Search results for: Adaptive Gain Equalizer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1343

Search results for: Adaptive Gain Equalizer

803 Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System

Authors: Agung Budi Muljono, I Made Ginarsa, I Made Ari Nrartha

Abstract:

A large-scale power system (LSPS) consists of two or more sub-systems connected by inter-connecting transmission. Loading pattern on an LSPS always changes from time to time and varies depend on consumer need. The serious instability problem is appeared in an LSPS due to load fluctuation in all of the bus. Adaptive neuro-fuzzy inference system (ANFIS)-based power system stabilizer (PSS) is presented to cover the stability problem and to enhance the stability of an LSPS. The ANFIS control is presented because the ANFIS control is more effective than Mamdani fuzzy control in the computation aspect. Simulation results show that the presented PSS is able to maintain the stability by decreasing peak overshoot to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3. The presented PSS also makes the settling time to achieve at 3.78 s on local mode oscillation. Furthermore, the presented PSS is able to improve the peak overshoot and settling time of Δω3−9 to the value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area oscillation.

Keywords: ANFIS, large-scale, power system, PSS, stability enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195
802 Optimum Signal-to-noise Ratio Performance of Electron Multiplying Charge Coupled Devices

Authors: Wen W. Zhang, Qian Chen

Abstract:

Electron multiplying charge coupled devices (EMCCDs) have revolutionized the world of low light imaging by introducing on-chip multiplication gain based on the impact ionization effect in the silicon. They combine the sub-electron readout noise with high frame rates. Signal-to-noise Ratio (SNR) is an important performance parameter for low-light-level imaging systems. This work investigates the SNR performance of an EMCCD operated in Non-inverted Mode (NIMO) and Inverted Mode (IMO). The theory of noise characteristics and operation modes is presented. The results show that the SNR of is determined by dark current and clock induced charge at high gain level. The optimum SNR performance is provided by an EMCCD operated in NIMO in short exposure and strong cooling applications. In contrast, an IMO EMCCD is preferable.

Keywords: electron multiplying charge coupled devices, noise characteristics, operation modes, signal-to-noise ratioperformance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
801 Discrete and Stationary Adaptive Sub-Band Threshold Method for Improving Image Resolution

Authors: P. Joyce Beryl Princess, Y. Harold Robinson

Abstract:

Image Processing is a structure of Signal Processing for which the input is the image and the output is also an image or parameter of the image. Image Resolution has been frequently referred as an important aspect of an image. In Image Resolution Enhancement, images are being processed in order to obtain more enhanced resolution. To generate highly resoluted image for a low resoluted input image with high PSNR value. Stationary Wavelet Transform is used for Edge Detection and minimize the loss occurs during Downsampling. Inverse Discrete Wavelet Transform is to get highly resoluted image. Highly resoluted output is generated from the Low resolution input with high quality. Noisy input will generate output with low PSNR value. So Noisy resolution enhancement technique has been used for adaptive sub-band thresholding is used. Downsampling in each of the DWT subbands causes information loss in the respective subbands. SWT is employed to minimize this loss. Inverse Discrete wavelet transform (IDWT) is to convert the object which is downsampled using DWT into a highly resoluted object. Used Image denoising and resolution enhancement techniques will generate image with high PSNR value. Our Proposed method will improve Image Resolution and reached the optimized threshold.

Keywords: Image Processing, Inverse Discrete wavelet transform, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
800 Stability Analysis of a Class of Nonlinear Systems Using Discrete Variable Structures and Sliding Mode Control

Authors: Vivekanandan C., Prabhakar .R., Prema D.

