Search results for: Reconfigurable machine tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2813

Search results for: Reconfigurable machine tool

2303 Tool for Metadata Extraction and Content Packaging as Endorsed in OAIS Framework

Authors: Payal Abichandani, Rishi Prakash, Paras Nath Barwal, B. K. Murthy

Abstract:

Information generated from various computerization processes is a potential rich source of knowledge for its designated community. To pass this information from generation to generation without modifying the meaning is a challenging activity. To preserve and archive the data for future generations it’s very essential to prove the authenticity of the data. It can be achieved by extracting the metadata from the data which can prove the authenticity and create trust on the archived data. Subsequent challenge is the technology obsolescence. Metadata extraction and standardization can be effectively used to resolve and tackle this problem. Metadata can be categorized at two levels i.e. Technical and Domain level broadly. Technical metadata will provide the information that can be used to understand and interpret the data record, but only this level of metadata isn’t sufficient to create trustworthiness. We have developed a tool which will extract and standardize the technical as well as domain level metadata. This paper is about the different features of the tool and how we have developed this.  

Keywords: Digital Preservation, Metadata, OAIS, PDI, XML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
2302 Determination of Stress Concentration Factors of a Steam Turbine Rotor by FEA

Authors: R. Nagendra Babu, K. V. Ramana, K. Mallikarjuna Rao

Abstract:

Stress Concentration Factors are significant in machine design as it gives rise to localized stress when any change in the design of surface or abrupt change in the cross section occurs. Almost all machine components and structural members contain some form of geometrical or microstructural discontinuities. These discontinuities are very dangerous and lead to failure. So, it is very much essential to analyze the stress concentration factors for critical applications like Turbine Rotors. In this paper Finite Element Analysis (FEA) with extremely fine mesh in the vicinity of the blades of Steam Turbine Rotor is applied to determine stress concentration factors. A model of Steam Turbine Rotor is shown in Fig. 1.

Keywords: Stress Concentration Factors, Finite Element Analysis, and ANSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3263
2301 Fuzzy PID based PSS Design Using Genetic Algorithm

Authors: Ermanu A. Hakim, Adi Soeprijanto, Mauridhi H.P

Abstract:

This paper presents PSS (Power system stabilizer) design based on optimal fuzzy PID (OFPID). OFPID based PSS design is considered for single-machine power systems. The main motivation for this design is to stabilize or to control low-frequency oscillation on power systems. Firstly, describing the linear PID control then to combine this PID control with fuzzy logic control mechanism. Finally, Fuzzy PID parameters (Kp. Kd, KI, Kupd, Kui) are tuned by Genetic Algorthm (GA) to reach optimal global stability. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a one-machine-infinite-bus system

Keywords: Fuzzy PID, Genetic Algorithm, power system stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
2300 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: Affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, Signal Detection Theory, student engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
2299 ADA Tool for Satellite InSAR-Based Ground Displacement Analysis: The Granada Region

Authors: M. Cuevas-González, O. Monserrat, A. Barra, C. Reyes-Carmona, R. M. Mateos, J. P. Galve, R. Sarro, M. Cantalejo, E. Peña, M. Martínez-Corbella, J. A. Luque, J. M. Azañón, A. Millares, M. Béjar, J. A. Navarro, L. Solari

Abstract:

Geohazard prone areas require continuous monitoring to detect risks, understand the phenomena occurring in those regions and prevent disasters. Satellite interferometry (InSAR) has come to be a trustworthy technique for ground movement detection and monitoring in the last few years. InSAR based techniques allow to process large areas providing high number of displacement measurements at low cost. However, the results provided by such techniques are usually not easy to interpret by non-experienced users hampering its use for decision makers. This work presents a set of tools developed in the framework of different projects (Momit, Safety, U-Geohaz, Riskcoast) and an example of their use in the Granada Coastal area (Spain) is shown. The ADA (Active Displacement Areas) tool has been developed with the aim of easing the management, use and interpretation of InSAR based results. It provides a semi-automatic extraction of the most significant ADAs through the application ADAFinder tool. This tool aims to support the exploitation of the European Ground Motion Service (EU-GMS), which will offer reliable and systematic information on natural and anthropogenic ground motion phenomena across Europe.

Keywords: Ground displacements, InSAR, natural hazards, satellite imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 411
2298 Extraction of Significant Phrases from Text

Authors: Yuan J. Lui

Abstract:

Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This paper introduces a new domain independent keyphrase extraction algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, and uses a combination of statistical and computational linguistics techniques, a new set of attributes, and a new machine learning method to distinguish keyphrases from non-keyphrases. The experiments indicate that this algorithm performs better than other keyphrase extraction tools and that it significantly outperforms Microsoft Word 2000-s AutoSummarize feature. The domain independence of this algorithm has also been confirmed in our experiments.

