Search results for: robust optimization.
1966 A New Solution for Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media Prescribed Wall Temperature by using a Hybrid Neural Network-Particle Swarm Optimization Method
Authors: M.A.Behrang, M. Ghalambaz, E. Assareh, A.R. Noghrehabadi
Abstract:
Fluid flow and heat transfer of vertical full cone embedded in porous media is studied in this paper. Nonlinear differential equation arising from similarity solution of inverted cone (subjected to wall temperature boundary conditions) embedded in porous medium is solved using a hybrid neural network- particle swarm optimization method. To aim this purpose, a trial solution of the differential equation is defined as sum of two parts. The first part satisfies the initial/ boundary conditions and does contain an adjustable parameter and the second part which is constructed so as not to affect the initial/boundary conditions and involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. Particle swarm optimization (PSO) is applied to find adjustable parameters of trial solution (in first and second part). The obtained solution in comparison with the numerical ones represents a remarkable accuracy.Keywords: Porous Media, Ordinary Differential Equations (ODE), Particle Swarm Optimization (PSO), Neural Network (NN).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17271965 Developing New Processes and Optimizing Performance Using Response Surface Methodology
Authors: S. Raissi
Abstract:
Response surface methodology (RSM) is a very efficient tool to provide a good practical insight into developing new process and optimizing them. This methodology could help engineers to raise a mathematical model to represent the behavior of system as a convincing function of process parameters. Through this paper the sequential nature of the RSM surveyed for process engineers and its relationship to design of experiments (DOE), regression analysis and robust design reviewed. The proposed four-step procedure in two different phases could help system analyst to resolve the parameter design problem involving responses. In order to check accuracy of the designed model, residual analysis and prediction error sum of squares (PRESS) described. It is believed that the proposed procedure in this study can resolve a complex parameter design problem with one or more responses. It can be applied to those areas where there are large data sets and a number of responses are to be optimized simultaneously. In addition, the proposed procedure is relatively simple and can be implemented easily by using ready-made standard statistical packages.Keywords: Response Surface Methodology (RSM), Design of Experiments (DOE), Process modeling, Process setting, Process optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18371964 Correlation-based Feature Selection using Ant Colony Optimization
Authors: M. Sadeghzadeh, M. Teshnehlab
Abstract:
Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.
Keywords: Ant colony optimization, Classification, Datamining, Feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24201963 An Advanced Stereo Vision Based Obstacle Detection with a Robust Shadow Removal Technique
Authors: Saeid Fazli, Hajar Mohammadi D., Payman Moallem
Abstract:
This paper presents a robust method to detect obstacles in stereo images using shadow removal technique and color information. Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. The proposed advanced method is divided into three phases, the first phase is detecting obstacles and removing shadows, the second one is matching and the last phase is depth computing. We propose a robust method for detecting obstacles in stereo images using a shadow removal technique based on color information in HIS space, at the first phase. In this paper we use Normalized Cross Correlation (NCC) function matching with a 5 × 5 window and prepare an empty matching table τ and start growing disparity components by drawing a seed s from S which is computed using canny edge detector, and adding it to τ. In this way we achieve higher performance than the previous works [2,17]. A fast stereo matching algorithm is proposed that visits only a small fraction of disparity space in order to find a semi-dense disparity map. It works by growing from a small set of correspondence seeds. The obstacle identified in phase one which appears in the disparity map of phase two enters to the third phase of depth computing. Finally, experimental results are presented to show the effectiveness of the proposed method.
