Search results for: Experimental Designs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3725

Search results for: Experimental Designs

3215 Influence of Fibre Content on Crack Propagation Rate in Fibre-Reinforced Concrete Beams

Authors: Amir M. Alani, Morteza Aboutalebi, Martin J. King

Abstract:

Experimental study on the influence of fibre content on crack behaviour and propagation in synthetic-fibre reinforced beams has been reported in this paper. The tensile behaviour of metallic fibre concrete is evaluated in terms of residual flexural tensile strength values determined from the load-crack mouth opening displacement curve or load-deflection curve obtained by applying a centre-point load on a simply supported notched prism. The results achieved demonstrate that an increase in fibre content has an almost negligible effect on compressive and tensile splitting properties, causes a marginal increment in flexural tensile strength and increasesthe Re3 value.

Keywords: Fibre-Reinforced Concrete, Crack, Flexural Test, Ductility, Fibre Content, Experimental Study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3717
3214 Isobaric Vapor-Liquid Equilibrium Data for Binary Mixture of 2-Methyltetrahydrofuran and Cumene

Authors: V. K. Rattan, Baljinder K. Gill, Seema Kapoor

Abstract:

Isobaric vapor-liquid equilibrium measurements are reported for binary mixture of 2-Methyltetrahydrofuran and Cumene at 97.3 kPa. The data were obtained using a vapor recirculating type (modified Othmer's) equilibrium still. The mixture shows slight negative deviation from ideality. The system does not form an azeotrope. The experimental data obtained in this study are thermodynamically consistent according to the Herington test. The activity coefficients have been satisfactorily correlated by means of the Margules, and NRTL equations. Excess Gibbs free energy has been calculated from the experimental data. The values of activity coefficients have also been obtained by the UNIFAC group contribution method.

Keywords: Binary mixture, 2-Methyltetrahydrofuran, Cumene, Vapor-liquid equilibrium, UNIFAC, Excess Gibbs free energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
3213 Low Power CNFET SRAM Design

Authors: Pejman Hosseiniun, Rose Shayeghi, Iman Rahbari, Mohamad Reza Kalhor

Abstract:

CNFET has emerged as an alternative material to silicon for high performance, high stability and low power SRAM design in recent years. SRAM functions as cache memory in computers and many portable devices. In this paper, a new SRAM cell design based on CNFET technology is proposed. The proposed SRAM cell design for CNFET is compared with SRAM cell designs implemented with the conventional CMOS and FinFET in terms of speed, power consumption, stability, and leakage current. The HSPICE simulation and analysis show that the dynamic power consumption of the proposed 8T CNFET SRAM cell’s is reduced about 48% and the SNM is widened up to 56% compared to the conventional CMOS SRAM structure at the expense of 2% leakage power and 3% write delay increase.

Keywords: SRAM cell, CNFET, low power, HSPICE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693
3212 Contact Drying Simulation of Particulate Materials: A Comprehensive Approach

Authors: Marco Intelvi, Apolinar Picado, Joaquín Martínez

Abstract:

In this work, simulation algorithms for contact drying of agitated particulate materials under vacuum and at atmospheric pressure were developed. The implementation of algorithms gives a predictive estimation of drying rate curves and bulk bed temperature during contact drying. The calculations are based on the penetration model to describe the drying process, where all process parameters such as heat and mass transfer coefficients, effective bed properties, gas and liquid phase properties are estimated with proper correlations. Simulation results were compared with experimental data from the literature. In both cases, simulation results were in good agreement with experimental data. Few deviations were identified and the limitations of the predictive capabilities of the models are discussed. The programs give a good insight of the drying behaviour of the analysed powders.

Keywords: Agitated bed, Atmospheric pressure, Penetrationmodel, Vacuum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
3211 Reducing Pressure Drop in Microscale Channel Using Constructal Theory

Authors: K. X. Cheng, A. L. Goh, K. T. Ooi

Abstract:

The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs.

