Search results for: performance prediction.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6570

Search results for: performance prediction.

6090 Mean Velocity Modeling of Open-Channel Flow with Submerged Rigid Vegetation

Authors: M. Morri, A. Soualmia, P. Belleudy

Abstract:

Vegetation affects the mean and turbulent flow structure. It may increase flood risks and sediment transport. Therefore, it is important to develop analytical approaches for the bed shear stress on vegetated bed, to predict resistance caused by vegetation. In the recent years, experimental and numerical models have both been developed to model the effects of submerged vegetation on open-channel flow. In this paper, different analytic models are compared and tested using the criteria of deviation, to explore their capacity for predicting the mean velocity and select the suitable one that will be applied in real case of rivers. The comparison between the measured data in vegetated flume and simulated mean velocities indicated, a good performance, in the case of rigid vegetation, whereas, Huthoff model shows the best agreement with a high coefficient of determination (R2=80%) and the smallest error in the prediction of the average velocities.

Keywords: Analytic Models, Comparison, Mean Velocity, Vegetation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2538
6089 Hybrid Approach for Country’s Performance Evaluation

Authors: C. Slim

Abstract:

This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.

Keywords: Artificial neural networks, support vector machine, data envelopment analysis, aggregations, indicators of performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
6088 Measurement of Operational and Environmental Performance of the Coal-Fired Power Plants in India by Using Data Envelopment Analysis

Authors: Vijay Kumar Bajpai, Sudhir Kumar Singh

Abstract:

In this study, the performance analyses of the twenty five Coal-Fired Power Plants (CFPPs) used for electricity generation are carried out through various Data Envelopment Analysis (DEA) models. Three efficiency indices are defined and pursued. During the calculation of the operational performance, energy and non-energy variables are used as input, and net electricity produced is used as desired output (Model-1). CO2 emitted to the environment is used as the undesired output (Model-2) in the computation of the pure environmental performance while in Model-3 CO2 emissions is considered as detrimental input in the calculation of operational and environmental performance. Empirical results show that most of the plants are operating in increasing returns to scale region and Mettur plant is efficient one with regards to energy use and environment. The result also indicates that the undesirable output effect is insignificant in the research sample. The present study will provide clues to plant operators towards raising the operational and environmental performance of CFPPs.

Keywords: Coal fired power plants, environmental performance, data envelopment analysis, operational performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
6087 Comparison of Bayesian and Regression Schemes to Model Public Health Services

Authors: Sotirios Raptis

Abstract:

Bayesian reasoning (BR) or Linear (Auto) Regression (AR/LR) can predict different sources of data using priors or other data, and can link social service demands in cohorts, while their consideration in isolation (self-prediction) may lead to service misuse ignoring the context. The paper advocates that BR with Binomial (BD), or Normal (ND) models or raw data (.D) as probabilistic updates can be compared to AR/LR to link services in Scotland and reduce cost by sharing healthcare (HC) resources. Clustering, cross-correlation, along with BR, LR, AR can better predict demand. Insurance companies and policymakers can link such services, and examples include those offered to the elderly, and low-income people, smoking-related services linked to mental health services, or epidemiological weight in children. 22 service packs are used that are published by Public Health Services (PHS) Scotland and Scottish Government (SG) from 1981 to 2019, broken into 110 year series (factors), joined using LR, AR, BR. The Primary component analysis found 11 significant factors, while C-Means (CM) clustering gave five major clusters.

Keywords: Bayesian probability, cohorts, data frames, regression, services, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224
6086 Noise Performance Optimization of a Fast Wavelength Calibration Algorithm for OSAs

Authors: Thomas Fuhrmann

Abstract:

A new fast correlation algorithm for calibrating the wavelength of Optical Spectrum Analyzers (OSAs) was introduced in [1]. The minima of acetylene gas spectra were measured and correlated with saved theoretical data [2]. So it is possible to find the correct wavelength calibration data using a noisy reference spectrum. First tests showed good algorithmic performance for gas line spectra with high noise. In this article extensive performance tests were made to validate the noise resistance of this algorithm. The filter and correlation parameters of the algorithm were optimized for improved noise performance. With these parameters the performance of this wavelength calibration was simulated to predict the resulting wavelength error in real OSA systems. Long term simulations were made to evaluate the performance of the algorithm over the lifetime of a real OSA.

