Search results for: Support vector regression
2462 Decision Support System Based on Data Warehouse
Authors: Yang Bao, LuJing Zhang
Abstract:
Typical Intelligent Decision Support System is 4-based, its design composes of Data Warehouse, Online Analytical Processing, Data Mining and Decision Supporting based on models, which is called Decision Support System Based on Data Warehouse (DSSBDW). This way takes ETL,OLAP and DM as its implementing means, and integrates traditional model-driving DSS and data-driving DSS into a whole. For this kind of problem, this paper analyzes the DSSBDW architecture and DW model, and discusses the following key issues: ETL designing and Realization; metadata managing technology using XML; SQL implementing, optimizing performance, data mapping in OLAP; lastly, it illustrates the designing principle and method of DW in DSSBDW.
Keywords: Decision Support System, Data Warehouse, Data Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38602461 A Recommender Agent to Support Virtual Learning Activities
Authors: P. Valdiviezo, G. Riofrio, R. Reategui
Abstract:
This article describes the implementation of an intelligent agent that provides recommendations for educational resources in a virtual learning environment (VLE). It aims to support pending (undeveloped) student learning activities. It begins by analyzing the proposed VLE data model entities in the recommender process. The pending student activities are then identified, which constitutes the input information for the agent. By using the attribute-based recommender technique, the information can be processed and resource recommendations can be obtained. These serve as support for pending activity development in the course. To integrate this technique, we used an ontology. This served as support for the semantic annotation of attributes and recommended files recovery.
Keywords: Learning activities, educational resource, recommender agent, recommendation technique, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16612460 Multimodal Reasoning in a Knowledge Engineering Framework for Product Support
Authors: Rossitza M. Setchi, Nikolaos Lagos
Abstract:
Problem solving has traditionally been one of the principal research areas for artificial intelligence. Yet, although artificial intelligence reasoning techniques have been employed in several product support systems, the benefit of integrating product support, knowledge engineering, and problem solving, is still unclear. This paper studies the synergy of these areas and proposes a knowledge engineering framework that integrates product support systems and artificial intelligence techniques. The framework includes four spaces; the data, problem, hypothesis, and solution ones. The data space incorporates the knowledge needed for structured reasoning to take place, the problem space contains representations of problems, and the hypothesis space utilizes a multimodal reasoning approach to produce appropriate solutions in the form of virtual documents. The solution space is used as the gateway between the system and the user. The proposed framework enables the development of product support systems in terms of smaller, more manageable steps while the combination of different reasoning techniques provides a way to overcome the lack of documentation resources.Keywords: Knowledge engineering framework, product support, case-based reasoning, model-based reasoning, multimodal reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17942459 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model
Authors: Chaudhuri Manoj Kumar Swain, Susmita Das
Abstract:
This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.
Keywords: WiMAX, RSSI, path loss, coverage probability, regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7052458 The Habilitation with Preschool Children with Cerebral Palsy in Process of Pedagogical Support of their Families
Authors: N.B. Serova, N.A. Toporkova
Abstract:
The purpose of the research was to determine effectiveness of habilitation of preschool children with cerebral palsy in the process of pedagogical support of their families. The author presents the study of psychology-pedagogical problems of families with preschool children with cerebral palsy and the universal program of pedagogical support of families. In the conclusion, the author determines effectiveness of social adaptation of children with cerebral palsy and their families.Keywords: habilitation, cerebral palsy, pedagogical support, social adaptation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14102457 The Impact of Governance on Happiness: Evidence from Quantile Regressions
Authors: Chiung-Ju Huang
Abstract:
This study utilizes the quantile regression analysis to examine the impact of governance (including democratic quality and technical quality) on happiness in 101 countries worldwide, classified as “developed countries” and “developing countries”. The empirical results show that the impact of democratic quality and technical quality on happiness is significantly positive for “developed countries”, while is insignificant for “developing countries”. The results suggest that the authorities in developed countries can enhance the level of individual happiness by means of improving the democracy quality and technical quality. However, for developing countries, promoting the quality of governance in order to enhance the level of happiness may not be effective. Policy makers in developed countries may pay more attention on increasing real GDP per capita instead of promoting the quality of governance to enhance individual happiness.