Keywords: obstacle detection, stereo vision, shadowremoval, color, stereo matching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20731962 Energy Efficient In-Network Data Processing in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
The Sensor Network consists of densely deployed sensor nodes. Energy optimization is one of the most important aspects of sensor application design. Data acquisition and aggregation techniques for processing data in-network should be energy efficient. Due to the cross-layer design, resource-limited and noisy nature of Wireless Sensor Networks(WSNs), it is challenging to study the performance of these systems in a realistic setting. In this paper, we propose optimizing queries by aggregation of data and data redundancy to reduce energy consumption without requiring all sensed data and directed diffusion communication paradigm to achieve power savings, robust communication and processing data in-network. To estimate the per-node power consumption POWERTossim mica2 energy model is used, which provides scalable and accurate results. The performance analysis shows that the proposed methods overcomes the existing methods in the aspects of energy consumption in wireless sensor networks.Keywords: Data Aggregation, Directed Diffusion, Partial Aggregation, Packet Merging, Query Plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18331961 Method for Determining the Probing Points for Efficient Measurement of Freeform Surface
Authors: Yi Xu, Zexiang Li
Abstract:
In inspection and workpiece localization, sampling point data is an important issue. Since the devices for sampling only sample discrete points, not the completely surface, sampling size and location of the points will be taken into consideration. In this paper a method is presented for determining the sampled points size and location for achieving efficient sampling. Firstly, uncertainty analysis of the localization parameters is investigated. A localization uncertainty model is developed to predict the uncertainty of the localization process. Using this model the minimum size of the sampled points is predicted. Secondly, based on the algebra theory an eigenvalue-optimal optimization is proposed. Then a freeform surface is used in the simulation. The proposed optimization is implemented. The simulation result shows its effectivity.
Keywords: eigenvalue-optimal optimization, freeform surface inspection, sampling size and location, sampled points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12381960 Improved Artificial Immune System Algorithm with Local Search
Authors: Ramin Javadzadeh., Zahra Afsahi, MohammadReza Meybodi
Abstract:
The Artificial immune systems algorithms are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Artificial Immune System Algorithm is introduced for the first time to overcome its problems of artificial immune system. That use of the small size of a local search around the memory antibodies is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the standard artificial immune system algorithmsKeywords: Artificial immune system, Cellular Automata, Cellular learning automata, Cellular learning automata, , Local search, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18921959 Multi-objective Optimization of Vehicle Passive Suspension with a Two-Terminal Mass Using Chebyshev Goal Programming
Authors: Chuan Li, Ming Liang, Qibing Yu
Abstract:
To improve the dynamics response of the vehicle passive suspension, a two-terminal mass is suggested to connect in parallel with the suspension strut. Three performance criteria, tire grip, ride comfort and suspension deflection, are taken into consideration to optimize the suspension parameters. However, the three criteria are conflicting and non-commensurable. For this reason, the Chebyshev goal programming method is applied to find the best tradeoff among the three objectives. A simulation case is presented to describe the multi-objective optimization procedure. For comparison, the Chebyshev method is also employed to optimize the design of a conventional passive suspension. The effectiveness of the proposed design method has been clearly demonstrated by the result. It is also shown that the suspension with a two-terminal mass in parallel has better performance in terms of the three objectives.Keywords: Vehicle, passive suspension, two-terminal mass, optimization, Chebyshev goal programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17591958 Robust Coherent Noise Suppression by Point Estimation of the Cauchy Location Parameter
Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.
Abstract:
This paper introduces a new point estimation algorithm, with particular focus on coherent noise suppression, given several measurements of the device under test where it is assumed that 1) the noise is first-order stationery and 2) the device under test is linear and time-invariant. The algorithm exploits the robustness of the Pitman estimator of the Cauchy location parameter through the initial scaling of the test signal by a centred Gaussian variable of predetermined variance. It is illustrated through mathematical derivations and simulation results that the proposed algorithm is more accurate and consistently robust to outliers for different tailed density functions than the conventional methods of sample mean (coherent averaging technique) and sample median search.
Keywords: Central limit theorem, Fisher-Cramer Rao, gamma function, Pitman estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19221957 A Deterministic Dynamic Programming Approach for Optimization Problem with Quadratic Objective Function and Linear Constraints
Authors: S. Kavitha, Nirmala P. Ratchagar
Abstract:
This paper presents the novel deterministic dynamic programming approach for solving optimization problem with quadratic objective function with linear equality and inequality constraints. The proposed method employs backward recursion in which computations proceeds from last stage to first stage in a multi-stage decision problem. A generalized recursive equation which gives the exact solution of an optimization problem is derived in this paper. The method is purely analytical and avoids the usage of initial solution. The feasibility of the proposed method is demonstrated with a practical example. The numerical results show that the proposed method provides global optimum solution with negligible computation time.
