Search results for: Grid base clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1705

Search results for: Grid base clustering

1195 A 3D Approach for Extraction of the Coronaryartery and Quantification of the Stenosis

Authors: Mahdi Mazinani, S. D. Qanadli, Rahil Hosseini, Tim Ellis, Jamshid Dehmeshki

Abstract:

Segmentation and quantification of stenosis is an important task in assessing coronary artery disease. One of the main challenges is measuring the real diameter of curved vessels. Moreover, uncertainty in segmentation of different tissues in the narrow vessel is an important issue that affects accuracy. This paper proposes an algorithm to extract coronary arteries and measure the degree of stenosis. Markovian fuzzy clustering method is applied to model uncertainty arises from partial volume effect problem. The algorithm employs: segmentation, centreline extraction, estimation of orthogonal plane to centreline, measurement of the degree of stenosis. To evaluate the accuracy and reproducibility, the approach has been applied to a vascular phantom and the results are compared with real diameter. The results of 10 patient datasets have been visually judged by a qualified radiologist. The results reveal the superiority of the proposed method compared to the Conventional thresholding Method (CTM) on both datasets.

Keywords: 3D coronary artery tree extraction, segmentation, quantification, fuzzy clustering, and Markov random field

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
1194 Conceptual Synthesis of Multi-Source Renewable Energy Based Microgrid

Authors: Bakari M. M. Mwinyiwiwa, Mighanda J. Manyahi, Nicodemu Gregory, Alex L. Kyaruzi

Abstract:

Microgrids are increasingly being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. However, the technical challenges associated with the operation and controls are immense. Management of dynamic power balances, power flow, and network voltage profiles imposes unique challenges in the context of microgrids. Stability of the microgrid during both grid-connected and islanded mode is considered as the major challenge during its operation. Traditional control methods have been employed are based on the assumption of linear loads. For instance the concept of PQ, voltage and frequency control through decoupled PQ are some of very useful when considering linear loads, but they fall short when considering nonlinear loads. The deficiency of traditional control methods of microgrid suggests that more research in the control of microgrids should be done. This research aims at introducing the dq technique concept into decoupled PQ for dynamic load demand control in inverter interfaced DG system operating as isolated LV microgrid. Decoupled PQ in exact mathematical formulation in dq frame is expected to accommodate all variations of the line parameters (resistance and inductance) and to relinquish forced relationship between the DG variables such as power, voltage and frequency in LV microgrids and allow for individual parameter control (frequency and line voltages). This concept is expected to address and achieve accurate control, improve microgrid stability and power quality at all load conditions.

Keywords: Decoupled PQ, microgrid, multisource, renewable energy, dq control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539
1193 Computer Aided Detection on Mammography

Authors: Giovanni Luca Masala

Abstract:

A typical definition of the Computer Aided Diagnosis (CAD), found in literature, can be: A diagnosis made by a radiologist using the output of a computerized scheme for automated image analysis as a diagnostic aid. Often it is possible to find the expression Computer Aided Detection (CAD or CADe): this definition emphasizes the intent of CAD to support rather than substitute the human observer in the analysis of radiographic images. In this article we will illustrate the application of CAD systems and the aim of these definitions. Commercially available CAD systems use computerized algorithms for identifying suspicious regions of interest. In this paper are described the general CAD systems as an expert system constituted of the following components: segmentation / detection, feature extraction, and classification / decision making. As example, in this work is shown the realization of a Computer- Aided Detection system that is able to assist the radiologist in identifying types of mammary tumor lesions. Furthermore this prototype of station uses a GRID configuration to work on a large distributed database of digitized mammographic images.

Keywords: Computer Aided Detection, Computer Aided Diagnosis, mammography, GRID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
1192 Modification of the Conventional Power Flow Analysis for the Deployment of an HVDC Grid System in the Indian Subcontinent

Authors: Farhan Beg

Abstract:

The Indian subcontinent is facing a massive challenge with regards to the energy security in member countries, i.e. providing a reliable source of electricity to facilitate development across various sectors of the economy and thereby achieve the developmental targets it has set for itself. A highly precarious situation exists in the subcontinent which is observed in the series of system failures which most of the times leads to system collapses-blackouts. To mitigate the issues related with energy security as well as keep in check the increasing supply demand gap, a possible solution that stands in front of the subcontinent is the deployment of an interconnected electricity ‘Supergrid’ designed to carry huge quanta of power across the sub continent as well as provide the infra structure for RES integration. This paper assesses the need and conditions for a Supergrid deployment and consequently proposes a meshed topology based on VSC HVDC converters for the Supergrid modeling.