Abstract:

This paper presents the application of discrete-time variable structure control with sliding mode based on the 'reaching law' method for robust control of a 'simple inverted pendulum on moving cart' - a standard nonlinear benchmark system. The controllers designed using the above techniques are completely insensitive to parametric uncertainty and external disturbance. The controller design is carried out using pole placement technique to find state feedback gain matrix , which decides the dynamic behavior of the system during sliding mode. This is followed by feedback gain realization using the control law which is synthesized from 'Gao-s reaching law'. The model of a single inverted pendulum and the discrete variable structure control controller are developed, simulated in MATLAB-SIMULINK and results are presented. The response of this simulation is compared with that of the discrete linear quadratic regulator (DLQR) and the advantages of sliding mode controller over DLQR are also presented

Keywords: Inverted pendulum, Variable Structure, Sliding mode control, Discrete-time systems, Nonlinear systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
799 Self-Adaptive Differential Evolution Based Power Economic Dispatch of Generators with Valve-Point Effects and Multiple Fuel Options

Authors: R.Balamurugan, S.Subramanian

Abstract:

This paper presents the solution of power economic dispatch (PED) problem of generating units with valve point effects and multiple fuel options using Self-Adaptive Differential Evolution (SDE) algorithm. The global optimal solution by mathematical approaches becomes difficult for the realistic PED problem in power systems. The Differential Evolution (DE) algorithm is found to be a powerful evolutionary algorithm for global optimization in many real problems. In this paper the key parameters of control in DE algorithm such as the crossover constant CR and weight applied to random differential F are self-adapted. The PED problem formulation takes into consideration of nonsmooth fuel cost function due to valve point effects and multi fuel options of generator. The proposed approach has been examined and tested with the numerical results of PED problems with thirteen-generation units including valve-point effects, ten-generation units with multiple fuel options neglecting valve-point effects and ten-generation units including valve-point effects and multiple fuel options. The test results are promising and show the effectiveness of proposed approach for solving PED problems.

Keywords: Multiple fuels, power economic dispatch, selfadaptivedifferential evolution and valve-point effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
798 Modelling and Control of Milk Fermentation Process in Biochemical Reactor

Authors: Jožef Ritonja

Abstract:

The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.

Keywords: Bioprocess engineering, biochemical reactor, fermentation process, modeling, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
797 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: Active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
796 Development of Cooling Demand by Computerize

Authors: Bobby Anak John, Zamri Noranai, Md. Norrizam Mohmad Jaat, Hamidon Salleh, Mohammad Zainal Md Yusof

Abstract:

Air conditioning is mainly use as human comfort cooling medium. It use more in high temperatures are country such as Malaysia. Proper estimation of cooling load will archive ideal temperature. Without proper estimation can lead to over estimation or under estimation. The ideal temperature should be comfort enough. This study is to develop a program to calculate an ideal cooling load demand, which is match with heat gain. Through this study, it is easy to calculate cooling load estimation. Objective of this study are to develop user-friendly and easy excess cooling load program. This is to insure the cooling load can be estimate by any of the individual rather than them using rule-of-thumb. Developed software is carryout by using Matlab-GUI. These developments are only valid for common building in Malaysia only. An office building was select as case study to verify the applicable and accuracy of develop software. In conclusion, the main objective has successfully where developed software is user friendly and easily to estimate cooling load demand.

Keywords: Cooling Load, Heat Gain, Building and GUI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
795 Detecting Tomato Flowers in Greenhouses Using Computer Vision

Authors: Dor Oppenheim, Yael Edan, Guy Shani

Abstract:

This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.

Keywords: Agricultural engineering, computer vision, image processing, flower detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
794 Circular Patch Microstrip Array Antenna for KU-band

Authors: T.F.Lai, Wan Nor Liza Mahadi, Norhayati Soin

Abstract:

This paper present a circular patch microstrip array antenna operate in KU-band (10.9GHz – 17.25GHz). The proposed circular patch array antenna will be in light weight, flexible, slim and compact unit compare with current antenna used in KU-band. The paper also presents the detail steps of designing the circular patch microstrip array antenna. An Advance Design System (ADS) software is used to compute the gain, power, radiation pattern, and S11 of the antenna. The proposed Circular patch microstrip array antenna basically is a phased array consisting of 'n' elements (circular patch antennas) arranged in a rectangular grid. The size of each element is determined by the operating frequency. The incident wave from satellite arrives at the plane of the antenna with equal phase across the surface of the array. Each 'n' element receives a small amount of power in phase with the others. There are feed network connects each element to the microstrip lines with an equal length, thus the signals reaching the circular patches are all combined in phase and the voltages add up. The significant difference of the circular patch array antenna is not come in the phase across the surface but in the magnitude distribution.