Keywords: Backward recursion, Dynamic programming, Multi-stage decision problem, Quadratic objective function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35871956 Self – Tuning Method of Fuzzy System: An Application on Greenhouse Process
Authors: M. Massour El Aoud, M. Franceschi, M. Maher
Abstract:
The approach proposed here is oriented in the direction of fuzzy system for the analysis and the synthesis of intelligent climate controllers, the simulation of the internal climate of the greenhouse is achieved by a linear model whose coefficients are obtained by identification. The use of fuzzy logic controllers for the regulation of climate variables represents a powerful way to minimize the energy cost. Strategies of reduction and optimization are adopted to facilitate the tuning and to reduce the complexity of the controller.
Keywords: Greenhouse, fuzzy logic, optimization, gradient descent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19471955 Algorithm for Information Retrieval Optimization
Authors: Kehinde K. Agbele, Kehinde Daniel Aruleba, Eniafe F. Ayetiran
Abstract:
When using Information Retrieval Systems (IRS), users often present search queries made of ad-hoc keywords. It is then up to the IRS to obtain a precise representation of the user’s information need and the context of the information. This paper investigates optimization of IRS to individual information needs in order of relevance. The study addressed development of algorithms that optimize the ranking of documents retrieved from IRS. This study discusses and describes a Document Ranking Optimization (DROPT) algorithm for information retrieval (IR) in an Internet-based or designated databases environment. Conversely, as the volume of information available online and in designated databases is growing continuously, ranking algorithms can play a major role in the context of search results. In this paper, a DROPT technique for documents retrieved from a corpus is developed with respect to document index keywords and the query vectors. This is based on calculating the weight (Keywords: Internet ranking,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14751954 An Advanced Nelder Mead Simplex Method for Clustering of Gene Expression Data
Authors: M. Pandi, K. Premalatha
Abstract:
The DNA microarray technology concurrently monitors the expression levels of thousands of genes during significant biological processes and across the related samples. The better understanding of functional genomics is obtained by extracting the patterns hidden in gene expression data. It is handled by clustering which reveals natural structures and identify interesting patterns in the underlying data. In the proposed work clustering gene expression data is done through an Advanced Nelder Mead (ANM) algorithm. Nelder Mead (NM) method is a method designed for optimization process. In Nelder Mead method, the vertices of a triangle are considered as the solutions. Many operations are performed on this triangle to obtain a better result. In the proposed work, the operations like reflection and expansion is eliminated and a new operation called spread-out is introduced. The spread-out operation will increase the global search area and thus provides a better result on optimization. The spread-out operation will give three points and the best among these three points will be used to replace the worst point. The experiment results are analyzed with optimization benchmark test functions and gene expression benchmark datasets. The results show that ANM outperforms NM in both benchmarks.
Keywords: Spread out, simplex, multi-minima, fitness function, optimization, search area, monocyte, solution, genomes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25581953 An Integrated Operational Research and System Dynamics Approach for Planning Decisions in Container Terminals
Authors: A. K. Abdel-Fattah, A. B. El-Tawil, N. A. Harraz
Abstract:
This paper focuses on the operational and strategic planning decisions related to the quayside of container terminals. We introduce an integrated operational research (OR) and system dynamics (SD) approach to solve the Berth Allocation Problem (BAP) and the Quay Crane Assignment Problem (QCAP). A BAP-QCAP optimization modeling approach which considers practical aspects not studied before in the integration of BAP and QCAP is discussed. A conceptual SD model is developed to determine the long-term effect of optimization on the system behavior factors like resource utilization, attractiveness to port, number of incoming vessels to port and port profits. The framework can be used for improving the operational efficiency of container terminals and providing a strategic view after applying optimization.
