Search results for: Simpson’s rule and Volterra integro-differential equations.
1117 Evolutionary of Prostate Cancer Stem Cells in Prostate Duct
Authors: Zachariah Sinkala
Abstract:
A systems approach model for prostate cancer in prostate duct, as a sub-system of the organism is developed. It is accomplished in two steps. First this research work starts with a nonlinear system of coupled Fokker-Plank equations which models continuous process of the system like motion of cells. Then extended to PDEs that include discontinuous processes like cell mutations, proliferation and deaths. The discontinuous processes is modeled by using intensity poisson processes. The model incorporates the features of the prostate duct. The system of PDEs spatial coordinate is along the proximal distal axis. Its parameters depend on features of the prostate duct. The movement of cells is biased towards distal region and mutations of prostate cancer cells is localized in the proximal region. Numerical solutions of the full system of equations are provided, and are exhibit traveling wave fronts phenomena. This motivates the use of the standard transformation to derive a canonically related system of ODEs for traveling wave solutions. The results obtained show persistence of prostate cancer by showing that the non-negative cone for the traveling wave system is time invariant. The traveling waves have a unique global attractor is proved also. Biologically, the global attractor verifies that evolution of prostate cancer stem cells exhibit the avascular tumor growth. These numerical solutions show that altering prostate stem cell movement or mutation of prostate cancer cells lead to avascular tumor. Conclusion with comments on clinical implications of the model is discussed.
Keywords: Fokker-Plank equations, global attractor, stem cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19031116 Nonlinear Modelling of Sloshing Waves and Solitary Waves in Shallow Basins
Authors: Mohammad R. Jalali, Mohammad M. Jalali
Abstract:
The earliest theories of sloshing waves and solitary waves based on potential theory idealisations and irrotational flow have been extended to be applicable to more realistic domains. To this end, the computational fluid dynamics (CFD) methods are widely used. Three-dimensional CFD methods such as Navier-Stokes solvers with volume of fluid treatment of the free surface and Navier-Stokes solvers with mappings of the free surface inherently impose high computational expense; therefore, considerable effort has gone into developing depth-averaged approaches. Examples of such approaches include Green–Naghdi (GN) equations. In Cartesian system, GN velocity profile depends on horizontal directions, x-direction and y-direction. The effect of vertical direction (z-direction) is also taken into consideration by applying weighting function in approximation. GN theory considers the effect of vertical acceleration and the consequent non-hydrostatic pressure. Moreover, in GN theory, the flow is rotational. The present study illustrates the application of GN equations to propagation of sloshing waves and solitary waves. For this purpose, GN equations solver is verified for the benchmark tests of Gaussian hump sloshing and solitary wave propagation in shallow basins. Analysis of the free surface sloshing of even harmonic components of an initial Gaussian hump demonstrates that the GN model gives predictions in satisfactory agreement with the linear analytical solutions. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave interactions. Numerically predicted solitary wave propagation indicates that the GN model produces simulations in good agreement with the analytical solution of the linearised wave theory. Comparison between the GN model numerical prediction and the result from perturbation analysis confirms that nonlinear interaction between solitary wave and a solid wall is satisfactorilly modelled. Moreover, solitary wave propagation at an angle to the x-axis and the interaction of solitary waves with each other are conducted to validate the developed model.
Keywords: Even harmonic components of sloshing waves, Green–Naghdi equations, nonlinearity, solitary waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8631115 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection
Authors: Vikas Kumar
Abstract:
The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. The results thus obtained are presented numerically and graphically in the paper.
