
 

 

  
Abstract—A trigonometric shear deformation theory for flexure 

of thick beams, taking into account transverse shear deformation 

effects, is developed. The number of variables in the present theory is 

same as that in the first order shear deformation theory. The 

sinusoidal function is used in displacement field in terms of thickness 

coordinate to represent the shear deformation effects. The noteworthy 

feature of this theory is that the transverse shear stresses can be 

obtained directly from the use of constitutive relations with excellent 

accuracy, satisfying the shear stress free conditions on the top and 

bottom surfaces of the beam. Hence, the theory obviates the need of 

shear correction factor. Governing differential equations and 

boundary conditions are obtained by using the principle of virtual 

work. The thick simply supported isotropic beams are considered for 

the numerical studies to demonstrate the efficiency of the results 

obtained is discussed critically with those of other theories. 

 

Keywords—Trigonometric shear deformation, thick beam, 

flexure, principle of virtual work, equilibrium equations, stress. 

I. INTRODUCTION 

T is well-known that elementary theory of bending of beam 

based on Euler-Bernoulli hypothesis disregards the effects 

of the shear deformation and stress concentration. The theory 

is suitable for slender beams and is not suitable for thick or 

deep beams since it is based on the assumption that the 

transverse normal to neutral axis remains so during bending 

and after bending, implying that the transverse shear strain is 

zero. Since theory neglects the transverse shear deformation, it 

underestimates deflections in case of thick beams where shear 

deformation effects are significant.  

Bresse [1], Rayleigh [2], and Timoshenko [3] were the 

pioneer investigators to include refined effects such as rotatory 

inertia and shear deformation in the beam theory. Timoshenko 

showed that the effect of transverse vibration of prismatic 

bars. This theory is now widely referred to as Timoshenko 

beam theory or first order shear deformation theory (FSDT) in 

the literature. In this theory transverse shear strain distribution 

is assumed to be constant through the beam thickness and thus 

requires shear correction factor to appropriately represent the 

strain energy of deformation. Cowper [4] has given refined 

expression for the shear correction factor for different cross-

sections of beam. The accuracy of Timoshenko beam theory 

for transverse vibrations of simply supported beam in respect 

of the fundamental frequency is verified by Cowper [5] with a 
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plane stress exact elasticity solution. To remove the 

discrepancies in classical and first order shear deformation 

theories, higher order or refined shear deformation theories 

were developed and are available in the open literature for 

static and vibration analysis of beam.  

Levinson [6], Bickford [7], Rehfield and Murty [8], Krishna 

Murty [9], Baluch, Azad and Khidir [10], Bhimaraddi and 

Chandrashekhara [11] presented parabolic shear deformation 

theories assuming a higher variation of axial displacement in 

terms of thickness coordinate. These theories satisfy shear 

stress free boundary conditions on top and bottom surfaces of 

beam and thus obviate the need of shear correction factor. 

Irretier [12] studied the refined dynamical effects in linear, 

homogenous beam according to theories, which exceed the 

limits of the Euler-Bernoulli beam theory. These effects are 

rotary inertia, shear deformation, rotary inertia and shear 

deformation, axial pre-stress, twist and coupling between 

bending and torsion.  

Kant and Gupta [13], Heyliger and Reddy [14] presented 

finite element models based on higher order shear deformation 

uniform rectangular beams. However, these displacement 

based finite element models are not free from phenomenon of 

shear locking (Averill and Reddy [15], Reddy [16]).  

There is another class of refined theories, which includes 

trigonometric functions to represent the shear deformation 

effects through the thickness. Vlasov and Leont’ev [17], Stein 

[18] developed refined shear deformation theories for thick 

beams including sinusoidal function in terms of thickness 

coordinate in displacement field. However, with these theories 

shear stress free boundary conditions are not satisfied at top 

and bottom surfaces of the beam. A study of literature by 

Ghugal and Shimpi [19] indicates that the research work 

dealing with flexural analysis of thick beams using refined 

trigonometric and hyperbolic shear deformation theories is 

very scarce and is still in infancy.  

In this paper development of theory and its application to 

thick fixed beams is presented. 