Keywords: Constructal theory, enhanced heat transfer, microchannel, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
3210 Effects of Nanolayer Structure and Brownian Motion of Particles in Thermal Conductivity Enhancement of Nanofluids

Authors: M. Izadi, S. Hossainpour, D. Jalali-Vahid

Abstract:

Nanofluids are novel fluids that are going to have an important role in future industrial thermal device designs. Studies are being predominantly conducted on the mechanism of these heat transfers. The key to this attraction is in the increase in thermal conductivity brought about by the Nanofluids compared with the base fluid. Different models have been proposed for calculation of effective thermal conduction that has been gradually modified. In this investigation effect of nanolayer structure and Brownian motion of particles are studied and a new modified thermal conductivity model is proposed. Temperature, concentration, nanolayer thickness and particle size are taken as variables and their effect are studied simultaneously on the thermal conductivity of the fluids, showing the concentration of the nanoparticles to affect the nanolayer thickness which also affects the Brownian motion.

Keywords: Relative thermal conductivity, Brownian motion, Nanolayer structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
3209 Study on Scheduling of the Planning Method Using the Web-based Visualization System in a Shipbuilding Block Assembly Shop

Authors: A. Eui Koog Ahn, B. Gi-Nam Wang, C. Sang C. Park

Abstract:

Higher productivity and less cost in the ship manufacturing process are required to maintain the international competitiveness of morden manufacturing industries. In shipbuilding, however, the Engineering To Order (ETO) production method and production process is very difficult. Thus, designs change frequently. In accordance with production, planning should be set up according to scene changes. Therefore, fixed production planning is very difficult. Thus, a scheduler must first make sketchy plans, then change the plans based on the work progress and modifications. Thus, data sharing in a shipbuilding block assembly shop is very important. In this paper, we proposed to scheduling method applicable to the shipbuilding industry and decision making support system through web based visualization system.

Keywords: Shipbuilding, Monitoring, Block assembly shop, Visualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
3208 A Proposed Information Extraction Technique in Engineering Drawing for Reuse Design

Authors: Mohd Fahmi Mohamad Amran, Riza Sulaiman, Saliyah Kahar, Suziyanti Marjudi, Muhammad FairuzAbd Rauf

Abstract:

The extensive number of engineering drawing will be referred for planning process and the changes will produce a good engineering design to meet the demand in producing a new model. The advantage in reuse of engineering designs is to allow continuous product development to further improve the quality of product development, thus reduce the development costs. However, to retrieve the existing engineering drawing, it is time consuming, a complex process and are expose to errors. Engineering drawing file searching system will be proposed to solve this problem. It is essential for engineer and designer to have some sort of medium to enable them to search for drawing in the most effective way. This paper lays out the proposed research project under the area of information extraction in engineering drawing.

Keywords: Computer aided design, information extraction, engineering drawing, reuse design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
3207 Experimental Study of the Extraction of Copper(II) from Sulphuric Acid by Means of Sodium Diethyldithiocarbamate (SDDT)

Authors: S.Touati, A.H. Meniai

Abstract:

The present work presents the extraction of copper(II) from sulphuric acid solutions with Sodium diethyldithiocarbamate (SDDT), and six different organic diluents: Dichloromethane, Chloroform, Carbon tetrachloride, Toluene, xylene and Cyclohexane, were tested. The pair SDDT/Chloroform showed to be the most selective in removing the copper cations, and hence was considered throughout the experimental study. The effects of operating parameters such as the initial concentration of the extracting agent, the agitation time, the agitation speed and the acid concentration were considered. For an initial concentration of Cu (II) of 63 ppm in a 0.5 M sulphuric acid solution, both with a mass of the extracting agent of 20 mg, an extraction percentage of about 97.8 % and a distribution coefficient of 44.42 were obtained, respectively, confirming the performance of the SDDT-Chloroform pair.

Keywords: Copper (II), Distribution coefficient, Extraction, SDDT, Sulphuric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
3206 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.