Keywords: Axi-symmetric, ferrofluid, magnetic field, porous rotating disk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20551114 Study of Mixed Convection in a Vertical Channel Filled with a Reactive Porous Medium in the Absence of Local Thermal Equilibrium
Authors: Hamid Maidat, Khedidja Bouhadef, Djamel Eddine Ameziani, Azzedine Abdedou
Abstract:
This work consists of a numerical simulation of convective heat transfer in a vertical plane channel filled with a heat generating porous medium, in the absence of local thermal equilibrium. The walls are maintained to a constant temperature and the inlet velocity is uniform. The dynamic range is described by the Darcy-Brinkman model and the thermal field by two energy equations model. A dimensionless formulation is developed for performing a parametric study based on certain dimensionless groups such as, the Biot interstitial number, the thermal conductivity ratio and the volumetric heat generation, q '''. The governing equations are solved using the finite volume method, gave rise to a multitude of results concerning in particular the thermal field in the porous channel and the existence or not of the local thermal equilibrium.Keywords: Mixed convection, porous medium, power generation, local thermal non equilibrium model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15851113 Flexure of Simply Supported Thick Beams Using Refined Shear Deformation Theory
Authors: Yuwaraj M. Ghugal, Ajay G. Dahake
Abstract:
A trigonometric shear deformation theory for flexure of thick beams, taking into account transverse shear deformation effects, is developed. The number of variables in the present theory is same as that in the first order shear deformation theory. The sinusoidal function is used in displacement field in terms of thickness coordinate to represent the shear deformation effects. The noteworthy feature of this theory is that the transverse shear stresses can be obtained directly from the use of constitutive relations with excellent accuracy, satisfying the shear stress free conditions on the top and bottom surfaces of the beam. Hence, the theory obviates the need of shear correction factor. Governing differential equations and boundary conditions are obtained by using the principle of virtual work. The thick simply supported isotropic beams are considered for the numerical studies to demonstrate the efficiency of the results obtained is discussed critically with those of other theories.
Keywords: Trigonometric shear deformation, thick beam, flexure, principle of virtual work, equilibrium equations, stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14861112 Study of Stress Wave Propagation with NHDMOC
Authors: G.Y. Zhang , M.L. Xu, R.Q. Zhang, W.H. Tang
Abstract:
MOC (method of cell) is a new method of investigating wave propagating in material with periodic microstructure, and can reflect the effect of microstructure. Wave propagation in periodically laminated medium consisting of linearly elastic layers can be treated as a special application of this method. In this paper, it was used to simulate the dynamic response of carbon-phenolic to impulsive loading under certain boundary conditions. From the comparison between the results obtained from this method and the exact results based on propagator matrix theory, excellent agreement is achieved. Conclusion can be made that the oscillation periodicity is decided by the thickness of sub-cells. In the end, the NHDMOC method, which permits studying stress wave propagation with one dimensional strain, was applied to study the one-dimensional stress wave propagation. In this paper, the ZWT nonlinear visco-elastic constitutive relationship with 7 parameters, NHDMOC, and corresponding equations were deduced. The equations were verified, comparing the elastic stress wave propagation in SHPB with, respectively, the elastic and the visco-elastic bar. Finally the dispersion and attenuation of stress wave in SHPB with visco-elastic bar was studied.Keywords: MOC, NHDMOC, visco-elastic, wave propagation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19291111 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid
Authors: Win Ko Ko, A. N. Temnov
Abstract:
The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.
Keywords: Hydrodynamic coefficients, instability region, nonlinear oscillations, resonance frequency, two-layered liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5651110 Linear Dynamic Stability Analysis of a Continuous Rotor-Disk-Blades System
Authors: F. Rahimi Dehgolan, S. E. Khadem, S. Bab, M. Najafee
Abstract:
Nowadays, using rotating systems like shafts and disks in industrial machines have been increased constantly. Dynamic stability is one of the most important factors in designing rotating systems. In this study, linear frequencies and stability of a coupled continuous flexible rotor-disk-blades system are studied. The Euler-Bernoulli beam theory is utilized to model the blade and shaft. The equations of motion are extracted using the extended Hamilton principle. The equations of motion have been simplified using the Coleman and complex transformations method. The natural frequencies of the linear part of the system are extracted, and the effects of various system parameters on the natural frequencies and decay rates (stability condition) are clarified. It can be seen that the centrifugal stiffening effect applied to the blades is the most important parameter for stability of the considered rotating system. This result highlights the importance of considering this stiffing effect in blades equation.Keywords: Rotating shaft, flexible blades, centrifugal stiffening, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15091109 Traumatic Ankle Pain: Adequacy of Clinical Information in X-Ray Request with Reference to the Ottawa Ankle Rule
Authors: Rania Mustafa
Abstract:
This audit was conducted at Manchester University NHS Foundation Trust, Wythenshawe Hospital Radiology and Accident and Emergency [A&E] Department to assess the appropriateness of clinical information in X-ray requests, specifically in cases of acute ankle injuries. As per the Ottawa Ankle Rules and the recommendations of National Institute for Health and Care Excellence [NICE] and the Royal College of Radiology, we aimed to evaluate the appropriateness of referrals and the thoroughness of clinical information provided by Emergency Department [ED] clinicians for ankle radiography. Our goal was to achieve 100% compliance with these guidelines. The audit involved a comprehensive analysis spanning the period from August 2022 to January 2023, encompassing patient records, radiographic orders, and clinical assessments. Data collection included patient demographics, presenting complaints, clinical assessments, adherence to Ottawa Ankle Rules criteria, and subsequent radiography orders. Here we conducted two audit cycles, involving 38 patients in the first cycle and 86 patients in the second cycle. The data were furtherly filtered to include all patients who were referred from the ED for an ankle Xray with a history of acute trauma and age of more than 18 years. The key finding was that in August 2022, 60% of cases met the Ottawa Ankle Rules criteria accurately, indicating a need for improvement in adherence. However, by January 2023, there was a notable improvement, with 95% of cases accurately meeting the criteria. This significant change reflects an increased alignment with best practices for ankle radiography referrals.