Keywords: classification, keyphrase extraction, machine learning, summarization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
2297 The Effect of Clamping Restrain on the Prediction of Drape Simulation Software Tool

Authors: T.A. Adegbola, IEA Aghachi, E.R. Sadiku

Abstract:

To investigates the effect of fiberglass clamping process improvement on drape simulation prediction. This has great effect on the mould and the fiber during manufacturing process. This also, improves the fiber strain, the quality of the fiber orientation in the area of folding and wrinkles formation during the press-forming process. Drape simulation software tool was used to digitalize the process, noting the formation problems on the contour sensitive part. This was compared with the real life clamping processes using single and double frame set-ups to observe the effects. Also, restrains are introduced by using clips, and the G-clamps with predetermine revolution to; restrain the fabric deformation during the forming process.The incorporation of clamping and fabric restrain deformation improved on the prediction of the simulation tool. Therefore, for effective forming process, incorporation of clamping process into the drape simulation process will assist in the development of fiberglass application in manufacturing process.

Keywords: clamping, fiberglass, drape simulation, pressforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
2296 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives

Authors: Andreas Theissler, Ian Dear

Abstract:

In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.

Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
2295 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge

Authors: T. Alghamdi, G. Alaghband

Abstract:

In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.

Keywords: Convolution neural network, edges, face recognition, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
2294 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation

Authors: G. Settanni, A. Panarese, R. Vaira, A. Galiano

Abstract:

Nowadays, artificial intelligence is used successfully in the field of e-commerce for its ability to learn from a large amount of data. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them the most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Also, Long Short-Term Memory algorithms have been implemented and trained on historical data in order to predict customer scores of the different items. Items with the highest scores are recommended to customers.

Keywords: Deep Learning, Long Short-Term Memory, Machine Learning, Recommender Systems, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 325
2293 Paddy/Rice Singulation for Determination of Husking Efficiency and Damage Using Machine Vision

Authors: M. Shaker, S. Minaei, M. H. Khoshtaghaza, A. Banakar, A. Jafari

Abstract:

In this study a system of machine vision and singulation was developed to separate paddy from rice and determine paddy husking and rice breakage percentages. The machine vision system consists of three main components including an imaging chamber, a digital camera, a computer equipped with image processing software. The singulation device consists of a kernel holding surface, a motor with vacuum fan, and a dimmer. For separation of paddy from rice (in the image), it was necessary to set a threshold. Therefore, some images of paddy and rice were sampled and the RGB values of the images were extracted using MATLAB software. Then mean and standard deviation of the data were determined. An Image processing algorithm was developed using MATLAB to determine paddy/rice separation and rice breakage and paddy husking percentages, using blue to red ratio. Tests showed that, a threshold of 0.75 is suitable for separating paddy from rice kernels. Results from the evaluation of the image processing algorithm showed that the accuracies obtained with the algorithm were 98.36% and 91.81% for paddy husking and rice breakage percentage, respectively. Analysis also showed that a suction of 45 mmHg to 50 mmHg yielding 81.3% separation efficiency is appropriate for operation of the kernel singulation system.

Keywords: Computer vision, rice kernel, husking, breakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
2292 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: Change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
2291 Torque Based Selection of ANN for Fault Diagnosis of Wound Rotor Asynchronous Motor-Converter Association

Authors: Djalal Eddine Khodja, Boukhemis Chetate

Abstract:

In this paper, an automatic system of diagnosis was developed to detect and locate in real time the defects of the wound rotor asynchronous machine associated to electronic converter. For this purpose, we have treated the signals of the measured parameters (current and speed) to use them firstly, as indicating variables of the machine defects under study and, secondly, as inputs to the Artificial Neuron Network (ANN) for their classification in order to detect the defect type in progress. Once a defect is detected, the interpretation system of information will give the type of the defect and its place of appearance.

Keywords: Artificial Neuron Networks (ANN), Effective Value (RMS), Experimental results, Failure detection Indicating values, Motor-converter unit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
2290 Fatigue Behavior of Friction Stir Welded EN AW 5754 Aluminum Alloy Using Load Increase Procedure

Authors: A. B. Chehreh, M. Grätzel, M. Klein, J. P. Bergmann, F. Walther

Abstract:

Friction stir welding (FSW) is an advantageous method in the thermal joining processes, featuring the welding of various dissimilar and similar material combinations, joining temperatures below the melting point which prevents irregularities such as pores and hot cracks as well as high strengths mechanical joints near the base material. The FSW process consists of a rotating tool which is made of a shoulder and a probe. The welding process is based on a rotating tool which plunges in the workpiece under axial pressure. As a result, the material is plasticized by frictional heat which leads to a decrease in the flow stress. During the welding procedure, the material is continuously displaced by the tool, creating a firmly bonded weld seam behind the tool. However, the mechanical properties of the weld seam are affected by the design and geometry of the tool. These include in particular microstructural and surface properties which can favor crack initiation. Following investigation compares the dynamic properties of FSW weld seams with conventional and stationary shoulder geometry based on load increase test (LIT). Compared to classical Woehler tests, it is possible to determine the fatigue strength of the specimens after a short amount of time. The investigations were carried out on a robotized welding setup on 2 mm thick EN AW 5754 aluminum alloy sheets. It was shown that an increased tensile and fatigue strength can be achieved by using the stationary shoulder concept. Furthermore, it could be demonstrated that the LIT is a valid method to describe the fatigue behavior of FSW weld seams.

Keywords: Aluminum alloy, fatigue performance, fracture, friction stir welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
2289 A Method to Saturation Modeling of Synchronous Machines in d-q Axes

Authors: Mohamed A. Khlifi, Badr M. Alshammari

Abstract:

This paper discusses the general methods to saturation in the steady-state, two axis (d & q) frame models of synchronous machines. In particular, the important role of the magnetic coupling between the d-q axes (cross-magnetizing phenomenon), is demonstrated. For that purpose, distinct methods of saturation modeling of dumper synchronous machine with cross-saturation are identified, and detailed models synthesis in d-q axes. A number of models are given in the final developed form. The procedure and the novel models are verified by a critical application to prove the validity of the method and the equivalence between all developed models is reported. Advantages of some of the models over the existing ones and their applicability are discussed.

Keywords: Cross-magnetizing, models synthesis, synchronous machine, saturated modeling, state-space vectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
2288 A Hybrid Machine Learning System for Stock Market Forecasting

Authors: Rohit Choudhry, Kumkum Garg

Abstract:

In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators of highly correlated stocks, not only the stock to be predicted. The genetic algorithm is used to select the set of most informative input features from among all the technical indicators. The results show that the hybrid GA-SVM system outperforms the stand alone SVM system.

Keywords: Genetic Algorithms, Support Vector Machines, Stock Market Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9318
2287 Combination of Different Classifiers for Cardiac Arrhythmia Recognition

Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari

Abstract:

This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.

Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
2286 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Gambhir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, Fault Ride Through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
2285 Nonlinear Large Deformation Analysis of Rotor

Authors: Amin Almasi

Abstract:

Reliability assessment and risk analysis of rotating machine rotors in various overload and malfunction situations present challenge to engineers and operators. In this paper a new analytical method for evaluation of rotor under large deformation is addressed. Model is presented in general form to include also composite rotors. Presented simulation procedure is based on variational work method and has capability to account for geometric nonlinearity, large displacement, nonlinear support effect and rotor contacting other machine components. New shape functions are presented which capable to predict accurate nonlinear profile of rotor. The closed form solutions for various operating and malfunction situations are expressed. Analytical simulation results are discussed

Keywords: Large Deformation, Nonlinear, Rotor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
2284 Towards Developing a Self-Explanatory Scheduling System Based on a Hybrid Approach

Authors: Jian Zheng, Yoshiyasu Takahashi, Yuichi Kobayashi, Tatsuhiro Sato

Abstract:

In the study, we present a conceptual framework for developing a scheduling system that can generate self-explanatory and easy-understanding schedules. To this end, a user interface is conceived to help planners record factors that are considered crucial in scheduling, as well as internal and external sources relating to such factors. A hybrid approach combining machine learning and constraint programming is developed to generate schedules and the corresponding factors, and accordingly display them on the user interface. Effects of the proposed system on scheduling are discussed, and it is expected that scheduling efficiency and system understandability will be improved, compared with previous scheduling systems.

Keywords: Constraint programming, Factors considered in scheduling, machine learning, scheduling system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
2283 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots

Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

Abstract:

Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.

Keywords: Agricultural mobile robot, image processing, path recognition, Hough transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
2282 Development of Soft-Core System for Heart Rate and Oxygen Saturation

Authors: Caje F. Pinto, Jivan S. Parab, Gourish M. Naik

Abstract:

This paper is about the development of non-invasive heart rate and oxygen saturation in human blood using Altera NIOS II soft-core processor system. In today's world, monitoring oxygen saturation and heart rate is very important in hospitals to keep track of low oxygen levels in blood. We have designed an Embedded System On Peripheral Chip (SOPC) reconfigurable system by interfacing two LED’s of different wavelengths (660 nm/940 nm) with a single photo-detector to measure the absorptions of hemoglobin species at different wavelengths. The implementation of the interface with Finger Probe and Liquid Crystal Display (LCD) was carried out using NIOS II soft-core system running on Altera NANO DE0 board having target as Cyclone IVE. This designed system is used to monitor oxygen saturation in blood and heart rate for different test subjects. The designed NIOS II processor based non-invasive heart rate and oxygen saturation was verified with another Operon Pulse oximeter for 50 measurements on 10 different subjects. It was found that the readings taken were very close to the Operon Pulse oximeter.