Keywords: Air bubbles, CFD simulation, jet pump, practical applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
3205 Experimental Analysis of Diesel Hydrotreating Reactor to Development a Simplified Tool for Process Real- time Optimization

Authors: S.Shokri, S.Zahedi, M.Ahmadi Marvast, B. Baloochi, H.Ganji

Abstract:

In this research, a systematic investigation was carried out to determine the optimum conditions of HDS reactor. Moreover, a suitable model was developed for a rigorous RTO (real time optimization) loop of HDS (Hydro desulfurization) process. A systematic experimental series was designed based on CCD (Central Composite design) and carried out in the related pilot plant to tune the develop model. The designed variables in the experiments were Temperature, LHSV and pressure. However, the hydrogen over fresh feed ratio was remained constant. The ranges of these variables were respectively equal to 320-380ºC, 1- 21/hr and 50-55 bar. a power law kinetic model was also developed for our further research in the future .The rate order and activation energy , power of reactant concentration and frequency factor of this model was respectively equal to 1.4, 92.66 kJ/mol and k0=2.7*109 .

Keywords: Statistical model, Multiphase Reactors, Gas oil, Hydrodesulfurization, Optimization, Kinetics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2668
3204 Finite Element Study of a DfD Beam-Column Connection

Authors: Zhi Sheng Lin, K. C. G. Ong, Lado Riannevo Chandra, Bee Hong Angeline Tan, Chat Tim Tam, Sze Dai Pang

Abstract:

Design for Disassembly (DfD) aims to reuse the structural components instead of demolition followed by recycling of the demolition debris. This concept preserves the invested embodied energy of materials, thus reducing inputs of new embodied energy during materials reprocessing or remanufacturing. Both analytical and experimental research on a proposed DfD beam-column connection for use in residential apartments is currently investigated at the National University of Singapore in collaboration with the Housing and Development Board of Singapore. The present study reports on the results of a numerical analysis of the proposed connection utilizing finite element analysis. The numerical model was calibrated and validated by comparison against experimental results. Results of a parametric study will also be presented and discussed.

Keywords: Design for Disassembly (DfD), finite element analysis, parametric study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
3203 New Effect of Duct Cross Sectional Shape on the Nanofluid Flow Heat Transfer

Authors: Mohammad R. Salimpour, Amir Dehshiri

Abstract:

In the present article, we investigate experimental laminar forced convective heat transfer specifications of TiO2/water nanofluids through conduits with different cross sections. we check the effects of different parameters such as cross sectional shape, Reynolds number and concentration of nanoparticles in stable suspension on increasing convective heat transfer by designing and assembling of an experimental apparatus. The results demonstrate adding a little amount of nanoparticles to the base fluid, improves heat transfer behavior in conduits. Moreover, conduit with circular cross-section has better performance compared to the square and triangular cross sections. However, conduits with square and triangular cross sections have more relative heat transfer enchantment than conduit with circular cross section.

Keywords: Nanofluid, cross-sectional shape, TiO2, convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1070
3202 Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor

Authors: Michel Han, Christophe Besson, Alain Savary, Yvan Becher

Abstract:

The variable flux permanent magnet synchronous motor (VF-PMSM), also called "Memory Motor", is a new generation of motor capable of modifying the magnetization state with short pulses of current during operation or standstill. The impact of such operation is the expansion of the operating range in the torque-speed characteristic and an improvement in energy efficiency at high-speed in comparison to conventional permanent magnet synchronous machines (PMSMs). This paper reviews the operating principle and the unique features of the proposed memory motor. The benefits of this concept are highlighted by comparing the performance of the rotor of the VF-PMSM to that of two PM rotors that are typically found in the industry. The investigation emphasizes the properties of the variable magnetization and presents the comparison of the torque-speed characteristic with the capability of loss reduction in a VF-PMSM by means of experimental results, especially when tests are conducted under identical conditions for each rotor (same stator, same inverter and same experimental setup). The experimental results demonstrated that the VF-PMSM gives an additional degree of freedom to optimize the efficiency over a wide speed range. Thus, with a design easy to manufacture and with the possibility of controlling the magnetization and the demagnetization of the magnets during operations, the VF-PMSM can be interesting for various applications.