Keywords: Ankle, injuries, Ottawa Ankle Rule, X-rays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901108 Prediction of the Total Decay Heat from Fast Neutron Fission of 235U and 239Pu
Authors: Sherif. S. Nafee, Ameer. K. Al-Ramady, Salem. A. Shaheen
Abstract:
The analytical prediction of the decay heat results from the fast neutron fission of actinides was initiated under a project, 10-MAT1134-3, funded by king Abdulaziz City of Science and Technology (KASCT), Long-Term Comprehensive National Plan for Science, Technology and Innovations, managed by a team from King Abdulaziz University (KAU), Saudi Arabia, and supervised by Argonne National Laboratory (ANL) has collaborated with KAU's team to assist in the computational analysis. In this paper, the numerical solution of coupled linear differential equations that describe the decays and buildups of minor fission product MFA, has been used to predict the total decay heat and its components from the fast neutron fission of 235U and 239Pu. The reliability of the present approach is illustrated via systematic comparisons with the measurements reported by the University of Tokyo, in YAYOI reactor.Keywords: Decay heat, fast neutron fission, and Numerical Solution of Linear Differential Equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14911107 A Class of Formal Operators for Combinatorial Identities and its Application
Authors: Ruigang Zhang, Wuyungaowa, Xingchen Ma
Abstract:
In this paper, we present some formulas of symbolic operator summation, which involving Generalization well-know number sequences or polynomial sequences, and mean while we obtain some identities about the sequences by employing M-R‘s substitution rule.
Keywords: Generating functions, operators sequence group, Riordan arrays, R. G operator group, combinatorial identities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18051106 Analytical Based Truncation Principle of Higher-Order Solution for a x1/3 Force Nonlinear Oscillator
Authors: Md. Alal Hosen
Abstract:
In this paper, a modified harmonic balance method based an analytical technique has been developed to determine higher-order approximate periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to x1/3. Usually, a set of nonlinear algebraic equations is solved in this method. However, analytical solutions of these algebraic equations are not always possible, especially in the case of a large oscillation. In this article, different parameters of the same nonlinear problems are found, for which the power series produces desired results even for the large oscillation. We find a modified harmonic balance method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Besides these, a suitable truncation formula is found in which the solution measures better results than existing solutions. The method is mainly illustrated by the x1/3 force nonlinear oscillator but it is also useful for many other nonlinear problems.
Keywords: Approximate solutions, Harmonic balance method, Nonlinear oscillator, Perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14311105 Study on the Variation Effects of Diverging Angleon Characteristics of Flow in Converging and Diverging Ducts by Numerical Method
Authors: Moghiman Mohammad, Amiri Maryam, Amiri Amirhosein
Abstract:
The present paper develops and validates a numerical procedure for the calculation of turbulent combustive flow in converging and diverging ducts and throuh simulation of the heat transfer processes, the amount of production and spread of Nox pollutant has been measured. A marching integration solution procedure employing the TDMA is used to solve the discretized equations. The turbulence model is the Prandtl Mixing Length method. Modeling the combustion process is done by the use of Arrhenius and Eddy Dissipation method. Thermal mechanism has been utilized for modeling the process of forming the nitrogen oxides. Finite difference method and Genmix numerical code are used for numerical solution of equations. Our results indicate the important influence of the limiting diverging angle of diffuser on the coefficient of recovering of pressure. Moreover, due to the intense dependence of Nox pollutant to the maximum temperature in the domain with this feature, the Nox pollutant amount is also in maximum level.
