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to a shunt Active Power Filter (sAPF) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.Keywords: Fuzzy logic controller, P-Q method, Pulse Width Modulation (PWM), shunt Active Power Filter (sAPF), Total Harmonic Distortion (THD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365355 Review and Experiments on SDMSCue
Authors: Ashraf Anwar
Abstract:
In this work, I present a review on Sparse Distributed Memory for Small Cues (SDMSCue), a variant of Sparse Distributed Memory (SDM) that is capable of handling small cues. I then conduct and show some cognitive experiments on SDMSCue to test its cognitive soundness compared to SDM. Small cues refer to input cues that are presented to memory for reading associations; but have many missing parts or fields from them. The original SDM failed to handle such a problem. SDMSCue handles and overcomes this pitfall. The main idea in SDMSCue; is the repeated projection of the semantic space on smaller subspaces; that are selected based on the input cue length and pattern. This process allows for Read/Write operations using an input cue that is missing a large portion. SDMSCue is augmented with the use of genetic algorithms for memory allocation and initialization. I claim that SDM functionality is a subset of SDMSCue functionality.Keywords: Artificial intelligence, recall, recognition, SDM, SDMSCue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373354 Time Series Forecasting Using Independent Component Analysis
Authors: Theodor D. Popescu
Abstract:
The paper presents a method for multivariate time series forecasting using Independent Component Analysis (ICA), as a preprocessing tool. The idea of this approach is to do the forecasting in the space of independent components (sources), and then to transform back the results to the original time series space. The forecasting can be done separately and with a different method for each component, depending on its time structure. The paper gives also a review of the main algorithms for independent component analysis in the case of instantaneous mixture models, using second and high-order statistics. The method has been applied in simulation to an artificial multivariate time series with five components, generated from three sources and a mixing matrix, randomly generated.Keywords: Independent Component Analysis, second order statistics, simulation, time series forecasting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779353 Cultivation of Thymus by In Vitro And Hydroponics Combined Method
Authors: E. Sargsyan, A. Vardanyan, L. Ghalachyan, S. Bulgadaryan
Abstract:
Our results showed that for the growth of qualitative seedling and vegetative raw material of ðó. marschallianus Willd. and T. serphyllum L. it is more profitable to use the in vitro and hydroponics combined method. In in vitro culture it is possible to do micro-propagation whole year with 98-99% rhizogenesis. 30000 micro-plants were obtained from one explant during 9 months. Hydroponic conditions provide the necessary microclimate for microplants where the survival rate without acclimatization was 93.3%. The essential oil content in hydroponic dry herb of both species in vegetative and blossom phase was 1.3% whereas in wild plants it was 1.2%, the content of extractive substances and vitamin C also exceeded wild plants. Our biochemical and radiochemical investigations indicated that the medicinal raw materials obtained from hydroponic and wild plants of Thymus species correspond to the demands of SPh XI, and the content of artificial radionuclides does not exceed the MACL.Keywords: Hydroponics, In vitro, Micro-propagation, Thymus
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485352 Effect of Different Treatments on the Periphyton Quantity and Quality in Experimental Fishponds
Authors: T. Kosáros, D. Gál, F. Pekár, Gy. Lakatos
Abstract:
Periphyton development and composition were studied in three different treatments: (i) two fishpond units of wetland-type wastewater treatment pond systems, (ii) two fishponds in combined intensive-extensive fish farming systems and (iii) three traditional polyculture fishponds. Results showed that amounts of periphyton developed in traditional polyculture fishponds (iii) were different compared to the other treatments (i and ii), where the main function of ponds was stated wastewater treatment. Negative correlation was also observable between water quality parameters and periphyton production. The lower trophity, halobity and saprobity level of ponds indicated higher amount of periphyton. The dry matter content of periphyton was significantly higher in the samples, which were developed in traditional polyculture fishponds (2.84±3.02 g m-2 day-1, whereby the ash content in dry matter 74%), than samples taken from (i) (1.60±2.32 g m-2 day-1, 61%) and (ii) fishponds (0.65±0.45 g m-2 day-1, 81%).Keywords: Artificial substrate, fishpond, periphyton, waterquality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450351 Rule-Based Message Passing for Collaborative Application in Distributed Environments
Authors: Wataru Yamazaki, Hironori Hiraishi, Fumio Mizoguchi
Abstract:
In this paper, we describe a rule-based message passing method to support developing collaborative applications, in which multiple users share resources in distributed environments. Message communications of applications in collaborative environments tend to be very complex because of the necessity to manage context situations such as sharing events, access controlling of users, and network places. In this paper, we propose a message communications method based on unification of artificial intelligence and logic programming for defining rules of such context information in a procedural object-oriented programming language. We also present an implementation of the method as java classes.
Keywords: agent programming, logic programming, multi-media application, collaborative application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432350 About Methods of Additional Mining Pressure Figuring while Reconstruction of Tunnels
Authors: M. Moistsrapishvili, I. Ugrekhelidze, T. Baramashvili, D. Malaghuradze
Abstract:
At the end of the 20th century it was actual the development of transport corridors and the improvement of their technical parameters. With this purpose, many countries and Georgia among them manufacture to construct new highways, railways and also reconstruction-modernization of the existing transport infrastructure. It is necessary to explore the artificial structures (bridges and tunnels) on the existing tracks as they are very old. Conference report includes the peculiarities of reconstruction of tunnels, because we think that this theme is important for the modernization of the existing road infrastructure. We must remark that the methods of determining mining pressure of tunnel reconstructions are worked out according to the jobs of new tunnels but it is necessary to foresee additional mining pressure which will be formed during their reconstruction. In this report there are given the methods of figuring the additional mining pressure while reconstruction of tunnels, there was worked out the computer program, it is determined that during reconstruction of tunnels the additional mining pressure is 1/3rd of main mining pressure.Keywords: Mining pressure, Reconstruction of tunnels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676349 Characterization of ZrO2/PEG Composite Film as Immobilization Matrix for Glucose Oxidase
Authors: N. M. Ahmad, J. Abdullah, N. I. Ramli, S. Abd Rahman, N. E. Azmi, Z. Hamzah, A. Saat, N. H. Rahman
Abstract:
A biosensor based on glucose oxidase (GOx) immobilized onto nanoparticles zirconium oxide with polyethylene nanocomposite for glucose monitoring has been designed. The CTAB/PEG/ZrO2/GOx nanocomposite was deposited onto screen printed carbon paste (SPCE) electrode via spin coating technique. The properties of CTAB/PEG/ZrO2/GOx were study using scanning electron microscopy (SEM). The SPE modified with the CTAB/PEG/ZrO2/GOx showed electrocatalytical response to the oxidation of glucose when ferrocene carboxaldehyde was used as an artificial redox mediator, which was studied by cyclic voltammetry (CV). Several parameters such as working potential, effect of pH and effect of ZrO2/PEG layers that governed the analytical performance of the biosensor, have been studied. The biosensor was applied to detect glucose with a linear range of 0.4 to 2.0 mmol L−1 with good repetability and reproducibility.Keywords: Nanocomposite, Nanoparticles, Modified SPE, Ferrocenecarboxaldehyde.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262