Keywords: Efficiency, magnetization state, memory motors, performances, permanent-magnet, synchronous machine, variable-flux, variable magnetization, wide speed application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891
3201 Kinematic Analysis of an Assistive Robotic Leg for Hemiplegic and Hemiparetic Patients

Authors: M.R. Safizadeh, M. Hussein, K. F. Samat, M.S. Che Kob, M.S. Yaacob, M.Z. Md Zain

Abstract:

The aim of this paper is to present the kinematic analysis and mechanism design of an assistive robotic leg for hemiplegic and hemiparetic patients. In this work, the priority is to design and develop the lightweight, effective and single driver mechanism on the basis of experimental hip and knee angles- data for walking speed of 1 km/h. A mechanism of cam-follower with three links is suggested for this purpose. The kinematic analysis is carried out and analysed using commercialized MATLAB software based on the prototype-s links sizes and kinematic relationships. In order to verify the kinematic analysis of the prototype, kinematic analysis data are compared with the experimental data. A good agreement between them proves that the anthropomorphic design of the lower extremity exoskeleton follows the human walking gait.

Keywords: Kinematic analysis, assistive robotic leg, lower extremity exoskeleton, cam-follower mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
3200 CFD of Oscillating Airfoil Pitch Cycle by using PISO Algorithm

Authors: Muhammad Amjad Sohail, Rizwan Ullah

Abstract:

This research paper presents the CFD analysis of oscillating airfoil during pitch cycle. Unsteady subsonic flow is simulated for pitching airfoil at Mach number 0.283 and Reynolds number 3.45 millions. Turbulent effects are also considered for this study by using K-ω SST turbulent model. Two-dimensional unsteady compressible Navier-Stokes code including two-equation turbulence model and PISO pressure velocity coupling is used. Pressure based implicit solver with first order implicit unsteady formulation is used. The simulated pitch cycle results are compared with the available experimental data. The results have a good agreement with the experimental data. Aerodynamic characteristics during pitch cycles have been studied and validated.

Keywords: Angle of attack, Centre of pressure, subsonic flow, pitching moment coefficient, turbulence mode

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378
3199 Rear Separation in a Rotating Fluid at Moderate Taylor Numbers

Authors: S. Damodaran, T. V. S.Sekhar

Abstract:

The motion of a sphere moving along the axis of a rotating viscous fluid is studied at high Reynolds numbers and moderate values of Taylor number. The Higher Order Compact Scheme is used to solve the governing Navier-Stokes equations. The equations are written in the form of Stream function, Vorticity function and angular velocity which are highly non-linear, coupled and elliptic partial differential equations. The flow is governed by two parameters Reynolds number (Re) and Taylor number (T). For very low values of Re and T, the results agree with the available experimental and theoretical results in the literature. The results are obtained at higher values of Re and moderate values of T and compared with the experimental results. The results are fourth order accurate.

Keywords: Navier_Stokes equations, Taylor number, Reynolds number, Higher order compact scheme, Rotating Fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
3198 Adsorption of Textile Reactive Dye by Palm Shell Activated Carbon: Response Surface Methodology

Authors: Siti Maryam Rusly, Shaliza Ibrahim

Abstract:

The adsorption of simulated aqueous solution containing textile remazol reactive dye, namely Red 3BS by palm shell activated carbon (PSAC) as adsorbent was carried out using Response Surface Methodology (RSM). A Box-Behnken design in three most important operating variables; initial dye concentration, dosage of adsorbent and speed of impeller was employed for experimental design and optimization of results. The significance of independent variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95% confidence limits. Model indicated that with the increasing of dosage and speed give the result of removal up to 90% with the capacity uptake more than 7 mg/g. High regression coefficient between the variables and the response (R-Sq = 93.9%) showed of good evaluation of experimental data by polynomial regression model.