Keywords: Converging and Diverging Duct, Combustion, Diffuser, Diverging Angle, Nox
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15371104 Interaction of Electroosmotic Flow on Isotachophoretic Transport of Ions
Authors: S. Bhattacharyya, Partha P. Gopmandal
Abstract:
A numerical study on the influence of electroosmotic flow on analyte preconcentration by isotachophoresis ( ITP) is made. We consider that the double layer induced electroosmotic flow ( EOF) counterbalance the electrophoretic velocity and a stationary ITP stacked zones results. We solve the Navier-Stokes equations coupled with the Nernst-Planck equations to determine the local convective velocity and the preconcentration dynamics of ions. Our numerical algorithm is based on a finite volume method along with a secondorder upwind scheme. The present numerical algorithm can capture the the sharp boundaries of step-changes ( plateau mode) or zones of steep gradients ( peak mode) accurately. The convection of ions due to EOF reduces the resolution of the ITP transition zones and produces a dispersion in analyte zones. The role of the electrokinetic parameters which induces dispersion is analyzed. A one-dimensional model for the area-averaged concentrations based on the Taylor-Aristype effective diffusivity is found to be in good agreement with the computed solutions.
Keywords: Interfaces, Electroosmotic flow, QUICK Scheme, Dispersion, Effective Diffusivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621103 Performance Modeling and Availability Analysis of Yarn Dyeing System of a Textile Industry
Authors: P. C. Tewari, Rajiv Kumar, Dinesh Khanduja
Abstract:
This paper discusses the performance modeling and availability analysis of Yarn Dyeing System of a Textile Industry. The Textile Industry is a complex and repairable engineering system. Yarn Dyeing System of Textile Industry consists of five subsystems arranged in series configuration. For performance modeling and analysis of availability, a performance evaluating model has been developed with the help of mathematical formulation based on Markov-Birth-Death Process. The differential equations have been developed on the basis of Probabilistic Approach using a Transition Diagram. These equations have further been solved using normalizing condition in order to develop the steady state availability, a performance measure of the system concerned. The system performance has been further analyzed with the help of decision matrices. These matrices provide various availability levels for different combinations of failure and repair rates for various subsystems. The findings of this paper are therefore, considered to be useful for the analysis of availability and determination of the best possible maintenance strategies which can be implemented in future to enhance the system performance.
Keywords: Availability Analysis, Markov Process, Performance Modeling, Steady State Availability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23021102 Reduced Rule Based Fuzzy Logic Controlled Isolated Bidirectional Converter Operating in Extended Phase Shift Control for Bidirectional Energy Transfer
Authors: Anupam Kumar, Abdul Hamid Bhat, Pramod Agarwal
Abstract:
Bidirectional energy transfer capability with high efficiency and reduced cost is fast gaining prominence in the central part of a lot of power conversion systems in Direct Current (DC) microgrid. Preferably, under the economics constraints, these systems utilise a single high efficiency power electronics conversion system and a dual active bridge converter. In this paper, modeling and performance of Dual Active Bridge (DAB) converter with Extended Phase Shift (EPS) is evaluated with two batteries on both sides of DC bus and bidirectional energy transfer is facilitated and this is further compared with the Single Phase Shift (SPS) mode of operation. Optimum operating zone is identified through exhaustive simulations using MATLAB/Simulink and SimPowerSystem software. Reduced rules based fuzzy logic controller is implemented for closed loop control of DAB converter. The control logic enables the bidirectional energy transfer within the batteries even at lower duty ratios. Charging and discharging of batteries is supervised by the fuzzy logic controller. State of charge, current and voltage for both the batteries are plotted in the battery characteristics. Power characteristics of batteries are also obtained using MATLAB simulations.