II.  DEVELOPMENT OF THEORY 

The beam under consideration as shown in Fig. 1 occupies 

in 0 x y z− − − Cartesian coordinate system the region:  

 

0 ; 0 ;
2 2

h h
x L y b z≤ ≤ ≤ ≤ − ≤ ≤  

 

where x, y, z are Cartesian coordinates, L and b are the length 

and width of beam in the x and y directions respectively, and h 
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is the thickness of the beam in the z-direction. The beam is 

made up of homogeneous, linearly elastic isotropic material.  
 

 

Fig. 1 Beam under bending in x-z plane 

A. The Displacement Field 

The displacement field of the present beam theory is of the 

form: 

 

( , ) s in ( )

( , ) ( )

d w h z
u x z z x

d x h

w x z w x

π
φ

π
= − +

=
 

                         (1)      

 

where u  is the axial displacement in x direction and w is the 

transverse displacement in z direction of the beam. The 

sinusoidal function is assigned according to the shear stress 

distribution through the thickness of the beam. The function φ  

represents rotation of the beam at neutral axis, which is an 

unknown function to be determined. The normal and shear 

strains obtained within the framework of linear theory of 

elasticity using displacement field given by (1) are as follows; 

 

Normal strain:   

2

 
2

= sinx

u d w h z d
z

x h dxdx

π φ
ε

π
∂

= − +
∂

 

   (2)  

 

Shear strain: coszx

u dw z

z dx h

π
γ φ

∂
= + =

∂
                          (3)     

                                    

The stress-strain relationships used are as follows: 

            

,x x zx zxE Gσ ε τ γ= =                                (4) 

B. Governing Equations and Boundary Conditions  

Using (2) through (4) and using the principle of virtual 

work, variationally consistent governing differential equations 

and boundary conditions for the beam under consideration can 

be obtained. The principle of virtual work when applied to the 

beam leads to: 

 

( )
.

/ 2

0 / 2

0
( ) 0

x x zx zx

x L z h

x z h

x L

x

b dx dz

q x w dx

σ δε τ δγ

δ

= = +

= = −

=

=

+

− =

∫ ∫

∫                          
(5) 

 

where the symbolδ  denotes the variational operator. 

Employing Green’s theorem to (4) successively, we obtain the 

coupled Euler-Lagrange equations which are the governing 

differential equations and associated boundary conditions of 

the beam. The governing differential equations obtained are as 

follows: 

 

( )
4 3

4 3 3

24d w d
E I E I q x

dx dx

φ
π

− =                      (6)  

 
3 2

3 3 2 2

2 4 6
0

2

d w d G A
E I E I

d x d x

φ
φ

π π
− + =

             

(7)   

 

The associated consistent natural boundary conditions 

obtained are of following form:  

At the ends x = 0 and x = L 
 

3 2

3 3 2

24
0x

d w d
V EI EI

dx dx

φ
π

= − = or w  is prescribed                 (8) 

               
2

2 3

24
0x

d w d
M EI EI

dxdx

φ
π

= − =
 

or 
dw

dx
is prescribed          (9) 

 
2

3 2 2

24 6
0a

d w d
M EI EI

dxdx

φ
π π

= − =  or φ
 
is prescribed  (10) 

 

Thus the boundary value problem of the beam bending is 

given by the above variationally consistent governing 

differential equations and boundary conditions.  

C.  The General Solution of Governing Equilibrium 

Equations of the Beam  

The general solution for transverse displacement w(x) and 

warping functionφ (x) is obtained using (6) and (7) using 

method of solution of linear differential equations with 

constant coefficients. Integrating and rearranging (6), we 

obtain the following expression  

                                                   

( )3 2

3 3 2

24 Q xd w d

EIdx dx

φ
π

= +                                                   (11) 

 

where Q(x) is the generalized shear force for beam and  it is 

given by ( ) 1

0

x

Q x qdx C= +∫ .  

Now (7) is rearranged in the following form:      
       

 
3 2

3 24

d w d

dx dx

π φ
β φ= −                                     (12) 

 

A single equation in terms ofφ  is now obtained using (11) 

and (12) as:  

 
2

2

2

( )d Q x

EIdx

φ
λ φ

α
− =                                            (13)  

 

where constantsα , β  and λ  in (12) and (13) are as follows  

q(x) 

L 

b 

h 

z, w 

z 

x, u y 
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3
2

3

24
, and

4 48

GA

EI

π π β
α β λ

απ
  = − = =  

   
 

 

The general solution of (13) is as follows: 

 

