Search results for: Constant Modulus Algorithm
3948 Statistical Genetic Algorithm
Authors: Mohammad Ali Tabarzad, Caro Lucas, Ali Hamzeh
Abstract:
Adaptive Genetic Algorithms extend the Standard Gas to use dynamic procedures to apply evolutionary operators such as crossover, mutation and selection. In this paper, we try to propose a new adaptive genetic algorithm, which is based on the statistical information of the population as a guideline to tune its crossover, selection and mutation operators. This algorithms is called Statistical Genetic Algorithm and is compared with traditional GA in some benchmark problems.Keywords: Genetic Algorithms, Statistical Information ofthe Population, PAUX, SSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17543947 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks
Authors: Reza Sirjani, Nobosse Tafem Bolan
Abstract:
Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.
Keywords: Cuckoo search algorithm, optimization, power system, var compensators, voltage stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13473946 Optimization of Electrospinning Parameter by Employing Genetic Algorithm in order to Produce Desired Nanofiber Diameter
Authors: S. Saehana, F. Iskandar, M. Abdullah, Khairurrijal
Abstract:
A numerical simulation of optimization all of electrospinning processing parameters to obtain smallest nanofiber diameter have been performed by employing genetic algorithm (GA). Fitness function in genetic algorithm methods, which was different for each parameter, was determined by simulation approach based on the Reneker’s model. Moreover, others genetic algorithm parameter, namely length of population, crossover and mutation were applied to get the optimum electrospinning processing parameters. In addition, minimum fiber diameter, 32 nm, was achieved from a simulation by applied the optimum parameters of electrospinning. This finding may be useful for process control and prediction of electrospun fiber production. In this paper, it is also compared between predicted parameters with some experimental results.
Keywords: Diameter, Electrospinning, GA, Nanofiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29553945 Segmenting Ultrasound B-Mode Images Using RiIG Distributions and Stochastic Optimization
Abstract:
In this paper, we propose a novel algorithm for delineating the endocardial wall from a human heart ultrasound scan. We assume that the gray levels in the ultrasound images are independent and identically distributed random variables with different Rician Inverse Gaussian (RiIG) distributions. Both synthetic and real clinical data will be used for testing the algorithm. Algorithm performance will be evaluated using the expert radiologist evaluation of a soft copy of an ultrasound scan during the scanning process and secondly, doctor’s conclusion after going through a printed copy of the same scan. Successful implementation of this algorithm should make it possible to differentiate normal from abnormal soft tissue and help disease identification, what stage the disease is in and how best to treat the patient. We hope that an automated system that uses this algorithm will be useful in public hospitals especially in Third World countries where problems such as shortage of skilled radiologists and shortage of ultrasound machines are common. These public hospitals are usually the first and last stop for most patients in these countries.
Keywords: Endorcardial Wall, Rician Inverse Distributions, Segmentation, Ultrasound Images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15733944 Extraction of Symbolic Rules from Artificial Neural Networks
Authors: S. M. Kamruzzaman, Md. Monirul Islam
Abstract:
Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.Keywords: Backpropagation, clustering algorithm, constructivealgorithm, continuous activation function, pruning algorithm, ruleextraction algorithm, symbolic rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16163943 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics
Authors: Fabio Fabris, Alex A. Freitas
Abstract:
Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.Keywords: Algorithm recommendation, meta-learning, bioinformatics, hierarchical classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13723942 Effect of Scene Changing on Image Sequences Compression Using Zero Tree Coding
Authors: Mbainaibeye Jérôme, Noureddine Ellouze
Abstract:
We study in this paper the effect of the scene changing on image sequences coding system using Embedded Zerotree Wavelet (EZW). The scene changing considered here is the full motion which may occurs. A special image sequence is generated where the scene changing occurs randomly. Two scenarios are considered: In the first scenario, the system must provide the reconstruction quality as best as possible by the management of the bit rate (BR) while the scene changing occurs. In the second scenario, the system must keep the bit rate as constant as possible by the management of the reconstruction quality. The first scenario may be motivated by the availability of a large band pass transmission channel where an increase of the bit rate may be possible to keep the reconstruction quality up to a given threshold. The second scenario may be concerned by the narrow band pass transmission channel where an increase of the bit rate is not