Keywords: Governance, happiness, multiple regression, quantile regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17002456 DWT Based Image Steganalysis
Authors: Indradip Banerjee, Souvik Bhattacharyya, Gautam Sanyal
Abstract:
‘Steganalysis’ is one of the challenging and attractive interests for the researchers with the development of information hiding techniques. It is the procedure to detect the hidden information from the stego created by known steganographic algorithm. In this paper, a novel feature based image steganalysis technique is proposed. Various statistical moments have been used along with some similarity metric. The proposed steganalysis technique has been designed based on transformation in four wavelet domains, which include Haar, Daubechies, Symlets and Biorthogonal. Each domain is being subjected to various classifiers, namely K-nearest-neighbor, K* Classifier, Locally weighted learning, Naive Bayes classifier, Neural networks, Decision trees and Support vector machines. The experiments are performed on a large set of pictures which are available freely in image database. The system also predicts the different message length definitions.
Keywords: Steganalysis, Moments, Wavelet Domain, KNN, K*, LWL, Naive Bayes Classifier, Neural networks, Decision trees, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25702455 Global GMRES with Deflated Restarting for Families of Shifted Linear Systems
Authors: Jing Meng, Peiyong Zhu, Houbiao Li
Abstract:
Many problems in science and engineering field require the solution of shifted linear systems with multiple right hand sides and multiple shifts. To solve such systems efficiently, the implicitly restarted global GMRES algorithm is extended in this paper. However, the shift invariant property could no longer hold over the augmented global Krylov subspace due to adding the harmonic Ritz matrices. To remedy this situation, we enforce the collinearity condition on the shifted system and propose shift implicitly restarted global GMRES. The new method not only improves the convergence but also has a potential to simultaneously compute approximate solution for the shifted systems using only as many matrix vector multiplications as the solution of the seed system requires. In addition, some numerical experiments also confirm the effectiveness of our method.
Keywords: Shifted linear systems, global Krylov subspace, GLGMRESIR, GLGMRESIRsh, harmonic Ritz matrix, harmonic Ritz vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19712454 Precombining Adaptive LMMSE Detection for DS-CDMA Systems in Time Varying Channels: Non Blind and Blind Approaches
Authors: M. D. Kokate, T. R. Sontakke, P. W. Wani
Abstract:
This paper deals with an adaptive multiuser detector for direct sequence code division multiple-access (DS-CDMA) systems. A modified receiver, precombinig LMMSE is considered under time varying channel environment. Detector updating is performed with two criterions, mean square estimation (MSE) and MOE optimization technique. The adaptive implementation issues of these two schemes are quite different. MSE criterion updates the filter weights by minimizing error between data vector and adaptive vector. MOE criterion together with canonical representation of the detector results in a constrained optimization problem. Even though the canonical representation is very complicated under time varying channels, it is analyzed with assumption of average power profile of multipath replicas of user of interest. The performance of both schemes is studied for practical SNR conditions. Results show that for poor SNR, MSE precombining LMMSE is better than the blind precombining LMMSE but for greater SNR, MOE scheme outperforms with better result.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14942453 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains
Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi
Abstract:
In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.
Keywords: Face recognition, Binary vector quantization (BVQ), Local Binary Patterns (LBP), DCT coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16182452 Clinical Benefits of an Embedded Decision Support System in Anticoagulant Control
Authors: Tony Austin, Shanghua Sun, Nathan Lea, Steve Iliffe, Dipak Kalra, David Ingram, David Patterson
Abstract:
Computer-based decision support (CDSS) systems can deliver real patient care and increase chances of long-term survival in areas of chronic disease management prone to poor control. One such CDSS, for the management of warfarin, is described in this paper and the outcomes shown. Data is derived from the running system and show a performance consistently around 20% better than the applicable guidelines.Keywords: "Decision Support", "Anticoagulant Control"
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19852451 Distributed GIS Based Decision Support System for Efficiency Evaluation of Education System: A Case Study of Primary School Education System of Bundelkhand Zone, Uttar Pradesh, India
Authors: Garima Srivastava, R. K. Srivastava, R. C. Vaishya
Abstract:
Decision Support System (DSS), a query-based system meant to help decision makers to use a variety of information for decision making, plays a very vital role in sustainable growth of any country. For this very purpose it is essential to analyze the educational system because education is the only way through which people can be made aware as to how to sustain our planet. The purpose of this paper is to prepare a decision support system for efficiency evaluation of education system with the help of Distributed Geographical Information System.