Keywords: Super grid, Wind and Solar Energy, HVDC, Electricity management, Load Flow Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
1191 Research of Concentratibility of Low Quality Bauxite Raw Materials

Authors: Nadezhda Nikolaeva, Tatyana Alexandrova, Alexandr Alexandrov

Abstract:

Processing of high-silicon bauxite on the base of the traditional clinkering method is related to high power consumption and capital investments, which makes production of alumina from those ores non-competitive in terms of basic economic showings. For these reasons, development of technological solutions enabling to process bauxites with various chemical and mineralogical structures efficiently with low level of thermal power consumption is important. Flow sheet of the studies on washability of ores from the Timanskoe and the Severo-Onezhskoe deposits is on the base of the flotation method.

Keywords: Low-quality bauxite, resource-saving technology, optimization, aluminum, conditioning of composition, separation characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
1190 Binarization of Text Region based on Fuzzy Clustering and Histogram Distribution in Signboards

Authors: Jonghyun Park, Toan Nguyen Dinh, Gueesang Lee

Abstract:

In this paper, we present a novel approach to accurately detect text regions including shop name in signboard images with complex background for mobile system applications. The proposed method is based on the combination of text detection using edge profile and region segmentation using fuzzy c-means method. In the first step, we perform an elaborate canny edge operator to extract all possible object edges. Then, edge profile analysis with vertical and horizontal direction is performed on these edge pixels to detect potential text region existing shop name in a signboard. The edge profile and geometrical characteristics of each object contour are carefully examined to construct candidate text regions and classify the main text region from background. Finally, the fuzzy c-means algorithm is performed to segment and detected binarize text region. Experimental results show that our proposed method is robust in text detection with respect to different character size and color and can provide reliable text binarization result.

Keywords: Text detection, edge profile, signboard image, fuzzy clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
1189 Optical Flow Based System for Cross Traffic Alert

Authors: Giuseppe Spampinato, Salvatore Curti, Ivana Guarneri, Arcangelo Bruna

Abstract:

This document describes an advanced system and methodology for Cross Traffic Alert (CTA), able to detect vehicles that move into the vehicle driving path from the left or right side. The camera is supposed to be not only on a vehicle still, e.g. at a traffic light or at an intersection, but also moving slowly, e.g. in a car park. In all of the aforementioned conditions, a driver’s short loss of concentration or distraction can easily lead to a serious accident. A valid support to avoid these kinds of car crashes is represented by the proposed system. It is an extension of our previous work, related to a clustering system, which only works on fixed cameras. Just a vanish point calculation and simple optical flow filtering, to eliminate motion vectors due to the car relative movement, is performed to let the system achieve high performances with different scenarios, cameras and resolutions. The proposed system just uses as input the optical flow, which is hardware implemented in the proposed platform and since the elaboration of the whole system is really speed and power consumption, it is inserted directly in the camera framework, allowing to execute all the processing in real-time.

Keywords: Clustering, cross traffic alert, optical flow, real time, vanishing point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
1188 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic generation, primal-dual interior point method, three-phase optimal power flow, unbalanced system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
1187 MiSense Hierarchical Cluster-Based Routing Algorithm (MiCRA) for Wireless Sensor Networks

Authors: Kavi K. Khedo, R. K. Subramanian

Abstract:

Wireless sensor networks (WSN) are currently receiving significant attention due to their unlimited potential. These networks are used for various applications, such as habitat monitoring, automation, agriculture, and security. The efficient nodeenergy utilization is one of important performance factors in wireless sensor networks because sensor nodes operate with limited battery power. In this paper, we proposed the MiSense hierarchical cluster based routing algorithm (MiCRA) to extend the lifetime of sensor networks and to maintain a balanced energy consumption of nodes. MiCRA is an extension of the HEED algorithm with two levels of cluster heads. The performance of the proposed protocol has been examined and evaluated through a simulation study. The simulation results clearly show that MiCRA has a better performance in terms of lifetime than HEED. Indeed, MiCRA our proposed protocol can effectively extend the network lifetime without other critical overheads and performance degradation. It has been noted that there is about 35% of energy saving for MiCRA during the clustering process and 65% energy savings during the routing process compared to the HEED algorithm.