Keywords: correlation, gas reference, optical spectrum analyzer, wavelength calibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
6085 The Impact of Brand Loyalty on Product Performance

Authors: Tanzeel bin Abdul Rauf Patker, Saba Mateen

Abstract:

This research investigates the impact of Brand Loyalty on the product performance and the factors those are considered more important in brand reputation. Variables selected for this research are Brand quality, Brand Equity, Brand Reputation to explore the impact of these variables on Product performance. For this purpose, primary research has been conducted. The questionnaire survey for this research study was administered among the population mainly at the shopping malls. For this research study, a sample size of 250 respondents has been taken into consideration. Customers from the shopping malls and university students constitute the sample for this research study using random sampling (non-probabilistic) used as a sampling technique for conducting the research survey. According to the results obtained from the collected data, it is interpreted that product performance shares a direct relationship with brand quality, brand quality, and brand reputation. Result also showed that brand quality and brand equity has a significant effect on product performance, whereas brand reputation has an insignificant effect on product performance.

Keywords: Product performance, brand quality, brand equity and brand reputation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
6084 Typical Day Prediction Model for Output Power and Energy Efficiency of a Grid-Connected Solar Photovoltaic System

Authors: Yan Su, L. C. Chan

Abstract:

A novel typical day prediction model have been built and validated by the measured data of a grid-connected solar photovoltaic (PV) system in Macau. Unlike conventional statistical method used by previous study on PV systems which get results by averaging nearby continuous points, the present typical day statistical method obtain the value at every minute in a typical day by averaging discontinuous points at the same minute in different days. This typical day statistical method based on discontinuous point averaging makes it possible for us to obtain the Gaussian shape dynamical distributions for solar irradiance and output power in a yearly or monthly typical day. Based on the yearly typical day statistical analysis results, the maximum possible accumulated output energy in a year with on site climate conditions and the corresponding optimal PV system running time are obtained. Periodic Gaussian shape prediction models for solar irradiance, output energy and system energy efficiency have been built and their coefficients have been determined based on the yearly, maximum and minimum monthly typical day Gaussian distribution parameters, which are obtained from iterations for minimum Root Mean Squared Deviation (RMSD). With the present model, the dynamical effects due to time difference in a day are kept and the day to day uncertainty due to weather changing are smoothed but still included. The periodic Gaussian shape correlations for solar irradiance, output power and system energy efficiency have been compared favorably with data of the PV system in Macau and proved to be an improvement than previous models.

Keywords: Grid Connected, RMSD, Solar PV System, Typical Day.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
6083 Performance Evaluation of TCP Vegas versus Different TCP Variants in Homogeneous and Heterogeneous Wired Networks

Authors: B. S. Yew, B. L. Ong, R. B. Ahmad

Abstract:

A study on the performance of TCP Vegas versus different TCP variants in homogeneous and heterogeneous wired networks are performed via simulation experiment using network simulator (ns-2). This performance evaluation prepared a comparison medium for the performance evaluation of enhanced-TCP Vegas in wired network and for wireless network. In homogeneous network, the performance of TCP Tahoe, TCP Reno, TCP NewReno, TCP Vegas and TCP SACK are analyzed. In heterogeneous network, the performances of TCP Vegas against TCP variants are analyzed. TCP Vegas outperforms other TCP variants in homogeneous wired network. However, TCP Vegas achieves unfair throughput in heterogeneous wired network.