Keywords: Distributed GIS, Web GIS, Spatial Decision Support System, Bundelkhand Zone, Efficiency, Primary School Education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25622450 Acceleration-Based Motion Model for Visual SLAM
Authors: Daohong Yang, Xiang Zhang, Wanting Zhou, Lei Li
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) is a technology that gathers information about the surrounding environment to ascertain its own position and create a map. It is widely used in computer vision, robotics, and various other fields. Many visual SLAM systems, such as OBSLAM3, utilize a constant velocity motion model. The utilization of this model facilitates the determination of the initial pose of the current frame, thereby enhancing the efficiency and precision of feature matching. However, it is often difficult to satisfy the constant velocity motion model in actual situations. This can result in a significant deviation between the obtained initial pose and the true value, leading to errors in nonlinear optimization results. Therefore, this paper proposes a motion model based on acceleration that can be applied to most SLAM systems. To provide a more accurate description of the camera pose acceleration, we separate the pose transformation matrix into its rotation matrix and translation vector components. The rotation matrix is now represented by a rotation vector. We assume that, over a short period, the changes in rotating angular velocity and translation vector remain constant. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of the constant velocity model is analyzed theoretically. Finally, we apply our proposed approach to the ORBSLAM3 system and evaluate two sets of sequences from the TUM datasets. The results show that our proposed method has a more accurate initial pose estimation, resulting in an improvement of 6.61% and 6.46% in the accuracy of the ORBSLAM3 system on the two test sequences, respectively.
Keywords: Error estimation, constant acceleration motion model, pose estimation, visual SLAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492449 Importance of Mobile Technology in Successful Adoption and Sustainability of a Chronic Disease Support System
Authors: Reza Ariaeinejad, Norm Archer
Abstract:
Self-management is becoming a new emphasis for healthcare systems around the world. But there are many different problems with adoption of new health-related intervention systems. The situation is even more complicated for chronically ill patients with disabilities, illiteracy, and impairment in judgment in addition to their conditions, or having multiple co-morbidities. Providing online decision support to manage patient health and to provide better support for chronically ill patients is a new way of dealing with chronic disease management. In this study, the importance of mobile technology through an m-Health system that supports self-management interventions including the care provider, family and social support, education and training, decision support, recreation, and ongoing patient motivation to promote adherence and sustainability of the intervention are discussed. A proposed theoretical model for adoption and sustainability of system use is developed, based on UTAUT2 and IS Continuance of Use models, both of which have been pre-validated through longitudinal studies. The objective of this paper is to show the importance of using mobile technology in adoption and sustainability of use of an m-Health system which will result in commercially sustainable self-management support for chronically ill patients.
Keywords: M-health, e-health, self-management, disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28282448 Investigation of New Gait Representations for Improving Gait Recognition
Authors: Chirawat Wattanapanich, Hong Wei
Abstract:
This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.