Keywords: Circular patch microstrip array antenna, gain, radiation pattern, S-Parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3114
793 Comparison of the Dynamic Characteristics of Active and Passive Hybrid Bearings

Authors: Denis V. Shutin, Alexander Yu. Babin, Leonid A. Savin

Abstract:

One of the ways of reducing vibroactivity of rotor systems is to apply active hybrid bearings. Their design allows correction of the rotor’s location by means of separately controlling the supply pressure of the lubricant into the friction area. In a most simple case, the control system is based on a P-regulator. Increase of the gain coefficient allows decreasing the amplitude of rotor’s vibrations. The same effect can be achieved by means of increasing the pressure in the collector of a traditional passive hybrid bearing. However, these approaches affect the dynamic characteristics of the bearing differently. Theoretical studies show that the increase of the gain coefficient of an active bearing increases the stiffness of the bearing, as well as the increase of the pressure in the collector. Nevertheless, in case of a passive bearing, the damping properties deteriorate, whereas the active hybrid bearings obtain higher damping properties, which allow effectively providing the energy dissipation of the rotor vibrations and reducing the load on the constructional elements of a machine.

Keywords: Active bearings, control system, damping, hybrid bearings, stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
792 An Improved Performance of the SRM Drives Using Z-Source Inverter with the Simplified Fuzzy Logic Rule Base

Authors: M. Hari Prabhu

Abstract:

This paper is based on the performance of the Switched Reluctance Motor (SRM) drives using Z-Source Inverter with the simplified rule base of Fuzzy Logic Controller (FLC) with the output scaling factor (SF) self-tuning mechanism are proposed. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the membership functions (MFs) without losing the system performance and stability via the adjustable controller gain. ZSI exhibits both voltage-buck and voltage-boost capability. It reduces line harmonics, improves reliability, and extends output voltage range. The output SF of the controller can be tuned continuously by a gain updating factor, whose value is derived from fuzzy logic, with the plant error and error change ratio as input variables. Then the results, carried out on a four-phase 6/8 pole SRM based on the dSPACEDS1104 platform, to show the feasibility and effectiveness of the devised methods and also performance of the proposed controllers will be compared with conventional counterpart.

Keywords: Fuzzy logic controller, scaling factor (SF), switched reluctance motor (SRM), variable-speed drives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428
791 Diversity for Safety and Security of Autonomous Vehicles against Accidental and Deliberate Faults

Authors: Anil Ranjitbhai Patel, Clement John Shaji, Peter Liggesmeyer

Abstract:

Safety and security of Autonomous Vehicles (AVs) is a growing concern, first, due to the increased number of safety-critical functions taken over by automotive embedded systems; second, due to the increased exposure of the software-intensive systems to potential attackers; third, due to dynamic interaction in an uncertain and unknown environment at runtime which results in changed functional and non-functional properties of the system. Frequently occurring environmental uncertainties, random component failures, and compromise security of the AVs might result in hazardous events, sometimes even in an accident, if left undetected. Beyond these technical issues, we argue that the safety and security of AVs against accidental and deliberate faults are poorly understood and rarely implemented. One possible way to overcome this is through a well-known diversity approach. As an effective approach to increase safety and security, diversity has been widely used in the aviation, railway, and aerospace industries. Thus, paper proposes fault-tolerance by diversity model taking into consideration the mitigation of accidental and deliberate faults by application of structure and variant redundancy. The model can be used to design the AVs with various types of diversity in hardware and software-based multi-version system. The paper evaluates the presented approach by employing an example from adaptive cruise control, followed by discussing the case study with initial findings.