Keywords: Operational research, system dynamics, container terminal, quayside operational problems, strategic planning decisions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33231952 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes
Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono
Abstract:
Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is widely used for LV segmentation, but it suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is improved to achieve a fast and efficient LV segmentation. First, a robust and efficient detection based on Hough forest localizes cardiac feature points. Such feature points are used to predict the initial fitting of the LV shape model. Second, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. With the robust initialization, ASM is able to achieve more accurate segmentation. The performance of the proposed method is evaluated on a dataset of 810 cardiac ultrasound images that are mostly abnormal shapes. This proposed method is compared with several combinations of ASM and existing initialization methods. Our experiment results demonstrate that accuracy of the proposed method for feature point detection for initialization was 40% higher than the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops and thus speeds up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.Keywords: Hough forest, active shape model, segmentation, cardiac left ventricle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15041951 Implementation of Feed-in Tariffs into Multi-Energy Systems
Authors: M. Schulze, P. Crespo Del Granado
Abstract:
This paper considers the influence of promotion instruments for renewable energy sources (RES) on a multi-energy modeling framework. In Europe, so called Feed-in Tariffs are successfully used as incentive structures to increase the amount of energy produced by RES. Because of the stochastic nature of large scale integration of distributed generation, many problems have occurred regarding the quality and stability of supply. Hence, a macroscopic model was developed in order to optimize the power supply of the local energy infrastructure, which includes electricity, natural gas, fuel oil and district heating as energy carriers. Unique features of the model are the integration of RES and the adoption of Feed-in Tariffs into one optimization stage. Sensitivity studies are carried out to examine the system behavior under changing profits for the feed-in of RES. With a setup of three energy exchanging regions and a multi-period optimization, the impact of costs and profits are determined.Keywords: Distributed generation, optimization methods, power system modeling, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331950 Coordinated Design of TCSC Controller and PSS Employing Particle Swarm Optimization Technique
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
This paper investigates the application of Particle Swarm Optimization (PSO) technique for coordinated design of a Power System Stabilizer (PSS) and a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the power system stability. The design problem of PSS and TCSC-based controllers is formulated as a time domain based optimization problem. PSO algorithm is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. To compare the capability of PSS and TCSC-based controller, both are designed independently first and then in a coordinated manner for individual and coordinated application. The proposed controllers are tested on a weakly connected power system. The eigenvalue analysis and non-linear simulation results are presented to show the effectiveness of the coordinated design approach over individual design. The simulation results show that the proposed controllers are effective in damping low frequency oscillations resulting from various small disturbances like change in mechanical power input and reference voltage setting.Keywords: Particle swarm optimization, Phillips-Heffron model, power system stability, PSS, TCSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21591949 Particle Swarm Optimization Based Genetic Algorithm for Two-Stage Transportation Supply Chain
Authors: Siva Prasad Darla, C. D. Naiju, K. Annamalai, S. S. Rajiv Sushanth
Abstract:
Supply chain consists of all stages involved, directly or indirectly, includes all functions involved in fulfilling a customer demand. In two stage transportation supply chain problem, transportation costs are of a significant proportion of final product costs. It is often crucial for successful decisions making approaches in two stage supply chain to explicit account for non-linear transportation costs. In this paper, deterministic demand and finite supply of products was considered. The optimized distribution level and the routing structure from the manufacturing plants to the distribution centres and to the end customers is determined using developed mathematical model and solved by proposed particle swarm optimization based genetic algorithm. Numerical analysis of the case study is carried out to validate the model.Keywords: Genetic Algorithm, Particle Swarm Optimization, Production, Remanufacturing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18401948 An Analytical Electron Mobility Model based on Particle Swarm Computation for Siliconbased Devices