Keywords: Fuzzy logic controller, rule base, membership functions, dual active bridge converter, bidirectional power flow, duty ratio, extended phase shift, state of charge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8701101 Modeling And Analysis of Simple Open Cycle Gas Turbine Using Graph Networks
Authors: Naresh Yadav, I.A. Khan, Sandeep Grover
Abstract:
This paper presents a unified approach based graph theory and system theory postulates for the modeling and analysis of Simple open cycle Gas turbine system. In the present paper, the simple open cycle gas turbine system has been modeled up to its subsystem level and system variables have been identified to develop the process subgraphs. The theorems and algorithms of the graph theory have been used to represent behavioural properties of the system like rate of heat and work transfers rates, pressure drops and temperature drops in the involved processes of the system. The processes have been represented as edges of the process subgraphs and their limits as the vertices of the process subgraphs. The system across variables and through variables has been used to develop terminal equations of the process subgraphs of the system. The set of equations developed for vertices and edges of network graph are used to solve the system for its process variables.Keywords: Simple open cycle gas turbine, Graph theoretic approach, process subgraphs, gas turbines system modeling, systemtheory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26421100 Effect of Footing Shape on Bearing Capacity and Settlement of Closely Spaced Footings on Sandy Soil
Authors: A. Shafaghat, H. Khabbaz, S. Moravej, Ah. Shafaghat
Abstract:
The bearing capacity of closely spaced shallow footings alters with their spacing and the shape of footing. In this study, the bearing capacity and settlement of two adjacent footings constructed on a sand layer are investigated. The effect of different footing shapes including square, circular, ring and strip on sandy soil is captured in the calculations. The investigations are carried out numerically using PLAXIS-3D software and analytically employing conventional settlement equations. For this purpose, foundations are modelled in the program with practical dimensions and various spacing ratios ranging from 1 to 5. The spacing ratio is defined as the centre-to-centre distance to the width of foundations (S/B). Overall, 24 models are analyzed; and the results are compared and discussed in detail. It can be concluded that the presence of adjacent foundation leads to the reduction in bearing capacity for round shape footings while it can increase the bearing capacity of rectangular footings in some specific distances.
Keywords: Bearing capacity, finite element analysis, loose sand, settlement equations, shallow foundation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10701099 Solver for a Magnetic Equivalent Circuit and Modeling the Inrush Current of a 3-Phase Transformer
Authors: Markus G. Ortner, Christian Magele, Klaus Krischan
Abstract:
Knowledge about the magnetic quantities in a magnetic circuit is always of great interest. On the one hand, this information is needed for the simulation of a transformer. On the other hand, parameter studies are more reliable, if the magnetic quantities are derived from a well established model. One possibility to model the 3-phase transformer is by using a magnetic equivalent circuit (MEC). Though this is a well known system, it is often not an easy task to set up such a model for a large number of lumped elements which additionally includes the nonlinear characteristic of the magnetic material. Here we show the setup of a solver for a MEC and the results of the calculation in comparison to measurements taken. The equations of the MEC are based on a rearranged system of the nodal analysis. Thus it is possible to achieve a minimum number of equations, and a clear and simple structure. Hence, it is uncomplicated in its handling and it supports the iteration process. Additional helpful tasks are implemented within the solver to enhance the performance. The electric circuit is described by an electric equivalent circuit (EEC). Our results for the 3-phase transformer demonstrate the computational efficiency of the solver, and show the benefit of the application of a MEC.
Keywords: Inrush current, magnetic equivalent circuit, nonlinear behavior, transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24661098 A Comparative Study of Turbulence Models Performance for Turbulent Flow in a Planar Asymmetric Diffuser
Authors: Samy M. El-Behery, Mofreh H. Hamed
Abstract:
This paper presents a computational study of the separated flow in a planer asymmetric diffuser. The steady RANS equations for turbulent incompressible fluid flow and six turbulence closures are used in the present study. The commercial software code, FLUENT 6.3.26, was used for solving the set of governing equations using various turbulence models. Five of the used turbulence models are available directly in the code while the v2-f turbulence model was implemented via User Defined Scalars (UDS) and User Defined Functions (UDF). A series of computational analysis is performed to assess the performance of turbulence models at different grid density. The results show that the standard k-ω, SST k-ω and v2-f models clearly performed better than other models when an adverse pressure gradient was present. The RSM model shows an acceptable agreement with the velocity and turbulent kinetic energy profiles but it failed to predict the location of separation and attachment points. The standard k-ε and the low-Re k- ε delivered very poor results.