  2 3

( )
( ) cosh sinh

Q x
x C x C x

EI
φ λ λ

β
= + −                         (14) 

 

The equation of transverse displacement w(x) is obtained by 

substituting the expression of ( )xφ  in (12) and then 

integrating it thrice with respect to x. The general solution for 

w(x) is obtained as follows: 

 

( )

3

21

3

2

2 3 4 5 6

( )
6 4

sinh cosh
2

C x EI
EI w x qdxdxdxdx

x
C x C x C C x C

π
λ β

λ

λ λ

 = + + − 
 

+ + + +

∫ ∫ ∫ ∫

    

       (15)  

 

where 1 2 3 4 5 6, , , , and C C C C C C are arbitrary constants and can 

be obtained by imposing boundary conditions of beam.  

III. ILLUSTRATIVE EXAMPLES 

In order to prove the efficacy of the present theory, the 

following numerical examples are considered. The following 

material properties for beam are used  

 

E = 210 GPa, µ = 0.3 and ρ = 7800 kg/m
3
 

 

where E is the Young’s modulus, ρ  is the density, and µ is 

the Poisson’s Units 

A. Example 1: Simply Supported Beam with Cosine Load 

The simply supported beam is having its origin at left 

support and is simply supported at x = 0 and x = L. The beam 

is subjected to cosine load on surface z = +h/2 acting in the 

downward z direction with maximum intensity of load 0q  

 

 

Fig. 2 Simply supported beam with cosine load 

 

General expressions obtained for ( )w x  and ( )xφ  are as 

follows: 

( )

2 3

2 2 2 3

4 2 2

0

6 2 2

2 2

2 2 2 2

480 4 1 1 1
cos 1

2 2 6 3

11520 1 1

120 2 2

120 4 1 1
cos 1

2 2 2

x x x x x

L L LL L

q L E h x x
w x

EI G LL L

E h x x x x

G L L LL L

π
π π

π

π
π π

   
− + + − −   

   
   

= + − +  
  

    + − + + −      

      (16) 

 

        

( ) 0

2

4 2 sinh cosh
sin

2

q L x x x
x

EI L L

π λ λ
φ

β π λπ
− 

= − + 
 

     

(17) 

 

2

2 2 2

3 2 2

3 6 2 2

0

2

2 2 2

4 2

480 4 1 1
sin 1

2 2 2 3

1 11520 1

10 2

120 4 1
sin 1

2 2 2

48 4 2 sinh cosh
sin sin

2

x x x

L L L

z L E h x

h Gh L Lq h
u

Eb E h x x

G L LL

z E L x x x

h G h L L

π π
π π

π

π π
π π

π π λ λ
π λπ π

   
− + + − −   

   
   − + − +   =  
   + − + + −   

   

−
+ − +

 
 
 
 
 
  
 
 
 
 
      

(18) 

 

22

2 2 2

0

6 2 2 2

4

480
cos 1

21

10 11520 120
cos 1

2

48
sin cos cosh sinh

2

x

x x

L Lz L

h hq E h E h x

b G G LL L

z E x
x x

h G L

π
π

π
σ

π π

π π
λ λ

π

   
− + −      −    

= − + − +   
   

   + − + −    
  

(19) 

 

0

3 2

48 4 2 sinh cosh
cos sin

2

CR

zx

q L z x x x

b h h L L

π π λ λ
τ

π λπ π
− 

= − + 
 

     

(20) 

 

 

22

0

2 2

2 2

0

5

480
sin 1

2 2
4 1

80 120
sin

2 2

48
cos sin (sin cosh )

2 2

EE

zx

x

Lq L z

bh h E h x

G LL

qz E h x
L x x

h G b L L

π π
π

τ
π π

π

π π π
λ λ λ

π

  
−      = −      +  

  

 
+ + − 

 
  

(21) 

B. Example 2: Simply Supported Beam with Cosine Load 

The simply supported beam is having its origin at left 

support and is simply supported at x = 0 and x = L. The beam 

is subjected to cosine load, on surface z = +h/2 in the region 

( )0 / 2x L≤ ≤  acting in the downward z direction and in the 

region ( )/ 2L x L≤ ≤ it acts in upward direction on surface 

/ 2z h= −  with maximum intensity of load
0q .  