Keywords: Adsorption, Box-Behnken Design, Palm ShellActivated Carbon, Red 3BS, RSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
3197 Strengthening of RC Beams with Large Openings in Shear by CFRP Laminates: 2D Nonlinear FE Analysis

Authors: S.C. Chin, N. Shafiq, M.F. Nuruddin

Abstract:

To date, theoretical studies concerning the Carbon Fiber Reinforced Polymer (CFRP) strengthening of RC beams with openings have been rather limited. In addition, various numerical analyses presented so far have effectively simulated the behaviour of solid beam strengthened by FRP material. In this paper, a two dimensional nonlinear finite element analysis is presented to validate against the laboratory test results of six RC beams. All beams had the same rectangular cross-section geometry and were loaded under four point bending. The crack pattern results of the finite element model show good agreement with the crack pattern of the experimental beams. The load midspan deflection curves of the finite element models exhibited a stiffer result compared to the experimental beams. The possible reason may be due to the perfect bond assumption used between the concrete and steel reinforcement.

Keywords: CFRP, large opening, RC beam, strengthening

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
3196 Enhancing the Performance of a Photovoltaic Module Using Different Cooling Methods

Authors: Ahmed Amine Hachicha, Chaouki Ghenai, Abdul Kadir Hamid

Abstract:

Temperature effect on the performance of a photovoltaic module is one of the main concerns that face this renewable energy, especially in hot arid region, e.g. United Arab Emirates. Overheating of the PV modules reduces the open circuit voltage and the efficiency of the modules dramatically. In this work, water-cooling is developed to enhance the performance of PV modules. Different scenarios are tested under UAE weather conditions: front, back and double cooling. A spraying system is used for the front cooling whether a direct contact water system is used for the back cooling. The experimental results are compared to non-cooling module and the performance of the PV module is determined for different situations. The experimental results show that the front cooling is more effective than the back cooling and may decrease the temperature of the PV module significantly. 

Keywords: PV cooling, solar energy, cooling methods, electrical efficiency, temperature effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3534
3195 Lightweight High-Pressure Ratio Centrifugal Compressor for Vehicles-Investigation of Pipe Diffuser Designs by Means of CFD

Authors: Eleni Ioannou, Pascal Nucara, Keith Pullen

Abstract:

The subject of this paper is the investigation of the best efficiency design of a compressor diffuser applied in new lightweight, ultra efficient micro-gas turbine engines for vehicles. The Computational Fluid Dynamics (CFD) results are obtained utilizing steady state simulations for a wedge and an ”oval” type pipe diffuser in an effort to identify the beneficial effects of the pipe diffuser design. The basic flow features are presented with particular focus on the optimization of the pipe diffuser leading to higher efficiencies for the compressor stage. The optimised pipe diffuser is designed to exploit the 3D freedom enabled by Selective Laser Melting, hence purposely involves an investigation of geometric characteristics that do not follow the traditional diffuser concept.

Keywords: CFD, centrifugal compressor, micro-gas turbine, pipe diffuser, SLM, wedge diffuser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
3194 Cold Model Experimental Research on Particle Velocity Distribution in Gas-Solid Circulating Fluidized Bed for Methanol-to-Olefins Process

Authors: Yongzheng Li, Hongfang Ma, Qiwen Sun, Haitao Zhang, Weiyong Ying

Abstract:

Radial profiles of particle velocities were investigated in a 6.1m high methanol-to-olefins cold model experimental device using a TSI laser Doppler velocimeter. The effect of axial height on flow development was not obvious in fully developed region under the same operating condition. Superficial gas velocity and solid circulating rate had significant influence on particle velocity in the center region of the riser. Besides, comparisons among rising, descending and average particle velocity were conducted. The particle average velocity was similar to the rising particle velocity and higher than the descending particle velocity in radial locations except the wall region of riser.