Keywords: Turbulence models, turbulent flow, wall functions, separation, reattachment, diffuser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37691097 Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts
Authors: Punit Kumar, Niraj Kumar
Abstract:
The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.Keywords: EHL, linear pressure-viscosity, surface roughness, traction, water/glycol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12591096 Optimization of Fin Type and Fin per Inch on Heat Transfer and Pressure Drop of an Air Cooler
Authors: A. Falavand Jozaei, A. Ghafouri
Abstract:
Operation enhancement in an air cooler depends on rate of heat transfer, and pressure drop. In this paper for a given heat duty, study of the effects of FPI (Fin Per Inch) and fin type (circular and hexagonal fins) on heat transfer, and pressure drop in an air cooler in Iran, Arvand petrochemical. A program in EES (Engineering Equations Solver) software moreover, Aspen B-JAC and HTFS+ softwares are used for this purpose to solve governing equations. At first the simulated results obtained from this program is compared to the experimental data for two cases of FPI. The effects of FPI from 3 to 15 over heat transfer (Q) to pressure drop ratio (Q/Δp ratio). This ratio is one of the main parameters in design, and simulation heat exchangers. The results show that heat transfer (Q) and pressure drop increase with increasing FPI steadily, and the Q/Δp ratio increases to FPI=12 and then decreased gradually to FPI=15, and Q/Δp ratio is maximum at FPI=12. The FPI value selection between 8 and 12 obtained as a result to optimum heat transfer to pressure drop ratio. Also by contrast, between circular and hexagonal fins results, the Q/Δp ratio of hexagonal fins more than Q/Δp ratio of circular fins for FPI between 8 and 12 (optimum FPI)Keywords: Air cooler, circular and hexagonal fins, fin per inch, heat transfer and pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46901095 Application of Load Transfer Technique for Distribution Power Flow Analysis
Authors: Udomsak Thongkrajay, Padej Pao-La-Or, Thanatchai Kulworawanichpong
Abstract:
Installation of power compensation equipment in some cases places additional buses into the system. Therefore, a total number of power flow equations and voltage unknowns increase due to additional locations of installed devices. In this circumstance, power flow calculation is more complicated. It may result in a computational convergence problem. This paper presents a power flow calculation by using Newton-Raphson iterative method together with the proposed load transfer technique. This concept is to eliminate additional buses by transferring installed loads at the new buses to existing two adjacent buses. Thus, the total number of power flow equations is not changed. The overall computational speed is expectedly shorter than that of solving the problem without applying the load transfer technique. A 15-bus test system is employed for test to evaluate the effectiveness of the proposed load transfer technique. As a result, the total number of iteration required and execution time is significantly reduced.Keywords: Load transfer technique, Newton-Raphson power flow, ill-condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16501094 Performance Study of Scraped Surface Heat Exchanger with Helical Ribbons
Abstract:
In this work, numerical simulations were carried out using a specific CFD code in order to study the performance of an innovative Scraped Surface Heat Exchanger (SSHE) with helical ribbons for Bingham fluids (threshold fluids). The resolution of three-dimensional form of the conservation equations (continuity, momentum and energy equations) was carried out basing on the finite volume method (FVM). After studying the effect of dimensionless numbers (axial Reynolds, rotational Reynolds and Oldroyd numbers) on the hydrodynamic and thermal behaviors within SSHE, a parametric study was developed, by varying the width of the helical ribbon, the clearance between the stator wall and the tip of the ribbon and the number of turns of the helical ribbon, in order to improve the heat transfer inside the exchanger. The effect of these geometrical numbers on the hydrodynamic and thermal behaviors was discussed.Keywords: Heat transfer, helical ribbons, hydrodynamic behavior, parametric study, scraped surface heat exchanger, thermal behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12491093 Chaotic Oscillations of Diaphragm Supported by Nonlinear Springs with Hysteresis
Authors: M. Sasajima, T. Yamaguchi, Y. Koike, A. Hara
Abstract:
This paper describes vibration analysis using the finite element method for a small earphone, especially for the diaphragm shape with a low-rigidity. The viscoelastic diaphragm is supported by multiple nonlinear concentrated springs with linear hysteresis damping. The restoring forces of the nonlinear springs have cubic nonlinearity. The finite elements for the nonlinear springs with hysteresis are expressed and are connected to the diaphragm that is modeled by linear solid finite elements in consideration of a complex modulus of elasticity. Further, the discretized equations in physical coordinates are transformed into the nonlinear ordinary coupled equations using normal coordinates corresponding to the linear natural modes. We computed the nonlinear stationary and non-stationary responses due to the internal resonance between modes with large amplitude in the nonlinear springs and elastic modes in the diaphragm. The non-stationary motions are confirmed as the chaos due to the maximum Lyapunov exponents with a positive number. From the time histories of the deformation distribution in the chaotic vibration, we identified nonlinear modal couplings.Keywords: Nonlinear Vibration, Finite Element Method, Chaos , Small Earphone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17831092 Discontinuous Galerkin Method for 1D Shallow Water Flow with Water Surface Slope Limiter