0( ) cos
2

x
q x q

L

π
=

 

z, w 

q0 

L 

x ,u 
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Fig. 3 Simply supported beam with cosine load 

 

General expressions obtained for ( )w x  and ( )xφ  are as 

follows: 

 

( )

2

2 2 3

2 3

4 2 2

0

6 2 2

2 2

2 2 2

2

1
cos 1 2

120

1 1 1

2 3 6

11520 1 1

120 2 2

1
cos 1

120

1 1

2 2

x x

L L

x x x

LL L

q L E h x x
w x

EI G LL L

x x

E h L L

G L x x

LL

π
π

π

π

π
π

π

   
− +   

   
  
 + − − 

  
   

= + − +  
  

    − +     +   + −    

                   

(22) 

 

( ) 0

2

2 1 sinh cosh
sin

q L x x x
x

EI L L

π λ λ
φ

β π λπ
− 

= − + 
 

             

(23)

 

 

The axial displacement and stresses obtained based on 

above solutions are as follows 

 

( )

2

2 2 2

3 2

3 6 2

0

2

2 2 2

4 2

120 1 1
sin 2

6

1 11520 1

10 2

120 1 1
sin 2

2

48 2 1 sinh cosh
sin sin

x x x

L L L

z L E h x

h G Lh Lq h
u x

Eb E h x x

G L LL

z E L x x x

h G h L L

π
π

π π

π

π
π

π π

π π λ λ
π λπ π

    
− + + − −    

   
   − + − +   

=   
   + − + + −      

− 
+ − + 

 




 
 
 
  


 
 
 
 
 
  

        

(24) 

 

2

2 6 22

2 2

0

2 2

4

120 11520
1 2 cos

1

10 120
1 cos

2

48
sin cos cosh sinh

x

x x E h

L L G Lz L

h hq E h x

b G LL

z E x
x x

h G L

π
π π

π
σ

π

π π
λ λ

π

   
− − −   

   −    = + −       
   + − + −    

  

(25) 

 

0

3 2

48 2 1 sinh cosh
cos sin

CR

zx

q L z x x x

b h h L L

π π λ λ
τ

π λπ π
− 

= − + 
 

  

(26) 

22

0

2 2

2 2

0

5

120
sin 2

4 1
80 120

sin
2

48
cos sin (sin cosh )

EE

zx

x

Lq L z

bh h E h x

G LL

qz E h x
L x x

h G b L L

π
π

π
τ

π
π

π

π π
π λ λ λ

π

  
−      = −      +  

  

 
+ + − 

 
  

(27) 

IV. NUMERICAL RESULTS 

In this paper, the results for inplane displacement, 

transverse displacement, inplane and transverse stresses are 

presented in the following non dimensional form for the 

purpose of presenting the results in this work. 

For beams subjected to cosine load, q(x) 

 
3

4

0 0

0 0

1 0
, ,

,x z x

x z x

E b u E b h w
u w

q h q L

b b

q q

σ τ
σ τ

= =

= =

 

 

TABLE I 

NON-DIMENSIONAL AXIAL DISPLACEMENT ( u ) AT (X = 0.25L, Z = H/2), 

TRANSVERSE DEFLECTION ( w ) AT (X = 0.25L, Z =0.0) AXIAL STRESS (
xσ ) AT 

(X =0.25L, Z = H/2) MAXIMUM TRANSVERSE SHEAR STRESSES C R

zxτ  AND 

E E

z xτ AT (X = 0, Z = 0) OF THE BEAM SUBJECTED TO COSINE LOAD FOR 

ASPECT RATIO S = 4 AND 10 (EXAMPLE 1) 