Keywords: Heart rate, NIOS II, Oxygen Saturation, photoplethysmography, soft-core, SOPC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
2281 Target Detection with Improved Image Texture Feature Coding Method and Support Vector Machine

Authors: R. Xu, X. Zhao, X. Li, C. Kwan, C.-I Chang

Abstract:

An image texture analysis and target recognition approach of using an improved image texture feature coding method (TFCM) and Support Vector Machine (SVM) for target detection is presented. With our proposed target detection framework, targets of interest can be detected accurately. Cascade-Sliding-Window technique was also developed for automated target localization. Application to mammogram showed that over 88% of normal mammograms and 80% of abnormal mammograms can be correctly identified. The approach was also successfully applied to Synthetic Aperture Radar (SAR) and Ground Penetrating Radar (GPR) images for target detection.

Keywords: Image texture analysis, feature extraction, target detection, pattern classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
2280 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles

Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou

Abstract:

The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.

Keywords: Fault detection, feature selection, machine learning, predictive maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
2279 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset

Authors: Adrienne Kline, Jaydip Desai

Abstract:

Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.

Keywords: Brain-machine interface, EEGLAB, emotiv EEG neuroheadset, openViBE, simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804
2278 Tool for Fast Detection of Java Code Snippets

Authors: Tomáš Bublík, Miroslav Virius

Abstract:

This paper presents general results on the Java source code snippet detection problem. We propose the tool which uses graph and subgraph isomorphism detection. A number of solutions for all of these tasks have been proposed in the literature. However, although that all these solutions are really fast, they compare just the constant static trees. Our solution offers to enter an input sample dynamically with the Scripthon language while preserving an acceptable speed. We used several optimizations to achieve very low number of comparisons during the matching algorithm.

Keywords: AST, Java, tree matching, Scripthon, source code recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
2277 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4524
2276 Performance Evaluation of Improved Ball End Magnetorheological Finishing Process

Authors: Anant Kumar Singh, Sunil Jha, Pulak M. Pandey

Abstract:

A novel nanofinishing process using improved ball end magnetorheological (MR) finishing tool was developed for finishing of flat as well as 3D surfaces of ferromagnetic and non ferromagnetic workpieces. In this process a magnetically controlled ball end of smart MR polishing fluid is generated at the tip surface of the tool which is used as a finishing medium and it is guided to follow the surface to be finished through computer controlled 3-axes motion controller. The experiments were performed on ferromagnetic workpiece surface in the developed MR finishing setup to study the effect of finishing time on final surface roughness. The performance of present finishing process on final finished surface roughness was studied. The surface morphology was observed under scanning electron microscopy and atomic force microscope. The final surface finish was obtained as low as 19.7 nm from the initial surface roughness of 142.9 nm. The outcome of newly developed finishing process can be found useful in its applications in aerospace, automotive, dies and molds manufacturing industries, semiconductor and optics machining etc.

Keywords: Ball end MR finishing tool, Magnetorheological finishing, Nanofinishing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
2275 Evolutionary Feature Selection for Text Documents using the SVM

Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, we present three feature selection methods: Information Gain, Support Vector Machine feature selection called (SVM_FS) and Genetic Algorithm with SVM (called GA_SVM). We show that the best results were obtained with GA_SVM method for a relatively small dimension of the feature vector.

Keywords: Feature Selection, Learning with Kernels, Support Vector Machine, Genetic Algorithm, and Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
2274 A Serial Hierarchical Support Vector Machine and 2D Feature Sets Act for Brain DTI Segmentation

Authors: Mohammad Javadi

Abstract:

Serial hierarchical support vector machine (SHSVM) is proposed to discriminate three brain tissues which are white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). SHSVM has novel classification approach by repeating the hierarchical classification on data set iteratively. It used Radial Basis Function (rbf) Kernel with different tuning to obtain accurate results. Also as the second approach, segmentation performed with DAGSVM method. In this article eight univariate features from the raw DTI data are extracted and all the possible 2D feature sets are examined within the segmentation process. SHSVM succeed to obtain DSI values higher than 0.95 accuracy for all the three tissues, which are higher than DAGSVM results.

Keywords: Brain segmentation, DTI, hierarchical, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856