Keywords: Clustering algorithm, energy consumption, hierarchical model, sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
1186 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

Authors: Woo-tai Jung, Sung-yong Choi, Young-hwan Park

Abstract:

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Keywords: Creep, Lean concrete, Pavement, Fiber reinforced concrete, Base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
1185 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park

Abstract:

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Keywords: Creep, Lean concrete, Pavement, Fiber reinforced concrete, Base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
1184 Evaluation of Traditional Methods in Construction and Their Effects on Reinforced-Concrete Buildings Behavior

Authors: E. H. N. Gashti, M. Zarrini, M. Irannezhad, J. R. Langroudi

Abstract:

Using ETABS software, this study analyzed 23 buildings to evaluate effects of mistakes during construction phase on buildings structural behavior. For modelling, two different loadings were assumed: 1) design loading and 2) loading due to the effects of mistakes in construction phase. Research results determined that considering traditional construction methods for buildings resulted in a significant increase in dead loads and consequently intensified the displacements and base-shears of buildings under seismic loads.

Keywords: Reinforced-concrete buildings, Construction mistakes, Base-shear, displacements, Failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2663
1183 GSM Based Automated Embedded System for Monitoring and Controlling of Smart Grid

Authors: Amit Sachan

Abstract:

The purpose of this paper is to acquire the remote electrical parameters like Voltage, Current, and Frequency from Smart grid and send these real time values over GSM network using GSM Modem/phone along with temperature at power station. This project is also designed to protect the electrical circuitry by operating an Electromagnetic Relay. The Relay can be used to operate a Circuit Breaker to switch off the main electrical supply. User can send commands in the form of SMS messages to read the remote electrical parameters. This system also can automatically send the real time electrical parameters periodically (based on time settings) in the form of SMS. This system also send SMS alerts whenever the Circuit Breaker trips or whenever the Voltage or Current exceeds the predefined limits.

Keywords: GSM Modem, Initialization of ADC module of microcontroller, PIC-C compiler for Embedded C programming, PIC kit 2 programmer for dumping code into Micro controller, Express SCH for Circuit design, Proteus for hardware simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9480
1182 Effect of Turbulence Models on Simulated Iced Aircraft Airfoil

Authors: Muhammad Afzal, Cao Yihua, Zhao Ming

Abstract:

The present work describes a computational study of aerodynamic characteristics of GLC305 airfoil clean and with 16.7 min ice shape (rime 212) and 22.5 min ice shape (glaze 944).The performance of turbulence models SA, Kε, Kω Std, and Kω SST model are observed against experimental flow fields at different Mach numbers 0.12, 0.21, 0.28 in a range of Reynolds numbers 3x106, 6x106, and 10.5x106 on clean and iced aircraft airfoil GLC305. Numerical predictions include lift, drag and pitching moment coefficients at different Mach numbers and at different angle of attacks were done. Accuracy of solutions with respect to the effects of turbulence models, variation of Mach number, initial conditions, grid resolution and grid spacing near the wall made the study much sensitive. Navier Stokes equation based computational technique is used. Results are very close to the experimental results. It has seen that SA and SST models are more efficient than Kε and Kω standard in under study problem.

Keywords: Aerodynamics, Airfoil GLC305, Iced Airfoil, Turbulence Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
1181 SWARM: A Meta-Scheduler to Minimize Job Queuing Times on Computational Grids

Authors: Jean-Alain Grunchec, Jules Hernández-Sánchez, Sara Knott

Abstract:

Some meta-schedulers query the information system of individual supercomputers in order to submit jobs to the least busy supercomputer on a computational Grid. However, this information can become outdated by the time a job starts due to changes in scheduling priorities. The MSR scheme is based on Multiple Simultaneous Requests and can take advantage of opportunities resulting from these priorities changes. This paper presents the SWARM meta-scheduler, which can speed up the execution of large sets of tasks by minimizing the job queuing time through the submission of multiple requests. Performance tests have shown that this new meta-scheduler is faster than an implementation of the MSR scheme and the gLite meta-scheduler. SWARM has been used through the GridQTL project beta-testing portal during the past year. Statistics are provided for this usage and demonstrate its capacity to achieve reliably a substantial reduction of the execution time in production conditions.