Keywords: Autonomous vehicles, diversity, fault-tolerance, adaptive cruise control, safety, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487
790 Development of Sustainable Building Environmental Model (SBEM) in Hong Kong

Authors: Kwok W. Mui, Ling T. Wong, F. Xiao, Chin T. Cheung, Ho C. Yu

Abstract:

This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption; they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%. 

Keywords: —Sustainable building environmental model (SBEM), adaptive comfort temperature (ACT), new demand control ventilation (nDCV), energy saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
789 Silicon-Waveguide Based Silicide Schottky- Barrier Infrared Detector for on-Chip Applications

Authors: Shiyang Zhu, Guo-Qiang Lo, Dim-Lee Kwong

Abstract:

We prove detailed analysis of a waveguide-based Schottky barrier photodetector (SBPD) where a thin silicide film is put on the top of a silicon-on-insulator (SOI) channel waveguide to absorb light propagating along the waveguide. Taking both the confinement factor of light absorption and the wall scanning induced gain of the photoexcited carriers into account, an optimized silicide thickness is extracted to maximize the effective gain, thereby the responsivity. For typical lengths of the thin silicide film (10-20 Ðçm), the optimized thickness is estimated to be in the range of 1-2 nm, and only about 50-80% light power is absorbed to reach the maximum responsivity. Resonant waveguide-based SBPDs are proposed, which consist of a microloop, microdisc, or microring waveguide structure to allow light multiply propagating along the circular Si waveguide beneath the thin silicide film. Simulation results suggest that such resonant waveguide-based SBPDs have much higher repsonsivity at the resonant wavelengths as compared to the straight waveguidebased detectors. Some experimental results about Si waveguide-based SBPD are also reported.

Keywords: Infrared detector, Schottky-barrier, Silicon waveguide, Silicon photonics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
788 Vocal Training and Practice Methods: A Glimpse on the South Indian Carnatic Music

Authors: Raghavi Janaswamy, Saraswathi K. Vasudev

Abstract:

Music is one of the supreme arts of expressions, next to the speech itself. Its evolution over centuries has paved the way with a variety of training protocols and performing methods. Indian classical music is one of the most elaborate and refined systems with immense emphasis on the voice culture related to range, breath control, quality of the tone, flexibility and diction. Several exercises namely saraliswaram, jantaswaram, dhatuswaram, upper stayi swaram, alamkaras and varnams lay the required foundation to gain the voice culture and deeper understanding on the voice development and further on to the intricacies of the raga system. This article narrates a few of the Carnatic music training methods with an emphasis on the advanced practice methods for articulating the vocal skills, continuity in the voice, ability to produce gamakams, command in the multiple speeds of rendering with reasonable volume. The creativity on these exercises and their impact on the voice production are discussed. The articulation of the outlined conscious practice methods and vocal exercises bestow the optimum use of the natural human vocal system to not only enhance the signing quality but also to gain health benefits.

Keywords: Carnatic music, Saraliswaram, Varnam, Vocal training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 785
787 The Analysis of Printing Quality of Offset - Printing Ink with Coconut Oil Base

Authors: Wat Ploysri

Abstract:

The objectives of this research are to produce prototype coconut oil based solvent offset printing inks and to analyze a basic quality of printing work derived from coconut oil based solvent offset printing inks, by mean of bringing coconut oil for producing varnish and bringing such varnish to produce black offset printing inks. Then, analysis of qualities i.e. CIELAB value, density value, and dot gain value of printing work from coconut oil based solvent offset printing inks which printed on gloss-coated woodfree paper weighs 130 grams were done. The research result of coconut oil based solvent offset printing inks indicated that the suitable varnish formulation is using 51% of coconut oil, 36% of phenolic resin, and 14% of solvent oil 14%, while the result of producing black offset ink displayed that the suitable formula of printing ink is using varnish mixed with 20% of coconut oil, and the analyzing printing work of coconut oil based solvent offset printing inks which printed on paper, the results were as follows: CIELAB value of black offset printing ink is at L* = 31.90, a* = 0.27, and b* = 1.86, density value is at 1.27 and dot gain value was high at mid tone area of image area.

