ADA Tool for Satellite InSAR-Based Ground Displacement Analysis: The Granada Region
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
ADA Tool for Satellite InSAR-Based Ground Displacement Analysis: The Granada Region

Authors: M. Cuevas-González, O. Monserrat, A. Barra, C. Reyes-Carmona, R. M. Mateos, J. P. Galve, R. Sarro, M. Cantalejo, E. Peña, M. Martínez-Corbella, J. A. Luque, J. M. Azañón, A. Millares, M. Béjar, J. A. Navarro, L. Solari

Abstract:

Geohazard prone areas require continuous monitoring to detect risks, understand the phenomena occurring in those regions and prevent disasters. Satellite interferometry (InSAR) has come to be a trustworthy technique for ground movement detection and monitoring in the last few years. InSAR based techniques allow to process large areas providing high number of displacement measurements at low cost. However, the results provided by such techniques are usually not easy to interpret by non-experienced users hampering its use for decision makers. This work presents a set of tools developed in the framework of different projects (Momit, Safety, U-Geohaz, Riskcoast) and an example of their use in the Granada Coastal area (Spain) is shown. The ADA (Active Displacement Areas) tool has been developed with the aim of easing the management, use and interpretation of InSAR based results. It provides a semi-automatic extraction of the most significant ADAs through the application ADAFinder tool. This tool aims to support the exploitation of the European Ground Motion Service (EU-GMS), which will offer reliable and systematic information on natural and anthropogenic ground motion phenomena across Europe.

Keywords: Ground displacements, InSAR, natural hazards, satellite imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 338

References:


[1] Carlà, T., Intrieri, E., Raspini, F., Bardi, F., Farina, P., Ferretti, A., Colombo, D., Novali, F., Casagli, N. (2019). Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Scientific Reports, 9, pp. 1-9. https://doi.org/10.1038/s41598-019-50792-y
[2] Galve, J.P., Pérez-Peña, J.V., Azañón, J.M., Closson, D., Caló, F., Reyes-Carmona, C., Jabaloy, A., Ruano, P., Mateos, R.M., Notti, D., Herrera, G., Béjar-Pizarro, M., Monserrat, O., Bally, P. (2017). Evaluation of the SBAS InSAR service of the European space Agency’s Geohazard Exploitation Platform (GEP). Remote Sensing, 9(12), 1291.
[3] Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., Crippa, B. (2016). Persistent scatterer interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 78-89.
[4] Barra, A., Solari, L., Béjar-Pizarro, M., Monserrat, O., Bianchini, S., Herrera, G., Crosetto, M., Sarro, R., González-Alonso, E., Mateos, R.M., Ligüerzana, S., López, C., Moretti, S. (2017). A methodology to detect and update active deformation areas based on Sentinel-1 SAR images. Remote Sensing 9, 1002. https://doi.org/10.3390/rs9101002
[5] Crosetto, M., Solari, L., Mróz, M., Balasis-Levinsen, J., Casagli, N., Frei, et al. (2020). The evolution of wide-area DInSAR: From regional and national services to the European Ground Motion Service. Remote Sensing, 12(12), 2043.
[6] Tomás, R., Pagán, J. I., Navarro, J. A., Cano, M., Pastor, J. L., Riquelme, et al (2019). Semi-automatic identification and pre-screening of geological–geotechnical deformational processes using persistent scatterer interferometry datasets. Remote Sensing, 11(14), 1675.
[7] Devanthéry, N., Crosetto, M., Monserrat, O., Cuevas-González, M., Crippa, B. (2014). An approach to Persistent Scatterer Interferometry. Remote Sensing, 6, 6662–6679.
[8] Navarro, J.A., Tomás, R., Barra, A., Pagán, J.I., Reyes-Carmona, C., Solari, L., Vinielles, J.L., Falco, S., Crosetto, M. (2020). ISPRS International Journal of Geo-Information, 9, 584. doi:10.3390/ijgi9100584
[9] Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F., Massonet, D. (2007). InSAR Principles-Guidelines for SAR Interferometry Processing and Interpretation, TM-19; ESA Publications: Auckland, New Zealand.
[10] Reyes-Carmona, C., Barra, A., Galve, J.P., Monserrat, O., Pérez-Peña, J.V., Mateos, R.M., Notti, D., Ruano, P., Millares, A., López-Vinielles, J., Azañón, J.M. (2020). Sentinel-1 DInSAR for Monitoring Active Landslides in Critical Infrastructures: The Case of the Rules Reservoir (Southern Spain). Remote Sensing, 12, 809. https://doi.org/10.3390/rs12050809
[11] Reyes-Carmona, C., Galve, J.P., Moreno-Sánchez, M, Riquelme, A., Ruano, P., Millares, A., Teixidó, T., Sarro, R., Pérez-Peña, J.V., Barra, A., Ezquerro, P., López-Vinielles, J., Béjar-Pizarro, M., Azañón, J.M., Monserrat, O., Mateos, R.M. (2021). Rapid characterisation of the extremely large landslide threatening the Rules Reservoir (Southern Spain). Landslides. https://doi.org/10.1007/s10346-021-01728-z