Keywords: TCP Vegas, Homogeneous, Heterogeneous, WiredNetwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
6082 Review and Classification of the Indicators and Trends Used in Bridge Performance Modeling

Authors: S. Rezaei, Z. Mirzaei, M. Khalighi, J. Bahrami

Abstract:

Bridges, as an essential part of road infrastructures, are affected by various deterioration mechanisms over time due to the changes in their performance. As changes in performance can have many negative impacts on society, it is essential to be able to evaluate and measure the performance of bridges throughout their life. This evaluation includes the development or the choice of the appropriate performance indicators, which, in turn, are measured based on the selection of appropriate models for the existing deterioration mechanism. The purpose of this article is a statistical study of indicators and deterioration mechanisms of bridges in order to discover further research capacities in bridges performance assessment. For this purpose, some of the most common indicators of bridge performance, including reliability, risk, vulnerability, robustness, and resilience, were selected. The researches performed on each index based on the desired deterioration mechanisms and hazards were comprehensively reviewed. In addition, the formulation of the indicators and their relationship with each other were studied. The research conducted on the mentioned indicators were classified from the point of view of deterministic or probabilistic method, the level of study (element level, object level, etc.), and the type of hazard and the deterioration mechanism of interest. For each of the indicators, a number of challenges and recommendations were presented according to the review of previous studies.

Keywords: Bridge, deterioration mechanism, lifecycle, performance indicator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 459
6081 A Prediction of Attractive Evaluation Objects Based On Complex Sequential Data

Authors: Shigeaki Sakurai, Makino Kyoko, Shigeru Matsumoto

Abstract:

This paper proposes a method that predicts attractive evaluation objects. In the learning phase, the method inductively acquires trend rules from complex sequential data. The data is composed of two types of data. One is numerical sequential data. Each evaluation object has respective numerical sequential data. The other is text sequential data. Each evaluation object is described in texts. The trend rules represent changes of numerical values related to evaluation objects. In the prediction phase, the method applies new text sequential data to the trend rules and evaluates which evaluation objects are attractive. This paper verifies the effect of the proposed method by using stock price sequences and news headline sequences. In these sequences, each stock brand corresponds to an evaluation object. This paper discusses validity of predicted attractive evaluation objects, the process time of each phase, and the possibility of application tasks.

Keywords: Trend rule, frequent pattern, numerical sequential data, text sequential data, evaluation object.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
6080 The Impact of ISO 9001 Certification on Brazilian Firms’ Performance: Insights from Multiple Case Studies

Authors: Matheus Borges Carneiro, Fabiane Letícia Lizarelli, José Carlos de Toledo

Abstract:

The evolution of quality management by companies was strongly enabled by, among others, ISO 9001 certification, which is considered a crucial requirement for several customers. Likewise, performance measurement provides useful insights for companies to identify the reflection of their decision-making process on their improvement. One of the most used performance measurement models is the balanced scorecard (BSC), which uses four perspectives to address a firm’s performance: financial, internal process, customer satisfaction, and learning and growth. Since ISO 9001 certified firms are likely to measure their performance through BSC approach, it is important to verify whether the certificate influences the firm performance or not. Therefore, this paper aims to verify the impact of ISO 9001:2015 on Brazilian firms’ performance based on the BSC perspective. Hence, nine certified companies located in the Southeast region of Brazil were studied through a multiple case study approach. Within this study, it was possible to identify the positive impact of ISO 9001 on firms’ overall performance, and four Critical Success Factors (CSFs) were identified as relevant on the linkage among ISO 9001 and firms’ performance: employee involvement, top management, process management, and customer focus. Due to the COVID-19 pandemic, the number of interviews was limited to the quality manager specialist, and the sample was limited since several companies were closed during the period of the study. This study presents an in-depth analysis of how the relationship between ISO 9001 certification and firms’ performance in a developing country is.