Keywords: Circulating fluidized bed, laser doppler velocimeter, particle velocity, radial profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
3193 Finite Element Solution of Navier-Stokes Equations for Steam Flow and Heat Transfer

Authors: Igor Nedelkovski, Ilios Vilos, Tale Geramitcioski

Abstract:

Computational simulation of steam flow and heat transfer in power plant condensers on the basis of the threedimensional mathematical model for the flow through porous media is presented. In order to solve the mathematical model of steam flow and heat transfer in power plant condensers, the Streamline Upwind Petrov-Galerkin finite element method is applied. By comparison of the results of simulation with experimental results about an experimental condenser, it is confirmed that SUPG finite element method can be successfully applied for solving the three-dimensional mathematical model of steam flow and heat transfer in power plant condensers.

Keywords: Navier-Stokes, FEM, condensers, steam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
3192 Investigation on Fluid Flow Characteristics of the Orifice in Nuclear Power Plant

Authors: Nam-Seok Kim, Sang-Kyu Lee, Byung-Soo Shin, O-Hyun Keum

Abstract:

The present paper represents a methodology for investigating flow characteristics near orifice plate by using a commercial computational fluid dynamics code. The flow characteristics near orifice plate which is located in the auxiliary feedwater system were modeled via three different levels of grid and four different types of Reynolds Averaged Navier-Stokes (RANS) equations with proper near-wall treatment. The results from CFD code were compared with experimental data in terms of differential pressure through the orifice plate. In this preliminary study, the Realizable k-ε and the Reynolds stress models with enhanced wall treatment were suitable to analyze flow characteristics near orifice plate, and the results had a good agreement with experimental data.

Keywords: Auxiliary Feedwater, Computational Fluid Dynamics, Orifice, Nuclear Power Plant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
3191 Wear and Friction Analysis of Sintered Metal Powder Self Lubricating Bush Bearing

Authors: J. K. Khare, Abhay Kumar Sharma, Ajay Tiwari, Amol A. Talankar

Abstract:

Powder metallurgy (P/M) is the only economic way to produce porous parts/products. P/M can produce near net shape parts hence reduces wastage of raw material and energy, avoids various machining operations. The most vital use of P/M is in production of metallic filters and self lubricating bush bearings and siding surfaces. The porosity of the part can be controlled by varying compaction pressure, sintering temperature and composition of metal powder mix. The present work is aimed for experimental analysis of friction and wear properties of self lubricating copper and tin bush bearing. Experimental results confirm that wear rate of sintered component is lesser for components having 10% tin by weight percentage. Wear rate increases for high tin percentage (experimented for 20% tin and 30% tin) at same sintering temperature. Experimental results also confirms that wear rate of sintered component is also dependent on sintering temperature, soaking period, composition of the preform, compacting pressure, powder particle shape and size. Interfacial friction between die and punch, between inter powder particles, between die face and powder particle depends on compaction pressure, powder particle size and shape, size and shape of component which decides size & shape of die & punch, material of die & punch and material of powder particles.

Keywords: Interfacial friction, porous bronze bearing, sintering temperature, wear rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3958
3190 Conceptual Analysis of Correspondence between Plantar Pressure and Corrective Insoles

Authors: Diana Cotoros, Mihaela Baritz, Anca Stanciu

Abstract:

Some theoretical and experimental aspects related to the conceptual analyses concerning the direct correspondence identification between the shape, area and orientation of plantar pressure and obtaining adequate corrective insoles by rapid prototyping are presented in this paper. In the first part of the paper there is the theoretical-correlative concept, which is the fundament of correspondence deduction between plantar surface characteristics and respectively corrective insoles. In the second part of the paper the experimental equipment used to analyze and perform the correspondence stages and then the integral ones between the analyzed foot shapes and the ones with corrective insoles is presented. In the final parte the results used to adapt the insoles obtained by rapid prototyping but also some specific aspects and conclusions of the conceptual analysis of direct and rapid correspondence are shown.