Authors: W. Lai, A. A. Khan
Abstract:
A water surface slope limiting scheme is tested and compared with the water depth slope limiter for the solution of one dimensional shallow water equations with bottom slope source term. Numerical schemes based on the total variation diminishing Runge- Kutta discontinuous Galerkin finite element method with slope limiter schemes based on water surface slope and water depth are used to solve one-dimensional shallow water equations. For each slope limiter, three different Riemann solvers based on HLL, LF, and Roe flux functions are used. The proposed water surface based slope limiter scheme is easy to implement and shows better conservation property compared to the slope limiter based on water depth. Of the three flux functions, the Roe approximation provides the best results while the LF function proves to be least suitable when used with either slope limiter scheme.Keywords: Discontinuous finite element, TVD Runge-Kuttascheme, slope limiters, Riemann solvers, shallow water flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26041091 Effect of Prandtl Number on Natural Convection Heat Transfer from a Heated Semi-Circular Cylinder
Authors: Avinash Chandra, R. P. Chhabra
Abstract:
Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number. The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number, . The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. The resulting flow and temperature fields are visualized in terms of the streamline and isotherm patterns in the proximity of the cylinder. The flow remains attached to the cylinder surface over the range of conditions spanned here except that for and ; at these conditions, a separated flow region is observed when the condition of the constant wall temperature is prescribed on the surface of the cylinder. The heat transfer characteristics are analyzed in terms of the local and average Nusselt numbers. The maximum value of the local Nusselt number always occurs at the corner points whereas it is found to be minimum at the rear stagnation point on the flat surface. Overall, the average Nusselt number increases with Grashof number and/ or Prandtl number in accordance with the scaling considerations. The numerical results are used to develop simple correlations as functions of Grashof and Prandtl number thereby enabling the interpolation of the present numerical results for the intermediate values of the Prandtl or Grashof numbers for both thermal boundary conditions.Keywords: Constant heat flux, Constant surface temperature, Grashof number, natural convection, Prandtl number, Semi-circular cylinder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34151090 Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger
Authors: Hanan Rizk
Abstract:
Heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques, and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed the proportional–integral–derivative (PID) controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.
Keywords: heat exchanger, multi-input multi-output system, MATLAB simulation, partial differential equations, PID controller, robust control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6951089 Decay Heat Contribution Analyses of Curium Isotopes in the Mixed Oxide Nuclear Fuel
Authors: S. S. Nafee, A. K. Al-Ramady, S. A. Shaheen
Abstract:
The mixed oxide nuclear fuel (MOX) of U and Pu contains several percent of fission products and minor actinides, such as neptunium, americium and curium. It is important to determine accurately the decay heat from Curium isotopes as they contribute significantly in the MOX fuel. This heat generation can cause samples to melt very quickly if excessive quantities of curium are present. In the present paper, we introduce a new approach that can predict the decay heat from curium isotopes. This work is a part of the project funded by King Abdulaziz City of Science and Technology (KASCT), Long-Term Comprehensive National Plan for Science, Technology and Innovations, and take place in King Abdulaziz University (KAU), Saudi Arabia. The approach is based on the numerical solution of coupled linear differential equations that describe decays and buildups of many nuclides to calculate the decay heat produced after shutdown. Results show the consistency and reliability of the approach applied.
Keywords: Decay heat, Mixed oxide nuclear fuel, Numerical Solution of Linear Differential Equations, and Curium isotopes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18891088 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS
Authors: Hamidreza Bagheri, Alireza Shariati
Abstract:
There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid -supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.
Keywords: Supercritical fluids, Solubility, Solid, PC-SAFT EoS, Genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667