Keywords: Balanced scorecard, Brazilian firms’ performance, critical success factors, ISO 9001 certification, performance measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 581
6079 Using Historical Data for Stock Prediction of a Tech Company

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices over the past five years of 10 major tech companies: Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We implemented and tested three models – a linear regressor model, a k-nearest neighbor model (KNN), and a sequential neural network – and two algorithms – Multiplicative Weight Update and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: Finance, machine learning, opening price, stock market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
6078 Pattern Recognition Using Feature Based Die-Map Clusteringin the Semiconductor Manufacturing Process

Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek

Abstract:

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Keywords: Die-Map Clustering, Feature Extraction, Pattern Recognition, Semiconductor Manufacturing Process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151
6077 The Effects of Perceived Organizational Support, Abusive Supervision, and Exchange Ideology on Employees- Task Performance

Authors: Seung Yeon Son, Heetae Park, Soojin Lee, Seckyoung Loretta Kim, Dongkyu Kim, Seokhwa Yun

Abstract:

Employee-s task performance has been recognized as a core contributor to overall organizational effectiveness. Hence, verifying the determinants of task performance is one of the most important research issues. This study tests the influence of perceived organizational support, abusive supervision, and exchange ideology on employee-s task performance. We examined our hypotheses by collecting self-reported data from 413 Korean employees in different organizations. Our all hypotheses gained support from the results. Implications for research and directions for future research are discussed.

Keywords: Abusive supervision, exchange ideology, perceived organizational support, task performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
6076 Performance Analysis of Space-Time Trellis Coded OFDM System

Authors: Yi Hong, Zhao Yang Dong

Abstract:

This paper presents the performance analysis of space-time trellis codes in orthogonal frequency division multiplexing systems (STTC-OFDMs) over quasi-static frequency selective fading channels. In particular, the effect of channel delay distributions on the code performance is discussed. For a STTCOFDM over multiple-tap channels, two extreme conditions that produce the largest minimum determinant are highlighted. The analysis also proves that the corresponding coding gain increases with the maximum tap delay. The performance of STTC-OFDM, under various channel conditions, is evaluated by simulation. It is shown that the simulation results agree with the performance analysis.

Keywords: Space-time trellis code, OFDM, delay profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
6075 Balanced Scorecard in SMEs – A Proposal for Small Gas Stations in Portugal

Authors: Ana Paula Monte, Christiane Fontenete

Abstract:

As current business environment is demanding a constant adaptation of companies, the planning and strategic management should be an ongoing and natural process in all kind of organizations. The use of management and monitoring strategic performance tools such as the Balanced Scorecard (BSC) have been popular; even to Small and Medium-sized Enterprises. This paper aims to investigate whether the BSC is being used in monitoring the performance of small businesses, particularly in small fuel retailers companies, which are competing in co-branding; and if not, it aims to identify its strategic orientation in order to recommend a possible strategy map for those managers that are willing to adopt this model as an alternative to traditional ones for organizational performance evaluation, which often focus only on evaluation of the organizational financial performance.

Keywords: Balanced Scorecard, Performance Management and Evaluation, SMEs, Strategy Maps

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4181
6074 Modeling of Surface Roughness in Vibration Cutting by Artificial Neural Network

Authors: H. Soleimanimehr, M. J. Nategh , S. Amini

Abstract:

Development of artificial neural network (ANN) for prediction of aluminum workpieces' surface roughness in ultrasonicvibration assisted turning (UAT) has been the subject of the present study. Tool wear as the main cause of surface roughness was also investigated. ANN was trained through experimental data obtained on the basis of full factorial design of experiments. Various influential machining parameters were taken into consideration. It was illustrated that a multilayer perceptron neural network could efficiently model the surface roughness as the response of the network, with an error less than ten percent. The performance of the trained network was verified by further experiments. The results of UAT were compared with the results of conventional turning experiments carried out with similar machining parameters except for the vibration amplitude whence considerable reduction was observed in the built-up edge and the surface roughness.

Keywords: Aluminum, Artificial Neural Network (ANN), BuiltupEdge, Surface Roughness, Tool Wear, Ultrasonic VibrationAssisted Turning (UAT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
6073 An Assessment of Technological Competencies on Professional Service Firms Business Performance

Authors: Sulaiman Ainin, Yusniza Kamar ulzaman, Abdul Ghani Farinda

Abstract:

This study was initiated with a three prong objective. One, to identify the relationship between Technological Competencies factors (Technical Capability, Firm Innovativeness and E-Business Practices and professional service firms- business performance. To investigate the predictors of professional service firms business performance and finally to evaluate the predictors of business performance according to the type of professional service firms, a survey questionnaire was deployed to collect empirical data. The questionnaire was distributed to the owners of the professional small medium size enterprises services in the Accounting, Legal, Engineering and Architecture sectors. Analysis showed that all three Technology Competency factors have moderate effect on business performance. In addition, the regression models indicate that technical capability is the most highly influential that could determine business performance, followed by e-business practices and firm innovativeness. Subsequently, the main predictor of business performance for all types of firms is Technical capability.