Keywords: Convolutional image, lower knee, gait.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10672447 Non-Methane Hydrocarbons Emission during the Photocopying Process
Authors: Kiurski S. Jelena, Aksentijević M. Snežana, Kecić S. Vesna, Oros B. Ivana
Abstract:
Prosperity of electronic equipment in photocopying environment not only has improved work efficiency, but also has changed indoor air quality. Considering the number of photocopying employed, indoor air quality might be worse than in general office environments. Determining the contribution from any type of equipment to indoor air pollution is a complex matter. Non-methane hydrocarbons are known to have an important role on air quality due to their high reactivity. The presence of hazardous pollutants in indoor air has been detected in one photocopying shop in Novi Sad, Serbia. Air samples were collected and analyzed for five days, during 8-hr working time in three time intervals, whereas three different sampling points were determined. Using multiple linear regression model and software package STATISTICA 10 the concentrations of occupational hazards and microclimates parameters were mutually correlated. Based on the obtained multiple coefficients of determination (0.3751, 0.2389 and 0.1975), a weak positive correlation between the observed variables was determined. Small values of parameter F indicated that there was no statistically significant difference between the concentration levels of nonmethane hydrocarbons and microclimates parameters. The results showed that variable could be presented by the general regression model: y = b0 + b1xi1+ b2xi2. Obtained regression equations allow to measure the quantitative agreement between the variables and thus obtain more accurate knowledge of their mutual relations.Keywords: Indoor air quality, multiple regression analysis, nonmethane hydrocarbons, photocopying process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19732446 Acute Coronary Syndrome Prediction Using Data Mining Techniques- An Application
Authors: Tahseen A. Jilani, Huda Yasin, Madiha Yasin, C. Ardil
Abstract:
In this paper we use data mining techniques to investigate factors that contribute significantly to enhancing the risk of acute coronary syndrome. We assume that the dependent variable is diagnosis – with dichotomous values showing presence or absence of disease. We have applied binary regression to the factors affecting the dependent variable. The data set has been taken from two different cardiac hospitals of Karachi, Pakistan. We have total sixteen variables out of which one is assumed dependent and other 15 are independent variables. For better performance of the regression model in predicting acute coronary syndrome, data reduction techniques like principle component analysis is applied. Based on results of data reduction, we have considered only 14 out of sixteen factors.
Keywords: Acute coronary syndrome (ACS), binary logistic regression analyses, myocardial ischemia (MI), principle component analysis, unstable angina (U.A.).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21122445 Iris Recognition Based On the Low Order Norms of Gradient Components
Authors: Iman A. Saad, Loay E. George
Abstract:
Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.
Keywords: Iris recognition, contrast stretching, gradient features, texture features, Euclidean metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19642444 New Regression Model and I-Kaz Method for Online Cutting Tool Wear Monitoring
Authors: Jaharah A. Ghani, Muhammad Rizal, Ahmad Sayuti, Mohd Zaki Nuawi, Mohd Nizam Ab. Rahman, Che Hassan Che Haron
Abstract:
This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals using the regression model and I-kaz method. The detection of tool wear was done automatically using the in-house developed regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out on a CNC turning machine Colchester Master Tornado T4 in dry cutting condition, and Kistler 9255B dynamometer was used to measure the cutting force signals, which then stored and displayed in the DasyLab software. The progression of the cutting tool flank wear land (VB) was indicated by the amount of the cutting force generated. Later, the I-kaz was used to analyze all the cutting force signals from beginning of the cut until the rejection stage of the cutting tool. Results of the IKaz analysis were represented by various characteristic of I-kaz 3D coefficient and 3D graphic presentation. The I-kaz 3D coefficient number decreases when the tool wear increases. This method can be used for real time tool wear monitoring.Keywords: mathematical model, I-kaz method, tool wear
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23982443 A Fuzzy Time Series Forecasting Model for Multi-Variate Forecasting Analysis with Fuzzy C-Means Clustering
Authors: Emrah Bulut, Okan Duru, Shigeru Yoshida
Abstract:
In this study, a fuzzy integrated logical forecasting method (FILF) is extended for multi-variate systems by using a vector autoregressive model. Fuzzy time series forecasting (FTSF) method was recently introduced by Song and Chissom [1]-[2] after that Chen improved the FTSF method. Rather than the existing literature, the proposed model is not only compared with the previous FTS models, but also with the conventional time series methods such as the classical vector autoregressive model. The cluster optimization is based on the C-means clustering method. An empirical study is performed for the prediction of the chartering rates of a group of dry bulk cargo ships. The root mean squared error (RMSE) metric is used for the comparing of results of methods and the proposed method has superiority than both traditional FTS methods and also the classical time series methods.