possible. In this last case, applications for which the reconstruction quality is not a constraint may be considered. The simulations are performed with five scales wavelet decomposition using the 9/7-tap filter bank biorthogonal wavelet. The entropy coding is performed using a specific defined binary code book and EZW algorithm. Experimental results are presented and compared to LEAD H263 EVAL. It is shown that if the reconstruction quality is the constraint, the system increases the bit rate to obtain the required quality. In the case where the bit rate must be constant, the system is unable to provide the required quality if the scene change occurs; however, the system is able to improve the quality while the scene changing disappears.Keywords: Image Sequence Compression, Wavelet Transform, Scene Changing, Zero Tree, Bit Rate, Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13563941 Distributed Relay Selection and Channel Choice in Cognitive Radio Network
Authors: Hao He, Shaoqian Li
Abstract:
In this paper, we study the cooperative communications where multiple cognitive radio (CR) transmit-receive pairs competitive maximize their own throughputs. In CR networks, the influences of primary users and the spectrum availability are usually different among CR users. Due to the existence of multiple relay nodes and the different spectrum availability, each CR transmit-receive pair should not only select the relay node but also choose the appropriate channel. For this distributed problem, we propose a game theoretic framework to formulate this problem and we apply a regret-matching learning algorithm which is leading to correlated equilibrium. We further formulate a modified regret-matching learning algorithm which is fully distributed and only use the local information of each CR transmit-receive pair. This modified algorithm is more practical and suitable for the cooperative communications in CR network. Simulation results show the algorithm convergence and the modified learning algorithm can achieve comparable performance to the original regretmatching learning algorithm.
Keywords: cognitive radio, cooperative communication, relay selection, channel choice, regret-matching learning, correlated equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16763940 Adaptive Noise Reduction Algorithm for Speech Enhancement
Authors: M. Kalamani, S. Valarmathy, M. Krishnamoorthi
Abstract:
In this paper, Least Mean Square (LMS) adaptive noise reduction algorithm is proposed to enhance the speech signal from the noisy speech. In this, the speech signal is enhanced by varying the step size as the function of the input signal. Objective and subjective measures are made under various noises for the proposed and existing algorithms. From the experimental results, it is seen that the proposed LMS adaptive noise reduction algorithm reduces Mean square Error (MSE) and Log Spectral Distance (LSD) as compared to that of the earlier methods under various noise conditions with different input SNR levels. In addition, the proposed algorithm increases the Peak Signal to Noise Ratio (PSNR) and Segmental SNR improvement (ΔSNRseg) values; improves the Mean Opinion Score (MOS) as compared to that of the various existing LMS adaptive noise reduction algorithms. From these experimental results, it is observed that the proposed LMS adaptive noise reduction algorithm reduces the speech distortion and residual noise as compared to that of the existing methods.
Keywords: LMS, speech enhancement, speech quality, residual noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28053939 Gas Turbine Optimal PID Tuning by Genetic Algorithm using MSE
Authors: R. Oonsivilai, A. Oonsivilai
Abstract:
Realistic systems generally are systems with various inputs and outputs also known as Multiple Input Multiple Output (MIMO). Such systems usually prove to be complex and difficult to model and control purposes. Therefore, decomposition was used to separate individual inputs and outputs. A PID is assigned to each individual pair to regulate desired settling time. Suitable parameters of PIDs obtained from Genetic Algorithm (GA), using Mean of Squared Error (MSE) objective function.Keywords: Gas Turbine, PID, Genetic Algorithm, Transfer function.Mean of Squared Error
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22423938 Calculation of the Thermal Stresses in an Elastoplastic Plate Heated by Local Heat Source
Authors: M. Khaing, A. V. Tkacheva
Abstract:
The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young's modulus, Poisson's ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses.Keywords: Temperature stresses, elasticity, plasticity, Ishlinsky-Ivlev condition, plate, annular heating, elastic moduli.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7283937 The Influence of Low Power Microwave Radiation on the Growth Rate of Listeria Monocytogenes
Authors: Renzo Carta, Francesco Desogus
Abstract:
Variations in the growth rate constant of the Listeria monocytogenes bacterial species were determined at 37°C in irradiated environments and compared to the situation of a nonirradiated environment. The bacteria cells, contained in a suspension made of a nutrient solution of Brain Heart Infusion, were made to grow at different frequency (2.30e2.60 GHz) and power (0e400 mW) values, in a plug flow reactor positioned in the irradiated environment. Then the reacting suspension was made to pass into a cylindrical cuvette where its optical density was read every 2.5 minutes at a wavelength of 600 nm. The obtained experimental data of optical density vs. time allowed the bacterial growth rate constant to be derived; this was found to be slightly influenced by microwave power, but not by microwave frequency; in particular, a minimum value was found for powers in the 50e150 mW field.Keywords: Growth rate constant, irradiated environment, Listeria monocytogenes, microwaves, plug flow reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15563936 Acceleration-Based Motion Model for Visual SLAM
Authors: Daohong Yang, Xiang Zhang, Wanting Zhou, Lei Li
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) is a technology that gathers information about the surrounding environment to ascertain its own position and create a map. It is widely used in computer vision, robotics, and various other fields. Many visual SLAM systems, such as OBSLAM3, utilize a constant velocity motion model. The utilization of this model facilitates the determination of the initial pose of the current frame, thereby enhancing the efficiency and precision of feature matching. However, it is often difficult to satisfy the constant velocity motion model in actual situations. This can result in a significant deviation between the obtained initial pose and the true value, leading to errors in nonlinear optimization results. Therefore, this paper proposes a motion model based on acceleration that can be applied to most SLAM systems. To provide a more accurate description of the camera pose acceleration, we separate the pose transformation matrix into its rotation matrix and translation vector components. The rotation matrix is now represented by a rotation vector. We assume that, over a short period, the changes in rotating angular velocity and translation vector remain constant. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of the constant velocity model is analyzed theoretically. Finally, we apply our proposed approach to the ORBSLAM3 system and evaluate two sets of sequences from the TUM datasets. The results show that our proposed method has a more accurate initial pose estimation, resulting in an improvement of 6.61% and 6.46% in the accuracy of the ORBSLAM3 system on the two test sequences, respectively.
Keywords: Error estimation, constant acceleration motion model, pose estimation, visual SLAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523935 Effects of Coupling Agent on the Properties of Henequen Microfiber (NF) Filled High Density Polyethylene (HDPE) Composites
Authors: Pravin Gaikwad, Prakash Mahanwar
Abstract:
The main objective of incorporating natural fibers such as Henequen microfibers (NF) into the High Density Polyethylene (HDPE) polymer matrix is to reduce the cost and to enhance the mechanical as well as other properties. The Henequen microfibers were chopped manually to 5-7mm in length and added into the polymer matrix at the optimized concentration of 8 wt %. In order to facilitate the link between Henequen microfibers (NF) and HDPE matrix, coupling agent such as Glycidoxy (Epoxy) Functional Methoxy Silane (GPTS) at various concentrations from 0.1%, 0.3%, 0.5%, 0.7%, 0.9% and 1% by weight to the total fibers were added. The tensile strength of the composite increased marginally while % elongation at break of the composites decreased with increase in silane loading by wt %. Tensile modulus and stiffness observed increased at 0.9 wt % GPTS loading. Flexural as well as impact strength of the composite decreased with increase in GPTS loading by weight %. Dielectric strength of the composite also found increased marginally up to 0.5wt % silane loading and thereafter remained constant.
Keywords: Henequen microfibers (NF), polymer composites, HDPE, coupling agent, GPTS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24253934 Study of the Potential of Raw Sediments and Sediments Treated with Lime or Cement for Use in a Foundation Layer and the Base Layer of a Roadway
Authors: Nor-Edine Abriak, Mahfoud Benzerzour, Mouhamadou Amar, Abdeljalil Zri
Abstract:
In this work, firstly we have studied the potential of raw sediments and sediments treated with lime or cement for use in a foundation layer and the base layer of a roadway. Secondly, we have examined mineral changes caused by the addition of lime or cement in order to explain the mechanical performance of stabilized sediments. After determining the amount of lime and cement required stabilizing the sediments, the compaction characteristics and Immediate Bearing Capacity (IBI) were studied using the Modified Proctor method. Then, the evolution of the three parameters, which are optimum water content, maximum dry density and IBI, were determined. Mechanical performances can be evaluated through resistance to compression, resistance under traction and the elasticity modulus. The resistances of the formulations treated with ROLAC®645 increase with the amount of ROLAC®645. Traction resistance and the elastic modulus were used to evaluate the potential of the formulations as road construction materials using the classification diagram. The results show that all the other formulations with ROLAC®645 can be used in subgrades and foundation layers for roads.