Keywords: technology competency, technology capability, innovativeness, E-business practice

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
6072 Multivariate Analysis of Students’ Performance in Math Courses and Specific Engineering Courses

Authors: H. Naccache, R. Hleiss

Abstract:

The aim of this research is to study the relationship between the performance of engineering students in different math courses and their performance in specific engineering courses. The considered courses are taken mainly by engineering students during the first two years of their major. Several factors are being studied, such as gender and final grades in the math and specific engineering courses. Participants of this study comprised a sample of more than thousands of engineering students at Lebanese University during their tertiary academic years. A significant relationship tends to appear between these factors and the performance of students in engineering courses. Moreover, female students appear to outperform their male counterparts in both the math and engineering courses, and a high correlation was found between their grades in math courses and their grades in specific engineering courses. The results and implications of the study were being discussed.

Keywords: Education, engineering, math, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
6071 A Study on Early Prediction of Fault Proneness in Software Modules using Genetic Algorithm

Authors: Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K. Bains, Manpreet Kaur, Gurvinder Singh

Abstract:

Fault-proneness of a software module is the probability that the module contains faults. To predict faultproneness of modules different techniques have been proposed which includes statistical methods, machine learning techniques, neural network techniques and clustering techniques. The aim of proposed study is to explore whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules using Genetic Algorithm technique. This approach has been tested with real time defect C Programming language datasets of NASA software projects. The results show that the fusion of requirement and code metric is the best prediction model for detecting the faults as compared with commonly used code based model.

Keywords: Genetic Algorithm, Fault Proneness, Software Faultand Software Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
6070 An Integrated Cognitive Performance Evaluation Framework for Urban Search and Rescue Applications

Authors: Antonio D. Lee, Steven X. Jiang

Abstract:

A variety of techniques and methods are available to evaluate cognitive performance in Urban Search and Rescue (USAR) applications. However, traditional cognitive performance evaluation techniques typically incorporate either the conscious or systematic aspect, failing to take into consideration the subconscious or intuitive aspect. This leads to incomplete measures and produces ineffective designs. In order to fill the gaps in past research, this study developed a theoretical framework to facilitate the integration of situation awareness (SA) and intuitive pattern recognition (IPR) to enhance the cognitive performance representation in USAR applications. This framework provides guidance to integrate both SA and IPR in order to evaluate the cognitive performance of the USAR responders. The application of this framework will help improve the system design.

Keywords: Cognitive performance, intuitive pattern recognition, situation awareness, urban search and rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
6069 Computational Model for Prediction of Soil-Gas Radon-222 Concentration in Soil-Depths and Soil Grain Size Particles

Authors: I. M. Yusuff, O. M. Oni, A. A. Aremu

Abstract:

Percentage of soil-gas radon-222 concentration (222Rn) from soil-depths contributing to outdoor radon atmospheric level depends largely on some physical parameters of the soil. To determine its dependency in soil-depths, survey tests were carried out on soil depths and grain size particles using in-situ measurement method of soil-gas radon-222 concentration at different soil depths. The measurements were carried out with an electronic active radon detector (RAD-7) manufactured by Durridge Company USA. Radon-222 concentrations (222Rn) in soil-gas were measured at four different soil depths of 20, 40, 60 and 100 cm in five feasible locations. At each soil depth, soil samples were collected for grain size particle analysis using soil grasp sampler. The result showed that highest value of radon-222 concentration (24,680 ± 1960 Bqm-3) was measured at 100 cm depth with utmost grain size particle of 17.64% while the lowest concentration (7370 ± 1139 Bqm-3) was measured at 100 cm depth with least grain size particle of 10.75% respectively. A computational model was derived using SPSS regression package. This model could be a yardstick for prediction on soil gas radon concentration reference to soil grain size particle at different soil-depths.