Keywords: C-means clustering, Fuzzy time series, Multi-variate design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22982442 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images
Authors: A. Biran, P. Sobhe Bidari, A. Almazroe V. Lakshminarayanan, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.Keywords: Diabetic retinopathy, fundus images, STARE, Gabor filter, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16652441 An Intelligent Human-Computer Interaction System for Decision Support
Authors: Chee Siong Teh, Chee Peng Lim
Abstract:
This paper proposes a novel architecture for developing decision support systems. Unlike conventional decision support systems, the proposed architecture endeavors to reveal the decision-making process such that humans' subjectivity can be incorporated into a computerized system and, at the same time, to preserve the capability of the computerized system in processing information objectively. A number of techniques used in developing the decision support system are elaborated to make the decisionmarking process transparent. These include procedures for high dimensional data visualization, pattern classification, prediction, and evolutionary computational search. An artificial data set is first employed to compare the proposed approach with other methods. A simulated handwritten data set and a real data set on liver disease diagnosis are then employed to evaluate the efficacy of the proposed approach. The results are analyzed and discussed. The potentials of the proposed architecture as a useful decision support system are demonstrated.
Keywords: Interactive evolutionary computation, multivariate data projection, pattern classification, topographic map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14532440 Proffering a Brand New Methodology to Resource Discovery in Grid based on Economic Criteria Using Learning Automata
Authors: Ali Sarhadi, Mohammad Reza Meybodi, Ali Yousefi
Abstract:
Resource discovery is one of the chief services of a grid. A new approach to discover the provenances in grid through learning automata has been propounded in this article. The objective of the aforementioned resource-discovery service is to select the resource based upon the user-s applications and the mercantile yardsticks that is to say opting for an originator which can accomplish the user-s tasks in the most economic manner. This novel service is submitted in two phases. We proffered an applicationbased categorization by means of an intelligent nerve-prone plexus. The user in question sets his or her application as the input vector of the nerve-prone nexus. The output vector of the aforesaid network limns the appropriateness of any one of the resource for the presented executive procedure. The most scrimping option out of those put forward in the previous stage which can be coped with to fulfill the task in question is picked out. Te resource choice is carried out by means of the presented algorithm based upon the learning automata.
Keywords: Resource discovery, learning automata, neural network, economic policy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14522439 The Link between Money Market and Economic Growth in Nigeria: Vector Error Correction Model Approach
Authors: Ehigiamusoe, Uyi Kizito
Abstract:
The paper examines the impact of money market on economic growth in Nigeria using data for the period 1980-2012. Econometrics techniques such as Ordinary Least Squares Method, Johanson’s Co-integration Test and Vector Error Correction Model were used to examine both the long-run and short-run relationship. Evidence from the study suggest that though a long-run relationship exists between money market and economic growth, but the present state of the Nigerian money market is significantly and negatively related to economic growth. The link between the money market and the real sector of the economy remains very weak. This implies that the market is not yet developed enough to produce the needed growth that will propel the Nigerian economy because of several challenges. It was therefore recommended that government should create the appropriate macroeconomic policies, legal framework and sustain the present reforms with a view to developing the market so as to promote productive activities, investments, and ultimately economic growth.
Keywords: Economic Growth, Investments, Money Market, Money Market Challenges, Money Market Instruments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84962438 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.
Keywords: Grey relational degree, multiple linear regression, membership function, nonlinear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14062437 A Study on a Research and Development Cost-Estimation Model in Korea
Authors: Babakina Alexandra, Yong Soo Kim
Abstract:
In this study, we analyzed the factors that affect research funds using linear regression analysis to increase the effectiveness of investments in national research projects. We collected 7,916 items of data on research projects that were in the process of being finished or were completed between 2010 and 2011. Data pre-processing and visualization were performed to derive statistically significant results. We identified factors that affected funding using analysis of fit distributions and estimated increasing or decreasing tendencies based on these factors.