Keywords: Grid computing, multiple simultaneous requests, fault tolerance, GridQTL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
1180 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring

Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek

Abstract:

In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.

Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
1179 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather

Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa

Abstract:

A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Zimbabwe has no study that notes if grid failures have been caused by GICs. Research and monitoring are needed to investigate this possible relationship purpose of this paper is to characterize GICs with a power grid network. This paper analyses data collected, which are geomagnetic data, which include the Kp index, Disturbance storm time (DST) index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.

Keywords: Adverse space weather, DST index, geomagnetically induced currents, Kp index, reactive power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158
1178 Weighted Clustering Coefficient for Identifying Modular Formations in Protein-Protein Interaction Networks

Authors: Zelmina Lubovac, Björn Olsson, Jonas Gamalielsson

Abstract:

This paper describes a novel approach for deriving modules from protein-protein interaction networks, which combines functional information with topological properties of the network. This approach is based on weighted clustering coefficient, which uses weights representing the functional similarities between the proteins. These weights are calculated according to the semantic similarity between the proteins, which is based on their Gene Ontology terms. We recently proposed an algorithm for identification of functional modules, called SWEMODE (Semantic WEights for MODule Elucidation), that identifies dense sub-graphs containing functionally similar proteins. The rational underlying this approach is that each module can be reduced to a set of triangles (protein triplets connected to each other). Here, we propose considering semantic similarity weights of all triangle-forming edges between proteins. We also apply varying semantic similarity thresholds between neighbours of each node that are not neighbours to each other (and hereby do not form a triangle), to derive new potential triangles to include in module-defining procedure. The results show an improvement of pure topological approach, in terms of number of predicted modules that match known complexes.

Keywords: Modules, systems biology, protein interactionnetworks, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
1177 Automatic Choice of Topics for Seminars by Clustering Students According to Their Profile

Authors: J.R. Quevedo, E. Montañés, J. Ranilla, A. Bahamonde

Abstract:

The new framework the Higher Education is immersed in involves a complete change in the way lecturers must teach and students must learn. Whereas the lecturer was the main character in traditional education, the essential goal now is to increase the students' participation in the process. Thus, one of the main tasks of lecturers in this new context is to design activities of different nature in order to encourage such participation. Seminars are one of the activities included in this environment. They are active sessions that enable going in depth into specific topics as support of other activities. They are characterized by some features such as favoring interaction between students and lecturers or improving their communication skills. Hence, planning and organizing strategic seminars is indeed a great challenge for lecturers with the aim of acquiring knowledge and abilities. This paper proposes a method using Artificial Intelligence techniques to obtain student profiles from their marks and preferences. The goal of building such profiles is twofold. First, it facilitates the task of splitting the students into different groups, each group with similar preferences and learning difficulties. Second, it makes it easy to select adequate topics to be a candidate for the seminars. The results obtained can be either a guarantee of what the lecturers could observe during the development of the course or a clue to reconsider new methodological strategies in certain topics.

Keywords: artificial intelligence, clustering, organizingseminars, student profile

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
1176 Hybrid GA Tuned RBF Based Neuro-Fuzzy Controller for Robotic Manipulator

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

In this paper performance of Puma 560 manipulator is being compared for hybrid gradient descent and least square method learning based ANFIS controller with hybrid Genetic Algorithm and Generalized Pattern Search tuned radial basis function based Neuro-Fuzzy controller. ANFIS which is based on Takagi Sugeno type Fuzzy controller needs prior knowledge of rule base while in radial basis function based Neuro-Fuzzy rule base knowledge is not required. Hybrid Genetic Algorithm with generalized Pattern Search is used for tuning weights of radial basis function based Neuro- fuzzy controller. All the controllers are checked for butterfly trajectory tracking and results in the form of Cartesian and joint space errors are being compared. ANFIS based controller is showing better performance compared to Radial Basis Function based Neuro-Fuzzy Controller but rule base independency of RBF based Neuro-Fuzzy gives it an edge over ANFIS

Keywords: Neuro-Fuzzy, Robotic Control, RBFNF, ANFIS, Hybrid GA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
1175 Illumination Invariant Face Recognition using Supervised and Unsupervised Learning Algorithms

Authors: Shashank N. Mathur, Anil K. Ahlawat, Virendra P. Vishwakarma

Abstract:

In this paper, a comparative study of application of supervised and unsupervised learning algorithms on illumination invariant face recognition has been carried out. The supervised learning has been carried out with the help of using a bi-layered artificial neural network having one input, two hidden and one output layer. The gradient descent with momentum and adaptive learning rate back propagation learning algorithm has been used to implement the supervised learning in a way that both the inputs and corresponding outputs are provided at the time of training the network, thus here is an inherent clustering and optimized learning of weights which provide us with efficient results.. The unsupervised learning has been implemented with the help of a modified Counterpropagation network. The Counterpropagation network involves the process of clustering followed by application of Outstar rule to obtain the recognized face. The face recognition system has been developed for recognizing faces which have varying illumination intensities, where the database images vary in lighting with respect to angle of illumination with horizontal and vertical planes. The supervised and unsupervised learning algorithms have been implemented and have been tested exhaustively, with and without application of histogram equalization to get efficient results.

Keywords: Artificial Neural Networks, back propagation, Counterpropagation networks, face recognition, learning algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
1174 A Finite Difference Calculation Procedure for the Navier-Stokes Equations on a Staggered Curvilinear Grid

Authors: R. M. Barron, B. Zogheib

Abstract:

A new numerical method for solving the twodimensional, steady, incompressible, viscous flow equations on a Curvilinear staggered grid is presented in this paper. The proposed methodology is finite difference based, but essentially takes advantage of the best features of two well-established numerical formulations, the finite difference and finite volume methods. Some weaknesses of the finite difference approach are removed by exploiting the strengths of the finite volume method. In particular, the issue of velocity-pressure coupling is dealt with in the proposed finite difference formulation by developing a pressure correction equation in a manner similar to the SIMPLE approach commonly used in finite volume formulations. However, since this is purely a finite difference formulation, numerical approximation of fluxes is not required. Results obtained from the present method are based on the first-order upwind scheme for the convective terms, but the methodology can easily be modified to accommodate higher order differencing schemes.

Keywords: Curvilinear, finite difference, finite volume, SIMPLE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3203
1173 Effect of Integrity of the Earthing System on the Rise of Earth Potential

Authors: N. Ullah, A. Haddad, F. Van Der Linde

Abstract:

This paper investigates the effects of breaks in bonds, breaks in the earthing system and breaks in earth wire on the rise of the earth potential (EPR) in a substation and at the transmission tower bases using various models of an L6 tower. Different approaches were adopted to examine the integrity of the earthing system and the terminal towers. These effects were investigated to see the associated difference in the EPR magnitudes with respect to a healthy system at various locations. Comparisons of the computed EPR magnitudes were then made between the healthy and unhealthy system to detect any difference. The studies were conducted at power frequency for a uniform soil with different soil resistivities. It was found that full breaks in the double bond of the terminal towers increase the EPR significantly at the fault location, while they reduce EPR at the terminal tower bases. A fault on the isolated section of the grid can result in EPR values up to 8 times of those on a healthy system at higher soil resistivities, provided that the extended earthing system stays connected to the grid.

Keywords: Bonding, earthing, EPR, integrity, system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
1172 Improving Image Segmentation Performance via Edge Preserving Regularization

Authors: Ying-jie Zhang, Li-ling Ge

Abstract:

This paper presents an improved image segmentation model with edge preserving regularization based on the piecewise-smooth Mumford-Shah functional. A level set formulation is considered for the Mumford-Shah functional minimization in segmentation, and the corresponding partial difference equations are solved by the backward Euler discretization. Aiming at encouraging edge preserving regularization, a new edge indicator function is introduced at level set frame. In which all the grid points which is used to locate the level set curve are considered to avoid blurring the edges and a nonlinear smooth constraint function as regularization term is applied to smooth the image in the isophote direction instead of the gradient direction. In implementation, some strategies such as a new scheme for extension of u+ and u- computation of the grid points and speedup of the convergence are studied to improve the efficacy of the algorithm. The resulting algorithm has been implemented and compared with the previous methods, and has been proved efficiently by several cases.