Keywords: Concentration, radon, porosity, diffusion, colorectal, emanation, yardstick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715
6068 Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics

Authors: C. R. Danielle, S. Erik, T. Patrick, M. Hugh

Abstract:

In the last decade there has been an increase in demand for fine grinding due to the depletion of coarse-grained orebodies and an increase of processing fine disseminated minerals and complex orebodies. These ores have provided new challenges in concentrator design because fine and ultra-fine grinding is required to achieve acceptable recovery rates. Therefore, the correct design of a grinding circuit is important for minimizing unit costs and increasing product quality. The use of ball mills for grinding in fine size ranges is inefficient and, therefore, vertical stirred grinding mills are becoming increasingly popular in the mineral processing industry due to its already known high energy efficiency. This work presents a hypothesis of a methodology to predict the product size distribution of a vertical stirred mill using a Bond ball mill. The Population Balance Model (PBM) was used to empirically analyze the performance of a vertical mill and a Bond ball mill. The breakage parameters obtained for both grinding mills are compared to determine the possibility of predicting the product size distribution of a vertical mill based on the results obtained from the Bond ball mill. The biggest advantage of this methodology is that most of the minerals processing laboratories already have a Bond ball mill to perform the tests suggested in this study. Preliminary results show the possibility of predicting the performance of a laboratory vertical stirred mill using a Bond ball mill.

Keywords: Bond ball mill, population balance model, product size distribution, vertical stirred mill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1148
6067 ABURAS Index: A Statistically Developed Index for Dengue-Transmitting Vector Population Prediction

Authors: Hani M. Aburas

Abstract:

“Dengue" is an African word meaning “bone breaking" because it causes severe joint and muscle pain that feels like bones are breaking. It is an infectious disease mainly transmitted by female mosquito, Aedes aegypti, and causes four serotypes of dengue viruses. In recent years, a dramatic increase in the dengue fever confirmed cases around the equator-s belt has been reported. Several conventional indices have been designed so far to monitor the transmitting vector populations known as House Index (HI), Container Index (CI), Breteau Index (BI). However, none of them describes the adult mosquito population size which is important to direct and guide comprehensive control strategy operations since number of infected people has a direct relationship with the vector density. Therefore, it is crucial to know the population size of the transmitting vector in order to design a suitable and effective control program. In this context, a study is carried out to report a new statistical index, ABURAS Index, using Poisson distribution based on the collection of vector population in Jeddah Governorate, Saudi Arabia.

Keywords: Poisson distribution, statistical index, prediction, Aedes aegypti.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
6066 Iraqi Short Term Electrical Load Forecasting Based On Interval Type-2 Fuzzy Logic

Authors: Firas M. Tuaimah, Huda M. Abdul Abbas

Abstract:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.

Keywords: Short term load forecasting, prediction interval, type 2 fuzzy logic systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
6065 How Team Efficacy Beliefs Impact Project Performance: An Empirical Investigation of Team Potency in Capital Projects in the Process Industries

Authors: C. Scott-Young, D. Samson

Abstract:

Team efficacy beliefs show promise in enhancing team performance. Using a model-based quantitative research design, we investigated the antecedents and performance consequences of generalized team efficacy (potency) in a sample of 56 capital projects executed by 15 Fortune 500 companies in the process industries. Empirical analysis of our field survey identified that generalized team efficacy beliefs were positively associated with an objective measure of project cost performance. Regression analysis revealed that team competence, empowering leadership, and performance feedback all predicted generalized team efficacy beliefs. Tests of mediation revealed that generalized team efficacy fully mediated between these three inputs and project cost performance.