Model S u  w  xσ  C R

zx
τ  E E

zx
τ  

TSDT 

4 

2.6052 0.2739 13.7935 1.1872 -1.6723 

HPSDT 2.5965 0.2775 15.8019 1.4157 -2.8196 

HSDT 2.5957 0.2754 14.1509 1.2426 -1.7332 

FSDT 2.0818 0.1882 6.1653 0.1971 2.5979 

ETB 2.0821 0.1281 6.1658 — 2.5980 

TSDT 

10 

33.8367 0.1526 57.5339 5.0975 2.4560 

HPSDT 33.8196 0.1529 62.5214 5.4663 2.8494 

HSDT 33.8175 0.1527 58.3994 5.1462 2.8156 

FSDT 32.5281 0.1377 38.5335 3.0797 6.4948 

ETB 32.5337 0.1281 38.5365 — 6.4950 

 
TABLE II 

NON-DIMENSIONAL AXIAL DISPLACEMENT ( u ) AT (X = 0.25L, Z = H/2), 

TRANSVERSE DEFLECTION ( w) AT (X = 0.25L, Z =0.0) AXIAL STRESS ( xσ ) AT 

(X =0.25L, Z = H/2) MAXIMUM TRANSVERSE SHEAR STRESSES C R

zx
τ  AND 

E E

z x
τ AT (X = 0, Z = 0) OF THE BEAM SUBJECTED TO COSINE LOAD FOR 

ASPECT RATIO S = 4 AND 10 (EXAMPLE 2) 

Model S u  w  xσ  C R

zx
τ  E E

zx
τ  

TSDT 

4 

-0.1121 0.1039 -2.2033 1.1593 -5.3908 

HPSDT -0.0992 0.1049 -2.1935 1.1437 -7.6669 

HSDT -0.1059 0.1044 -2.1929 1.1325 -6.0966 

FSDT -0.0623 0.1060 -2.0145 0.5111 1.2159 

ETB -0.0623 0.0652 -2.0145 — 1.2159 

TSDT 

10 

-1.0991 0.1039 -12.7794 3.0145 -3.5669 

HPSDT -1.0668 0.1049 -12.7696 2.9617 -5.8432 

HSDT -1.0836 0.1044 -12.7689 2.9563 -4.2728 

FSDT -0.9747 0.1060 -12.5906 3.1944 3.0396 

ETB -0.9747 0.0652 -12.5906 — 3.0396 

0
( ) cos

x
q x q

L

π
=q0 

z, w 

L 

x, u 
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Fig. 4 Variation of axial displacement ( u ) through the thickness of 

simply supported beam at (x = 0.25L, z) when subjected to cosine 

load for aspect ratio 4 (Example 1) 

 

 

Fig. 5 Variation of axial displacement ( u ) through the thickness of 

simply supported beam at (x = 0.25L, z) when subjected to cosine 

load for aspect ratio 10 (Example 1) 

 

 

 

 

 

 

Fig. 6 Variation of axial stress ( xσ ) through the thickness of simply 

supported beam at (x = 0.25L, z) when subjected to cosine load for 

aspect ratio 4 (Example 1) 

 

 

Fig. 7 Variation of axial stress ( xσ ) through the thickness of simply 

supported beam at (x = 0.25L, z) when subjected to cosine load for 

aspect ratio 10 (Example 1) 
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Fig. 8 Variation of transverse shear stress ( zxτ ) through the thickness 

of simply supported beam at (x = 0, z) when subjected to cosine load 

and obtain using constitutive relation for aspect ratio 4 (Example 1) 

 

 

Fig. 9 Variation of transverse shear stress ( zxτ ) through the thickness 

of simply supported beam at (x = 0, z) when subjected to cosine load 

and obtain using constitutive relation for aspect ratio 10 (Example 1) 

 

 

 

 

Fig. 10 Variation of transverse shear stress ( zxτ ) through the 

thickness of simply supported beam at (x = 0, z) when subjected to 

cosine load and obtain using equilibrium equation for aspect ratio 4 

(Example 1) 

 

 

Fig. 11 Variation of transverse shear stress ( zxτ ) through the 

thickness of simply supported beam at (x = 0, z) when subjected to 

cosine load and obtain using equilibrium equation for aspect ratio 10 

(Example 1) 
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Fig. 12 Variation of maximum transverse displacement ( w ) of 

simply supported beam at (x = 0.25L, z = 0) when subjected to cosine 

load with aspect ratio S (Example 1) 

 

 

Fig. 13 Variation of maximum transverse displacement ( w ) of 

simply supported beam at (x = 0.25L, z = 0) when subjected to cosine 

load with aspect ratio S (Example 2) 

 

 

 

 

Fig. 14 Variation of axial displacement ( u ) through the thickness of 

simply supported beam at (x = 0.25L, z) when subjected to cosine 

load for aspect ratio 4 (Example 2) 

 

 

Fig. 15 Variation of axial displacement ( u ) through the thickness of 

simply supported beam at (x = 0.25L, z) when subjected to cosine 

load for aspect ratio 10 (Example 2) 
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Fig. 16 Variation of axial stress ( xσ ) through the thickness of simply 

supported beam at (x = 0.25L, z) when subjected to cosine load for 

aspect ratio 4 (Example 2) 