Keywords: Offset Printing, Coconut Oil, Printing Ink, Printing Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3828
786 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids

Authors: M. Wasy Akhtar

Abstract:

Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.

Keywords: Boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
785 Stock Price Forecast by Using Neuro-Fuzzy Inference System

Authors: Ebrahim Abbasi, Amir Abouec

Abstract:

In this research, the researchers have managed to design a model to investigate the current trend of stock price of the "IRAN KHODRO corporation" at Tehran Stock Exchange by utilizing an Adaptive Neuro - Fuzzy Inference system. For the Longterm Period, a Neuro-Fuzzy with two Triangular membership functions and four independent Variables including trade volume, Dividend Per Share (DPS), Price to Earning Ratio (P/E), and also closing Price and Stock Price fluctuation as an dependent variable are selected as an optimal model. For the short-term Period, a neureo – fuzzy model with two triangular membership functions for the first quarter of a year, two trapezoidal membership functions for the Second quarter of a year, two Gaussian combination membership functions for the third quarter of a year and two trapezoidal membership functions for the fourth quarter of a year were selected as an optimal model for the stock price forecasting. In addition, three independent variables including trade volume, price to earning ratio, closing Stock Price and a dependent variable of stock price fluctuation were selected as an optimal model. The findings of the research demonstrate that the trend of stock price could be forecasted with the lower level of error.

Keywords: Stock Price forecast, membership functions, Adaptive Neuro-Fuzzy Inference System, trade volume, P/E, DPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
784 Kinematic Analysis of Roll Motion for a Strut/SLA Suspension System

Authors: Yung Chang Chen, Po Yi Tsai, I An Lai

Abstract:

The roll center is one of the key parameters for designing a suspension. Several driving characteristics are affected significantly by the migration of the roll center during the suspension-s motion. The strut/SLA (strut/short-long-arm) suspension, which is widely used in production cars, combines the space-saving characteristics of a MacPherson strut suspension with some of the preferred handling characteristics of an SLA suspension. In this study, a front strut/SLA suspension is modeled by ADAMS/Car software. Kinematic roll analysis is then employed to investigate how the rolling characteristics change under the wheel travel and steering input. The related parameters, including the roll center height, roll camber gain, toe change, scrub radius and wheel track width change, are analyzed and discussed. It is found that the strut/SLA suspension clearly has a higher roll center than strut and SLA suspensions do. The variations in the roll center height under roll analysis are very different as the wheel travel displacement and steering angle are added. The results of the roll camber gain, scrub radius and wheel track width change are considered satisfactory. However, the toe change is too large and needs fine-tuning through a sensitivity analysis.

Keywords: roll analysis, roll center height, steering, strut/SLA suspension, wheel travel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5347
783 Designing and Analyzing Sensor and Actuator of a Nano/Micro-System for Fatigue and Fracture Characterization of Nanomaterials

Authors: Mohammad Reza Zamani Kouhpanji

Abstract:

This paper presents a MEMS/NEMS device for fatigue and fracture characterization of nanomaterials. This device can apply static loads, cyclic loads, and their combinations in nanomechanical experiments. It is based on the electromagnetic force induced between paired parallel wires carrying electrical currents. Using this concept, the actuator and sensor parts of the device were designed and analyzed while considering the practical limitations. Since the PWCC device only uses two wires for actuation part and sensing part, its fabrication process is extremely easier than the available MEMS/NEMS devices. The total gain and phase shift of the MEMS/NEMS device were calculated and investigated. Furthermore, the maximum gain and sensitivity of the MEMS/NEMS device were studied to demonstrate the capability and usability of the device for wide range of nanomaterials samples. This device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterials as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks.