Keywords: Team efficacy, Potency, Leadership, Feedback, Project cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
6064 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters

Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar

Abstract:

Several meteorological parameters were used for the  prediction of monthly average daily global solar radiation on  horizontal using recurrent neural networks (RNNs). Climatological  data and measures, mainly air temperature, humidity, sunshine  duration, and wind speed between 1995 and 2007 were used to design  and validate a feed forward and recurrent neural network based  prediction systems. In this paper we present our reference system  based on a feed-forward multilayer perceptron (MLP) as well as the  proposed approach based on an RNN model. The obtained results  were promising and comparable to those obtained by other existing  empirical and neural models. The experimental results showed the  advantage of RNNs over simple MLPs when we deal with time series  solar radiation predictions based on daily climatological data.

Keywords: Recurrent Neural Networks, Global Solar Radiation, Multi-layer perceptron, gradient, Root Mean Square Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
6063 Evaluating Factors Affecting Audiologists’ Diagnostic Performance in Auditory Brainstem Response Reading: Training and Experience

Authors: M. Zaitoun, S. Cumming, A. Purcell

Abstract:

This study aims to determine if audiologists' experience characteristics in ABR (Auditory Brainstem Response) reading is associated with their performance in interpreting ABR results. Fifteen ABR traces with varying degrees of hearing level were presented twice, making a total of 30. Audiologists were asked to determine the hearing threshold for each of the cases after completing a brief survey regarding their experience and training in ABR administration. Sixty-one audiologists completed all tasks. Correlations between audiologists’ performance measures and experience variables suggested significant associations (p < 0.05) between training period in ABR testing and audiologists’ performance in terms of both sensitivity and accuracy. In addition, the number of years conducting ABR testing correlated with specificity. No other correlations approached significance. While there are relatively few significant correlations between ABR performance and experience, accuracy in ABR reading is associated with audiologists’ length of experience and period of training. To improve audiologists’ performance in reading ABR results, an emphasis on the importance of training should be raised and standardized levels and period for audiologists training in ABR testing should also be set.

Keywords: ABR, audiology, performance, training, experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
6062 An Empirical Investigation of Big Data Analytics: The Financial Performance of Users versus Vendors

Authors: Evisa Mitrou, Nicholas Tsitsianis, Supriya Shinde

Abstract:

In the age of digitisation and globalisation, businesses have shifted online and are investing in big data analytics (BDA) to respond to changing market conditions and sustain their performance. Our study shifts the focus from the adoption of BDA to the impact of BDA on financial performance. We explore the financial performance of both BDA-vendors (business-to-business) and BDA-clients (business-to-customer). We distinguish between the five BDA-technologies (big-data-as-a-service (BDaaS), descriptive, diagnostic, predictive, and prescriptive analytics) and discuss them individually. Further, we use four perspectives (internal business process, learning and growth, customer, and finance) and discuss the significance of how each of the five BDA-technologies affect the performance measures of these four perspectives. We also present the analysis of employee engagement, average turnover, average net income, and average net assets for BDA-clients and BDA-vendors. Our study also explores the effect of the COVID-19 pandemic on business continuity for both BDA-vendors and BDA-clients.

Keywords: BDA-clients, BDA-vendors, big data analytics, financial performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 613
6061 Rain Cell Ratio Technique in Path Attenuation for Terrestrial Radio Links

Authors: Peter Odero Akuon

Abstract:

A rain cell ratio model is proposed that computes attenuation of the smallest rain cell which represents the maximum rain rate value i.e. the cell size when rainfall rate is exceeded 0.01% of the time, R0.01 and predicts attenuation for other cells as the ratio with this maximum. This model incorporates the dependence of the path factor r on the ellipsoidal path variation of the Fresnel zone at different frequencies. In addition, the inhomogeneity of rainfall is modeled by a rain drop packing density factor. In order to derive the model, two empirical methods that can be used to find rain cell size distribution Dc are presented. Subsequently, attenuation measurements from different climatic zones for terrestrial radio links with frequencies F in the range 7-38 GHz are used to test the proposed model. Prediction results show that the path factor computed from the rain cell ratio technique has improved reliability when compared with other path factor and effective rain rate models, including the current ITU-R 530-15 model of 2013.

Keywords: Packing density of rain drops, prediction model, rain attenuation, rain cell ratio technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698