Keywords: Sediment, lime, cement, roadway.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9373933 Optimized Algorithm for Particle Swarm Optimization
Authors: Fuzhang Zhao
Abstract:
Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm.Keywords: Diversification search, intensification search, optimal weighting, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18683932 String Searching in Dispersed Files using MDS Convolutional Codes
Authors: A. S. Poornima, R. Aparna, B. B. Amberker, Prashant Koulgi
Abstract:
In this paper, we propose use of convolutional codes for file dispersal. The proposed method is comparable in complexity to the information Dispersal Algorithm proposed by M.Rabin and for particular choices of (non-binary) convolutional codes, is almost as efficient as that algorithm in terms of controlling expansion in the total storage. Further, our proposed dispersal method allows string search.Keywords: Convolutional codes, File dispersal, Filereconstruction, Information Dispersal Algorithm, String search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12793931 Fast Search Method for Large Video Database Using Histogram Features and Temporal Division
Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi
Abstract:
In this paper, we propose an improved fast search algorithm using combined histogram features and temporal division method for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal feature which is robust to color distortion. Combined with active search [4], a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by 6 hours of video to search for given 200 MPEG video clips which each length is 30 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 120ms, and Equal Error Rate (ERR) of 1% is achieved, which is more accurately and robust than conventional fast video search algorithm.Keywords: Fast search, Adjacent pixel intensity differencequantization (APIDQ), DC image, Histogram feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16253930 Combining ILP with Semi-supervised Learning for Web Page Categorization
Authors: Nuanwan Soonthornphisaj, Boonserm Kijsirikul
Abstract:
This paper presents a semi-supervised learning algorithm called Iterative-Cross Training (ICT) to solve the Web pages classification problems. We apply Inductive logic programming (ILP) as a strong learner in ICT. The objective of this research is to evaluate the potential of the strong learner in order to boost the performance of the weak learner of ICT. We compare the result with the supervised Naive Bayes, which is the well-known algorithm for the text classification problem. The performance of our learning algorithm is also compare with other semi-supervised learning algorithms which are Co-Training and EM. The experimental results show that ICT algorithm outperforms those algorithms and the performance of the weak learner can be enhanced by ILP system.
Keywords: Inductive Logic Programming, Semi-supervisedLearning, Web Page Categorization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16443929 An Effective Genetic Algorithm for a Complex Real-World Scheduling Problem
Authors: Anis Gharbi, Mohamed Haouari, Talel Ladhari, Mohamed Ali Rakrouki
Abstract:
We address a complex scheduling problem arising in the wood panel industry with the objective of minimizing a quadratic function of job tardiness. The proposed solution strategy, which is based on an effective genetic algorithm, has been coded and implemented within a major Tunisian company, leader in the wood panel manufacturing. Preliminary experimental results indicate significant decrease of delivery times.
Keywords: Genetic algorithm, heuristic, hybrid flowshop, total weighted squared tardiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19413928 A hybrid Tabu Search Algorithm to Cell Formation Problem and its Variants
Authors: Tai-Hsi Wu, Jinn-Yi Yeh, Chin-Chih Chang
Abstract:
Cell formation is the first step in the design of cellular manufacturing systems. In this study, a general purpose computational scheme employing a hybrid tabu search algorithm as the core is proposed to solve the cell formation problem and its variants. In the proposed scheme, great flexibilities are left to the users. The core solution searching algorithm embedded in the scheme can be easily changed to any other meta-heuristic algorithms, such as the simulated annealing, genetic algorithm, etc., based on the characteristics of the problems to be solved or the preferences the users might have. In addition, several counters are designed to control the timing of conducting intensified solution searching and diversified solution searching strategies interactively.Keywords: Cell formation problem, Tabu search
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17403927 An Effective Algorithm for Minimum Weighted Vertex Cover Problem
Authors: S. Balaji, V. Swaminathan, K. Kannan
Abstract:
The Minimum Weighted Vertex Cover (MWVC) problem is a classic graph optimization NP - complete problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the minimum weighted vertex cover problem is to find a vertex set S V whose total weight is minimum subject to every edge of G has at least one end point in S. In this paper an effective algorithm, called Support Ratio Algorithm (SRA), is designed to find the minimum weighted vertex cover of a graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the SRA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.