Authors: F. Djeffal, N. Lakhdar, T. Bendib
Abstract:
The study of the transport coefficients in electronic devices is currently carried out by analytical and empirical models. This study requires several simplifying assumptions, generally necessary to lead to analytical expressions in order to study the different characteristics of the electronic silicon-based devices. Further progress in the development, design and optimization of Silicon-based devices necessarily requires new theory and modeling tools. In our study, we use the PSO (Particle Swarm Optimization) technique as a computational tool to develop analytical approaches in order to study the transport phenomenon of the electron in crystalline silicon as function of temperature and doping concentration. Good agreement between our results and measured data has been found. The optimized analytical models can also be incorporated into the circuits simulators to study Si-based devices without impact on the computational time and data storage.Keywords: Particle Swarm, electron mobility, Si-based devices, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15381947 Application of Pattern Search Method to Power System Security Constrained Economic Dispatch
Authors: A. K. Al-Othman, K. M. EL-Nagger
Abstract:
Direct search methods are evolutionary algorithms used to solve optimization problems. (DS) methods do not require any information about the gradient of the objective function at hand while searching for an optimum solution. One of such methods is Pattern Search (PS) algorithm. This paper presents a new approach based on a constrained pattern search algorithm to solve a security constrained power system economic dispatch problem (SCED). Operation of power systems demands a high degree of security to keep the system satisfactorily operating when subjected to disturbances, while and at the same time it is required to pay attention to the economic aspects. Pattern recognition technique is used first to assess dynamic security. Linear classifiers that determine the stability of electric power system are presented and added to other system stability and operational constraints. The problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Pattern search method is then applied to solve the constrained optimization formulation. In particular, the method is tested using one system. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that pattern search (PS) is very applicable for solving security constrained power system economic dispatch problem (SCED).
Keywords: Security Constrained Economic Dispatch, Direct Search method, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22071946 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization
Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin
Abstract:
In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.
Keywords: The Bouc-Wen hysteresis model, Particle swarm optimization, Prandtl-Ishlinskii model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24071945 Optimal Trailing Edge Flap Positions of Helicopter Rotor for Various Thrust Coefficients to Solidity (Ct/σ) Ratios
Authors: Saijal K. K., K. Prabhakaran Nair
Abstract:
This study aims to determine change in optimal locations of dual trailing-edge flaps for various thrust coefficient to solidity (Ct /σ) ratios of helicopter to achieve minimum hub vibration levels, with low penalty in terms of required trailing-edge flap control power. Polynomial response functions are used to approximate hub vibration and flap power objective functions. Single objective and multiobjective optimization is carried with the objective of minimizing hub vibration and flap power. The optimization result shows that the inboard flap location at low Ct /σ ratio move farther from the baseline value and at high Ct /σ ratio move towards the root of the blade for minimizing hub vibration.
Keywords: Helicopter rotor, Trailing-edge flap, Thrust coefficient to solidity (Ct /σ) ratio, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46361944 Modelling and Analysis of a Robust Control of Manufacturing Systems: Flow-Quality Approach
Authors: Lotfi Nabli, Achraf Jabeur Telmoudi, Radhi M'hiri
Abstract:
This paper proposes a modeling method of the laws controlling manufacturing systems with temporal and non temporal constraints. A methodology of robust control construction generating the margins of passive and active robustness is being elaborated. Indeed, two paramount models are presented in this paper. The first utilizes the P-time Petri Nets which is used to manage the flow type disturbances. The second, the quality model, exploits the Intervals Constrained Petri Nets (ICPN) tool which allows the system to preserve its quality specificities. The redundancy of the robustness of the elementary parameters between passive and active is also used. The final model built allows the correlation of temporal and non temporal criteria by putting two paramount models in interaction. To do so, a set of definitions and theorems are employed and affirmed by applicator examples.