Keywords: Insoles, plantar surface, rapid prototyping, correspondence concept

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
3189 1G2A IMU\GPS Integration Algorithm for Land Vehicle Navigation

Authors: O. Maklouf, Ahmed Abdulla

Abstract:

A general decline in the cost, size, and power requirements of electronics is accelerating the adoption of integrated GPS/INS technologies in consumer applications such Land Vehicle Navigation. Researchers have looking for ways to eliminate additional components from product designs. One possibility is to drop one or more of the relatively expensive gyroscopes from microelectromechanical system (MEMS) versions of inertial measurement units (IMUs). For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a simplified integration algorithm for strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of the low-cost IMU and because of the relatively small area of the trajectory.

Keywords: GPS, ParIMU, INS, Kalman Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2854
3188 Experimental Parametric Investigation of Temperature Effects on 60W-QCW Diode Laser

Authors: E. Farsad, S. P. Abbasi, A. Goodarzi, M. S. Zabihi

Abstract:

Nowadays, quasi-continuous wave diode lasers are used in a widespread variety of applications. Temperature effects in these lasers can strongly influence their performance. In this paper, the effects of temperature have been experimentally investigated on different features of a 60W-QCW diode laser. The obtained results indicate that the conversion efficiency and operation voltage of diode laser decrease with the augmentation of the working temperature associated with a redshift in the laser peak wavelength. Experimental results show the emission peak wavelength of laser shifts 0.26 nm and the conversion efficiency decreases 1.76 % with the increase of temperature from 40 to 50 ̊C. Present study also shows the slope efficiency decreases gradually at low temperatures and rapidly at higher temperatures. Regarding the close dependence of the mentioned parameters to the operating temperature, it is of great importance to carefully control the working temperature of diode laser, particularly for medical applications.

Keywords: diode laser, experimentally, temperature, wavelength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
3187 Self-Excited Vibration in Hydraulic Ball Check Valve

Authors: L. Grinis, V. Haslavsky, U. Tzadka

Abstract:

This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow past a sphere in a hydraulic check valve. The phenomenon of the rotation of the ball around the axis of the device through which liquid flows has been found. That is, due to the rotation of the sphere in the check valve vibration is caused. We observe the rotation of the sphere around the longitudinal axis of the check valve. This rotation is induced by a vortex shedding from the sphere. We will discuss computational simulation and experimental investigations of this strong sphere rotation. The frequency of the sphere vibration and interaction with the check valve wall has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. This study demonstrates the possibility to control the vibrations in a hydraulic system and proves to be very effective suppression of the self-excited vibration.

Keywords: Check-valve, vibration, vortex shedding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829
3186 The Use of Microorganisms in the Bioleaching of Soils Polluted with Heavy Metals

Authors: I. M. Sur, A. M. Chirila-Babau, T. Gabor, V. Micle

Abstract:

This paper shows researches in order to extract Cr, Cu and Ni from the polluted soils. Research is based on preliminary studies regarding the usage of Thiobacillus ferrooxidans bacterium (9K medium) for bioleaching of soil polluted with heavy metal (Cu, Cr and Ni). The microorganisms (Thiobacillus ferooxidans) selected directly from polluted soil samples were used in this experimental work. Soil samples used in the experimental research were taken from an area polluted with heavy metals from Romania. The soil samples are subjected to the cleaning process using the 9K medium solution (20 mL and 40 mL, respectively), stirred 200 rpm for 20 hours at a controlled temperature (30 ˚C). During the experiment (0, 2, 4, 8 and 20 h), liquid samples have been extracted and analyzed using the Atomic Absorption Spectrophotometer AA-6800 (AAS) in order to determine the Cr, Cu and Ni concentration. Experiments led to the conclusion that these soils can be depolluted by bioleaching, being a biological treatment method involving the use of microorganisms to favor the extraction of Cr, Cu and Ni from polluted soils.

Keywords: Bioleaching, extraction, microorganisms, polluted soil, Thiobacillus ferooxidans.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 956