Keywords: Sensors and actuators, MEMS/NEMS devices, fatigue and fracture nanomechanical testing device, static and cyclic nanomechanical testing device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1108
782 An Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks

Authors: N. M. Nawi, M. R. Ransing, R. S. Ransing

Abstract:

The conjugate gradient optimization algorithm usually used for nonlinear least squares is presented and is combined with the modified back propagation algorithm yielding a new fast training multilayer perceptron (MLP) algorithm (CGFR/AG). The approaches presented in the paper consist of three steps: (1) Modification on standard back propagation algorithm by introducing gain variation term of the activation function, (2) Calculating the gradient descent on error with respect to the weights and gains values and (3) the determination of the new search direction by exploiting the information calculated by gradient descent in step (2) as well as the previous search direction. The proposed method improved the training efficiency of back propagation algorithm by adaptively modifying the initial search direction. Performance of the proposed method is demonstrated by comparing to the conjugate gradient algorithm from neural network toolbox for the chosen benchmark. The results show that the number of iterations required by the proposed method to converge is less than 20% of what is required by the standard conjugate gradient and neural network toolbox algorithm.

Keywords: Back-propagation, activation function, conjugategradient, search direction, gain variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838
781 Parkinsons Disease Classification using Neural Network and Feature Selection

Authors: Anchana Khemphila, Veera Boonjing

Abstract:

In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.

Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3779
780 An Adaptive Memetic Algorithm With Dynamic Population Management for Designing HIV Multidrug Therapies

Authors: Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati

Abstract:

In this paper, a mathematical model of human immunodeficiency virus (HIV) is utilized and an optimization problem is proposed, with the final goal of implementing an optimal 900-day structured treatment interruption (STI) protocol. Two type of commonly used drugs in highly active antiretroviral therapy (HAART), reverse transcriptase inhibitors (RTI) and protease inhibitors (PI), are considered. In order to solving the proposed optimization problem an adaptive memetic algorithm with population management (AMAPM) is proposed. The AMAPM uses a distance measure to control the diversity of population in genotype space and thus preventing the stagnation and premature convergence. Moreover, the AMAPM uses diversity parameter in phenotype space to dynamically set the population size and the number of crossovers during the search process. Three crossover operators diversify the population, simultaneously. The progresses of crossover operators are utilized to set the number of each crossover per generation. In order to escaping the local optima and introducing the new search directions toward the global optima, two local searchers assist the evolutionary process. In contrast to traditional memetic algorithms, the activation of these local searchers is not random and depends on both the diversity parameters in genotype space and phenotype space. The capability of AMAPM in finding optimal solutions compared with three popular metaheurestics is introduced.

Keywords: HIV therapy design, memetic algorithms, adaptivealgorithms, nonlinear integer programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
779 2D Validation of a High-order Adaptive Cartesian-grid finite-volume Characteristic- flux Model with Embedded Boundaries

Authors: C. Leroy, G. Oger, D. Le Touzé, B. Alessandrini

Abstract:

A Finite Volume method based on Characteristic Fluxes for compressible fluids is developed. An explicit cell-centered resolution is adopted, where second and third order accuracy is provided by using two different MUSCL schemes with Minmod, Sweby or Superbee limiters for the hyperbolic part. Few different times integrator is used and be describe in this paper. Resolution is performed on a generic unstructured Cartesian grid, where solid boundaries are handled by a Cut-Cell method. Interfaces are explicitely advected in a non-diffusive way, ensuring local mass conservation. An improved cell cutting has been developed to handle boundaries of arbitrary geometrical complexity. Instead of using a polygon clipping algorithm, we use the Voxel traversal algorithm coupled with a local floodfill scanline to intersect 2D or 3D boundary surface meshes with the fixed Cartesian grid. Small cells stability problem near the boundaries is solved using a fully conservative merging method. Inflow and outflow conditions are also implemented in the model. The solver is validated on 2D academic test cases, such as the flow past a cylinder. The latter test cases are performed both in the frame of the body and in a fixed frame where the body is moving across the mesh. Adaptive Cartesian grid is provided by Paramesh without complex geometries for the moment.

Keywords: Finite volume method, cartesian grid, compressible solver, complex geometries, Paramesh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
778 Transient Enhanced LDO Voltage Regulator with Improved Feed Forward Path Compensation

Authors: Suresh Alapati, Sreehari Rao Patri, K. S. R. Krishna Prasad

Abstract:

Anultra-low power capacitor less low-dropout voltage regulator with improved transient response using gain enhanced feed forward path compensation is presented in this paper. It is based on a cascade of a voltage amplifier and a transconductor stage in the feed forward path with regular error amplifier to form a composite gainenhanced feed forward stage. It broadens the gain bandwidth and thus improves the transient response without substantial increase in power consumption. The proposed LDO, designed for a maximum output current of 100 mA in UMC 180 nm, requires a quiescent current of 69 )A. An undershot of 153.79mV for a load current changes from 0mA to 100mA and an overshoot of 196.24mV for current change of 100mA to 0mA. The settling time is approximately 1.1 )s for the output voltage undershooting case. The load regulation is of 2.77 )V/mA at load current of 100mA. Reference voltage is generated by using an accurate band gap reference circuit of 0.8V.The costly features of SOC such as total chip area and power consumption is drastically reduced by the use of only a total compensation capacitance of 6pF while consuming power consumption of 0.096 mW.

Keywords: Capacitor-less LDO, frequency compensation, Transient response, latch, self-biased differential amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4066
777 Optimization of the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)

Authors: Behrouz Mosayebi Dehkordi

Abstract:

Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.

Keywords: Dehydration, Mushroom, Optimization, Osmotic, Response Surface Methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
776 Optimization the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)

Authors: Behrouz Mosayebi Dehkordi

Abstract:

Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.

Keywords: Dehydration, mushroom, optimization, osmotic, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
775 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding

Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi

Abstract:

A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.

Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
774 Study of Integrated Vehicle Image System Including LDW, FCW, and AFS

Authors: Yi-Feng Su, Chia-Tseng Chen, Hsueh-Lung Liao

Abstract:

The objective of this research is to develop an advanced driver assistance system characterized with the functions of lane departure warning (LDW), forward collision warning (FCW) and adaptive front-lighting system (AFS). The system is mainly configured a CCD/CMOS camera to acquire the images of roadway ahead in association with the analysis made by an image-processing unit concerning the lane ahead and the preceding vehicles. The input image captured by a camera is used to recognize the lane and the preceding vehicle positions by image detection and DROI (Dynamic Range of Interesting) algorithms. Therefore, the system is able to issue real-time auditory and visual outputs of warning when a driver is departing the lane or driving too close to approach the preceding vehicle unwittingly so that the danger could be prevented from occurring. During the nighttime, in addition to the foregoing warning functions, the system is able to control the bending light of headlamp to provide an immediate light illumination when making a turn at a curved lane and adjust the level automatically to reduce the lighting interference against the oncoming vehicles driving in the opposite direction by the curvature of lane and the vanishing point estimations. The experimental results show that the integrated vehicle image system is robust to most environments such as the lane detection and preceding vehicle detection average accuracy performances are both above 90 %.

Keywords: Lane mark detection, lane departure warning (LDW), dynamic range of interesting (DROI), forward collision warning (FCW), adaptive front-lighting system (AFS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157