Keywords: Manufacturing systems control, flow, quality, robustness, redundancy, Petri Nets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17281943 Optimal Design of Reference Node Placement for Wireless Indoor Positioning Systems in Multi-Floor Building
Authors: Kittipob Kondee, Chutima Prommak
Abstract:
In this paper, we propose an optimization technique that can be used to optimize the placements of reference nodes and improve the location determination performance for the multi-floor building. The proposed technique is based on Simulated Annealing algorithm (SA) and is called MSMR-M. The performance study in this work is based on simulation. We compare other node-placement techniques found in the literature with the optimal node-placement solutions obtained from our optimization. The results show that using the optimal node-placement obtained by our proposed technique can improve the positioning error distances up to 20% better than those of the other techniques. The proposed technique can provide an average error distance within 1.42 meters.
Keywords: Indoor positioning System, Optimization System design, Multi-Floor Building, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19831942 A Genetic and Simulated Annealing Based Algorithms for Solving the Flow Assignment Problem in Computer Networks
Authors: Tarek M. Mahmoud
Abstract:
Selecting the routes and the assignment of link flow in a computer communication networks are extremely complex combinatorial optimization problems. Metaheuristics, such as genetic or simulated annealing algorithms, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult combinatorial optimization problems. This paper considers the route selection and hence the flow assignment problem. A genetic algorithm and simulated annealing algorithm are used to solve this problem. A new hybrid algorithm combining the genetic with the simulated annealing algorithm is introduced. A modification of the genetic algorithm is also introduced. Computational experiments with sample networks are reported. The results show that the proposed modified genetic algorithm is efficient in finding good solutions of the flow assignment problem compared with other techniques.Keywords: Genetic Algorithms, Flow Assignment, Routing, Computer network, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22561941 Optimal Manufacturing Scheduling for Dependent Details Processing
Authors: Ivan C. Mustakerov, Daniela I. Borissova
Abstract:
The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing schedules. The paper presents an optimization manufacture scheduling approach for dependent details processing with given processing sequences and times on multiple machines. By defining decision variables as start and end moments of details processing it is possible to use straightforward variables restrictions to satisfy different technological requirements and to formulate easy to understand and solve optimization tasks for multiple numbers of details and machines. A case study example is solved for seven base moldings for CNC metalworking machines processed on five different machines with given processing order among details and machines and known processing time-s duration. As a result of linear optimization task solution the optimal manufacturing schedule minimizing the overall processing time is obtained. The manufacturing schedule defines the moments of moldings delivery thus minimizing storage costs and provides mounting due-time satisfaction. The proposed optimization approach is based on real manufacturing plant problem. Different processing schedules variants for different technological restrictions were defined and implemented in the practice of Bulgarian company RAIS Ltd. The proposed approach could be generalized for other job shop scheduling problems for different applications.Keywords: Optimal manufacturing scheduling, linear programming, metalworking machines production, dependant details processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14871940 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).
Keywords: DoA estimation, adaptive antenna array, Deep Neural Network, LS-SVM optimization model, radial basis function, MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5391939 Fast and Robust Long-term Tracking with Effective Searching Model
Authors: Thang V. Kieu, Long P. Nguyen
Abstract:
Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.
Keywords: Correlation filter, long-term tracking, random fern, real-time tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7771938 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model
Authors: N. Jinesh, K. Shankar
Abstract:
This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.
Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9311937 Optimum Design of Trusses by Cuckoo Search
Authors: M. Saravanan, J. Raja Murugadoss, V. Jayanthi
Abstract:
Optimal design of structure has a main role in reduction of material usage which leads to deduction in the final cost of construction projects. Evolutionary approaches are found to be more successful techniques for solving size and shape structural optimization problem since it uses a stochastic random search instead of a gradient search. By reviewing the recent literature works the problem found was the optimization of weight. A new meta-heuristic algorithm called as Cuckoo Search (CS) Algorithm has used for the optimization of the total weight of the truss structures. This paper has used set of 10 bars and 25 bars trusses for the testing purpose. The main objective of this work is to reduce the number of iterations, weight and the total time consumption. In order to demonstrate the effectiveness of the present method, minimum weight design of truss structures is performed and the results of the CS are compared with other algorithms.
Keywords: Cuckoo search algorithm, levy’s flight, meta-heuristic, optimal weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105