Keywords: R&D funding, Cost estimation, Linear regression, Preliminary feasibility study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22452436 The Effect of Peer Support to Interpersonal Problem Solving Tendencies and Skills in Nursing Students
Authors: B. Özlük, A. Karaaslan
Abstract:
This study has been conducted as a supplementary and relationship seeking study with the purpose of measuring the tendency and success of support among peers amid nursing students studying at university in solving interpersonal problems. The population of the study (N:279) is comprised of nursing students who are studying at one state and one private university in the province of Konya, while its sample is comprised of 231 nursing students who agreed to take part in the study voluntarily. As a result of this study, it has been determined that the peer support and interpersonal problem solving characteristics among students were at medium levels and that the interpersonal problem solving skills of students studying in the third year were higher than those of first and second year students. While the interpersonal problem solving characteristics of students who are aged 20 and over were found to be higher, no difference could be determined in terms of the interpersonal problem solving skills and tendencies among students, based on their gender and where they reside. A positive – to a medium degree – and significant relationship was determined between peer support and interpersonal problem solving skills, and it is possible to say that as peer support increases, so do the skills and tendencies to solve problems.
Keywords: Interpersonal problem, nursing students, peer support, problem solving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13672435 Enhance Halorespiration in Rhodopseudomonas palustris with Cytochrome P450cam System from Pseudomonas putida
Authors: Shou-Chen Lo, Chia-Ching Lin, Chieh-Chen Huang
Abstract:
To decompose organochlorides by bioremediation, co-culture biohydrogen producer and dehalogenation microorganisms is a useful method. In this study, we combined these two characteristics from a biohydrogen producer, Rhodopseudomonas palustris, and a dehalogenation microorganism, Pseudomonas putida, to enchance halorespiration in R. palustris. The genes encoding cytochrome P450cam system (camC, camA, and camB) from P. putida were expressed in R. palustris with designated expression plasmid. All tested strains were cultured to log phase then presented pentachloroethane (PCA) in media. The vector control strain could degrade PCA about 78% after 16 hours, however, the cytochrome P450cam system expressed strain, CGA-camCAB, could completely degrade PCA in 12 hours. While taking chlorinated aromatic, 3-chlorobenzoate, as sole carbon source or present benzoate as co-substrate, CGA-camCAB presented faster growth rate than vector control strain.
Keywords: cytochrome P450, halorespiration, nitrogen fixation, Rhodopseudomonas palustris CGA009
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19472434 Comparison of Bayesian and Regression Schemes to Model Public Health Services
Authors: Sotirios Raptis
Abstract:
Bayesian reasoning (BR) or Linear (Auto) Regression (AR/LR) can predict different sources of data using priors or other data, and can link social service demands in cohorts, while their consideration in isolation (self-prediction) may lead to service misuse ignoring the context. The paper advocates that BR with Binomial (BD), or Normal (ND) models or raw data (.D) as probabilistic updates can be compared to AR/LR to link services in Scotland and reduce cost by sharing healthcare (HC) resources. Clustering, cross-correlation, along with BR, LR, AR can better predict demand. Insurance companies and policymakers can link such services, and examples include those offered to the elderly, and low-income people, smoking-related services linked to mental health services, or epidemiological weight in children. 22 service packs are used that are published by Public Health Services (PHS) Scotland and Scottish Government (SG) from 1981 to 2019, broken into 110 year series (factors), joined using LR, AR, BR. The Primary component analysis found 11 significant factors, while C-Means (CM) clustering gave five major clusters.
Keywords: Bayesian probability, cohorts, data frames, regression, services, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222433 Performance Evaluation of a Neural Network based General Purpose Space Vector Modulator
Authors: A.Muthuramalingam, S.Himavathi
Abstract:
Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for an inverter used in a variable frequency drive applications. It is computationally rigorous and hence limits the inverter switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained, the network with minimum resource and appropriate word length is identified. The bit precision required for this application is identified. The network with 8-bit precision is implemented in the IC XCV 400 and the results are presented. The performance of NN based general purpose SVM with higher bit precision is discussed.Keywords: NN based SVM, FPGA Implementation, LayerMultiplexing, NN structure and Resource Reduction, PerformanceEvaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489