Keywords: Weighted vertex cover, vertex support, approximation algorithms, NP-complete problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38823926 An Exact Algorithm for Location–Transportation Problems in Humanitarian Relief
Authors: Chansiri Singhtaun
Abstract:
This paper proposes a mathematical model and examines the performance of an exact algorithm for a location– transportation problems in humanitarian relief. The model determines the number and location of distribution centers in a relief network, the amount of relief supplies to be stocked at each distribution center and the vehicles to take the supplies to meet the needs of disaster victims under capacity restriction, transportation and budgetary constraints. The computational experiments are conducted on the various sizes of problems that are generated. Branch and bound algorithm is applied for these problems. The results show that this algorithm can solve problem sizes of up to three candidate locations with five demand points and one candidate location with up to twenty demand points without premature termination.
Keywords: Disaster response, facility location, humanitarian relief, transportation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23813925 A Finite-Time Consensus Protocol of the Multi-Agent Systems
Authors: Xin-Lei Feng, Ting-Zhu Huang
Abstract:
According to conjugate gradient algorithm, a new consensus protocol algorithm of discrete-time multi-agent systems is presented, which can achieve finite-time consensus. Finally, a numerical example is given to illustrate our theoretical result.
Keywords: Consensus protocols; Graph theory; Multi-agent systems;Conjugate gradient algorithm; Finite-time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21403924 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.
Keywords: Pattern recognition, partitional clustering, K-means clustering, Manhattan distance, terrorism data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13593923 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval
Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema
Abstract:
The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15953922 Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)
Authors: Hajir Karimi, Fakheri Yousefi, Mahmood Reza Rahimi
Abstract:
An accurate and proficient artificial neural network (ANN) based genetic algorithm (GA) is developed for predicting of nanofluids viscosity. A genetic algorithm (GA) is used to optimize the neural network parameters for minimizing the error between the predictive viscosity and the experimental one. The experimental viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 to 343.15 K and volume fraction up to 15% were used from literature. The result of this study reveals that GA-NN model is outperform to the conventional neural nets in predicting the viscosity of nanofluids with mean absolute relative error of 1.22% and 1.77% for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results of this work have also been compared with others models. The findings of this work demonstrate that the GA-NN model is an effective method for prediction viscosity of nanofluids and have better accuracy and simplicity compared with the others models.Keywords: genetic algorithm, nanofluids, neural network, viscosity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20853921 Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porous Isotropic Composite Materials
Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya, Vladimir A. Makarov, Yulia G. Sokolovskaya
Abstract:
The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser thermooptical method of ultrasound generation combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%.Keywords: Laser ultrasonic, longitudinal and shear ultrasonic waves, porosity, composite, local elastic moduli.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15493920 The Selection of the Nearest Anchor Using Received Signal Strength Indication (RSSI)
Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane
Abstract:
The localization information is crucial for the operation of WSN. There are principally two types of localization algorithms. The Range-based localization algorithm has strict requirements on hardware, thus is expensive to be implemented in practice. The Range-free localization algorithm reduces the hardware cost. However, it can only achieve high accuracy in ideal scenarios. In this paper, we locate unknown nodes by incorporating the advantages of these two types of methods. The proposed algorithm makes the unknown nodes select the nearest anchor using the Received Signal Strength Indicator (RSSI) and choose two other anchors which are the most accurate to achieve the estimated location. Our algorithm improves the localization accuracy compared with previous algorithms, which has been demonstrated by the simulating results.Keywords: WSN, localization, DV-hop, RSSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18163919 Auto Classification for Search Intelligence
Authors: Lilac A. E. Al-Safadi
Abstract:
This paper proposes an auto-classification algorithm of Web pages using Data mining techniques. We consider the problem of discovering association rules between terms in a set of Web pages belonging to a category in a search engine database, and present an auto-classification algorithm for solving this problem that are fundamentally based on Apriori algorithm. The proposed technique has two phases. The first phase is a training phase where human experts determines the categories of different Web pages, and the supervised Data mining algorithm will combine these categories with appropriate weighted index terms according to the highest supported rules among the most frequent words. The second phase is the categorization phase where a web crawler will crawl through the World Wide Web to build a database categorized according to the result of the data mining approach. This database contains URLs and their categories.Keywords: Information Processing on the Web, Data Mining, Document Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619