 

 

Fig. 17 Variation of axial stress ( xσ ) through the thickness of simply 

supported beam at (x = 0.25L, z) when subjected to cosine load for 

aspect ratio 10 (Example 2) 

 

 

 

Fig. 18 Variation of transverse shear stress ( zxτ ) through the 

thickness of simply supported beam at (x = 0, z) when subjected to 

cosine load and obtain using constitutive relation for aspect ratio 4 

(Example 2) 

 

 

Fig. 19 Variation of transverse shear stress ( zxτ ) through the 

thickness of simply supported beam at (x = 0, z) when subjected to 

cosine load and obtain using constitutive relation for aspect ratio 10 

(Example 2) 
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Fig. 20 Variation of transverse shear stress ( zxτ ) through the 

thickness of simply supported beam at (x = 0, z) when subjected to 

cosine load and obtain using equilibrium equation for aspect ratio 4 

(Example 2) 

 

 

Fig. 21 Variation of transverse shear stress ( zxτ ) through the 

thickness of simply supported beam at (x = 0, z) when subjected to 

cosine load and obtain using equilibrium equation for aspect ratio 10 

(Example 2) 

V. DISCUSSION OF RESULTS 

The comparison of results of maximum non-dimensional 

axial displacement ( u ) for the aspect ratios of 4 and 10 is 

presented in Tables I and II for simple beams subjected to 

cosine load (see Figs 2 and 3). The values of axial 

displacement given by present theory are in close agreement 

with the values of other refined theories for aspect ratio 4 and 

10 for example 1. In case of example 2, higher order theories 

give curvilinear distribution of this displacement at quarter 

span and ETB and FSDT give straight line variation across the 

thickness. The through thickness distribution of this 

displacement obtained by present theory is in close agreement 

with all the theories in case of Example 1. However, for 

Example 2, shows nonlinear behavior in case of this 

displacement as compared to the one given by classical and 

first order shear deformation theory (FSDT). Variations of 

these distributions are shown in Figs. 4, 5, 14 and 15 for 

aspect ratio 4 and 10.  

The comparison of results of maximum non-dimensional 

transverse displacement (w ) for the aspect ratios of 4 and 10 

is presented in Tables I and II for beams subjected to cosine 

load. The values of present theory are in excellent agreement 

with the values of other refined theories for aspect ratio 4 and 

10 except those of classical beam theory (ETB) and FSDT of 

Timoshenko. The variation of w  with aspect ratio (S) is 

shown in Figs 12 and 13.  

The results of axial stress ( xσ ) are shown in Tables I and II 

for aspect ratios 4 and 10. The axial stresses given by present 

theory are compared with other higher order shear 

deformation theories. It is observed that the results by present 

theory are in excellent agreement with other refined theories. 

However, ETB and FSDT yield lower values of this stress as 

compared to the values given by other refined theories. The 

variations of this stress are shown in Figs. 6, 7, 16, and 17. 

The comparison of maximum non-dimensional transverse 

shear stress for a simple beams with cosine load are obtained 

by the present  theory and other refined theories is presented in 

Tables I and II for aspect ratio of 4 and 10. The maximum 

transverse shear stress obtained by present theory using 

constitutive relation is in good agreement with that of higher 

order theories. The through thickness variation of this stress 

obtained via constitutive relation are presented graphically in 

Figs. 8, 9, 18, and 19 and those obtained via equilibrium 

equation are presented in Figs. 10, 11, 20, and 21. It can be 

seen from these figures that the nature of variation obtained by 

equilibrium equation in accordance with higher order and 

equivalent shear deformation theories is different than the one 

given by ETB and FSDT due to the maximum intensity of 

load at the simple support. This feature cannot be captured by 

the lower order theories (ETB and FSDT).   

VI. CONCLUSION 

The variationally consistent theoretical formulation of the 

theory with general solution technique of governing 

differential equations is presented. The general solutions for 

beams with cosine loads are obtained in case of thick simply 

supported beams. The displacements and stresses obtained by 

present theory are in excellent agreement with those of other 

equivalent refined and higher order theories. The present 

theory yields the realistic variation of axial displacement and 

stresses through the thickness of beam. Thus the validity of the 

present theory is established.  
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