Keywords: Energy minimization, image segmentation, level sets, edge regularization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
1171 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: Short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, Gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2602
1170 Congestion Management in a Deregulated Power System with Micro Grid

Authors: Guguloth Ramesh, T. K. Sunil Kumar

Abstract:

This paper presents congestion management in deregulated power systems. In a deregulated environment, every buyer wants to buy power from the cheapest generator available, irrespective of relative geographical location of buyer and seller. As a consequence of this, the transmission corridors evacuating the power of cheaper generators would get overloaded if all such transactions are approved. Congestion management is a mechanism to prioritize the transactions and commit to such a schedule which would not overload the network. The congestions in the transmission lines are determined by Optimal Power Flow (OPF) solution, which is carried by primal liner programming method. Congestion in the transmission lines are alleviated by connected Distributed Generation (DG) of micro grid at load bus. A method to determine the optimal location of DG unit has been suggested based on transmission line relief sensitivity based approach. The effectiveness of proposed method has been demonstrated on modified IEEE-14 and 30 bus test systems.

Keywords: Congestion management, Distribution Generation (DG), Transmission Line Relief (TLR) sensitivity index, OPF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3893
1169 Identification of Disease Causing DNA Motifs in Human DNA Using Clustering Approach

Authors: G. Tamilpavai, C. Vishnuppriya

Abstract:

Studying DNA (deoxyribonucleic acid) sequence is useful in biological processes and it is applied in the fields such as diagnostic and forensic research. DNA is the hereditary information in human and almost all other organisms. It is passed to their generations. Earlier stage detection of defective DNA sequence may lead to many developments in the field of Bioinformatics. Nowadays various tedious techniques are used to identify defective DNA. The proposed work is to analyze and identify the cancer-causing DNA motif in a given sequence. Initially the human DNA sequence is separated as k-mers using k-mer separation rule. The separated k-mers are clustered using Self Organizing Map (SOM). Using Levenshtein distance measure, cancer associated DNA motif is identified from the k-mer clusters. Experimental results of this work indicate the presence or absence of cancer causing DNA motif. If the cancer associated DNA motif is found in DNA, it is declared as the cancer disease causing DNA sequence. Otherwise the input human DNA is declared as normal sequence. Finally, elapsed time is calculated for finding the presence of cancer causing DNA motif using clustering formation. It is compared with normal process of finding cancer causing DNA motif. Locating cancer associated motif is easier in cluster formation process than the other one. The proposed work will be an initiative aid for finding genetic disease related research.

Keywords: Bioinformatics, cancer motif, DNA, k-mers, Levenshtein distance, SOM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
1168 Rheological Properties of Polyethylene and Polypropylene Modified Bitumen

Authors: Noor Zainab Habib, Ibrahim Kamaruddin, Madzalan Napiah, Isa Mohd Tan

Abstract:

This paper presents a part of research on the rheological properties of bitumen modified by thermoplastic namely linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and polypropylene (PP) and its interaction with 80 pen base bitumen. As it is known that the modification of bitumen by the use of polymers enhances its performance characteristics but at the same time significantly alters its rheological properties. The rheological study of polymer modified bitumen (PMB) was made through penetration, ring & ball softening point and viscosity test. The results were then related to the changes in the rheological properties of polymer modified bitumen. It was observed that thermoplastic copolymer shows profound effect on penetration rather than softening point. The viscoelastic behavior of polymer modified bitumen depend on the concentration of polymer, mixing temperature, mixing technique, solvating power of base bitumen and molecular structure of polymer used. PP offer better blend in comparison to HDPE and LLDPE. The viscosity of base bitumen was also enhanced with the addition of polymer. The pseudoplastic behavior was more prominent for HDPE and LLDPE than PP. Best results were obtained when polymer concentration was kept below 3%

Keywords: Polymer modified bitumen, Linear low densitypolyethylene, High density polyethylene, Polypropylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4420
1167 Evaluate Aging Effect of SBS Modified Bitumen

Authors: Seyed Abbas Tabatabaei

Abstract:

One of the important factors of cracks on the asphalt pavements is bitumen aging that associated with the loss of volatile components and oxidation of asphalt binder. This paper is about effect of Styrene-Butadiene-Styrene (SBS) polymer on asphalt aging In order to decrease asphalt aging effects. For this purpose samples of base bitumen and SBS modified bitumen aged according to the rolling thin film oven test (RTFOT) and pressure aging vessel (PAV), respectively. Properties of each sample were evaluated using Fourier Transform Infrared (FTIR) spectroscopy, n-heptane precipitation, viscosity test, softening point test and penetration test. FT-IR Analysis, showed lower oxidation of SBS modified bitumen than base bitumen, after aging.

Keywords: SBS, Asphalt aging, modified bitumen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3150
1166 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.

Keywords: Incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863