Search results for: heat generation/absorption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2776

Search results for: heat generation/absorption

2296 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.

Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 359
2295 Optimal Placement of DG in Distribution System to Mitigate Power Quality Disturbances

Authors: G.V.K Murthy, S. Sivanagaraju, S. Satyanarayana, B. Hanumantha Rao

Abstract:

Distributed Generation (DG) systems are considered an integral part in future distribution system planning. Appropriate size and location of distributed generation plays a significant role in minimizing power losses in distribution systems. Among the benefits of distributed generation is the reduction in active power losses, which can improve the system performance, reliability and power quality. In this paper, Artificial Bee Colony (ABC) algorithm is proposed to determine the optimal DG-unit size and location by loss sensitivity index in order to minimize the real power loss, total harmonic distortion (THD) and voltage sag index improvement. Simulation study is conducted on 69-bus radial test system to verify the efficacy of the proposed method.

Keywords: Distributed generation, artificial bee colony method, loss reduction, radial distribution network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829
2294 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids

Authors: S. Etaig, R. Hasan, N. Perera

Abstract:

This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.

Keywords: Computational fluid Dynamics, Natural convection, Nanofluid and Thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
2293 A Survey of Response Generation of Dialogue Systems

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.

Keywords: Retrieval, generative, deep learning, response generation, knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
2292 The Interaction between Hydrogen and Surface Stress in Stainless Steel

Authors: O. Takakuwa, Y. Mano, H. Soyama

Abstract:

This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content.

Keywords: Hydrogen embrittlement, Residual stress, Surface finishing, Stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3027
2291 Preparation and Fabrication of Lithium Disilicate Glass Ceramic as Dental Crowns via Hot Pressing Method

Authors: A. Srion, W. Thepsuwan, N. Monmaturapoj

Abstract:

Two Lithium Disilicate (LD) glass ceramics based on SiO2-Li2O-K2O-Al2O3 system were prepared through a glass melting method. The glass rods were then fabricated into dental crowns via a hot pressing at 900˚C and 850˚C in order to study the effect of the pressing temperatures on the phase formation and microstructure of the glasses. Different samples of as cast glass and heat treated samples (600˚C and 700˚C) were used to press for investigating the effect of an initial microstructure on the hot pressing technique. Xray diffraction (XRD) and scanning electron microscopy (SEM) were performed to determine the phase formation and microstructure of the samples, respectively. XRD results show that the main crystalline structure was Li2Si2O5 by having Li3PO4, Li0.6Al0.6Si2O6, Li2SiO3, Ca5 (PO4)3F and SiO2 as minor phases. Glass compositions with different heat treatment temperatures exhibited a difference phase formations but have less effect during pressing. SEM micrographs showed the microstructure of Li2Si2O5 as lath-like shape in all glasses. With increasing the initial heat treatment temperature, the longer the lath-like crystals of lithium disilicate were increased especially when using glass heat treatment at 700˚C followed by pressing at 900˚C. This could be suggested that LD1 heat treatment at 700˚C which pressing at 900˚C presented the best formation by the hot pressing and compiled microstructure.

Keywords: Lithium disilicate, Hot pressing, Dental crown, Microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4175
2290 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant

Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi

Abstract:

A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.

Keywords: Energy saving, Gas turbine, Methanol, Power generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
2289 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

In the present time, energy crises is considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which heat recovery system generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.

Keywords: Solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
2288 Assessing the Suitability of South African Waste Foundry Sand as an Additive in Clay Masonry Products

Authors: Nthabiseng Portia Mahumapelo, Andre van Niekerk, Ndabenhle Sosibo, Nirdesh Singh

Abstract:

The foundry industry generates large quantities of solid waste in the form of waste foundry sand. The ever-increasing quantities of this type of industrial waste put pressure on land-filling space and its proper management has become a global concern. The South African foundry industry is not different when it comes to this solid waste generation. Utilizing the foundry waste sand in other applications has become an attractive avenue to deal with this waste stream. In the present paper, an evaluation was done on the suitability of foundry waste sand as an additive in clay masonry products. Purchased clay was added to the foundry waste sand sample in a 50/50 ratio. The mixture was named FC sample. The FC sample was mixed with water in a pan mixer until the mixture was consistent and suitable for extrusion. The FC sample was extruded and cut into briquettes. Water absorption, shrinkage and modulus of rupture tests were conducted on the resultant briquettes. Foundry waste sand and FC samples were respectively characterized mineralogically using X-Ray Diffraction, and the major and trace elements were determined using Inductively Coupled Plasma Optical Emission Spectroscopy. Adding purchased clay to the foundry waste sand positively influenced the workability of the test sample. Another positive characteristic was the low linear shrinkage, which indicated that products manufactured from the FC sample would not be susceptible to cracking. The water absorption values were acceptable and the unfired and fired strength values of the briquette’s samples were acceptable. In conclusion, tests showed that foundry waste sand can be used as an additive in masonry clay bricks, provided it is blended with good quality clay.

Keywords: Foundry waste sand, masonry clay bricks, modulus of rupture, shrinkage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629
2287 Optimizing of Gas Consumption in Gas-burner Space Heater

Authors: Saead Negahdari, Davood Jalali Vahid

Abstract:

Nowadays, the importance of energy saving is clearance to everyone. By attention to increasing price of fuels and also the problems of environment pollutions, there are the most efforts for using fuels littler and more optimum in everywhere. This essay studies optimizing of gas consumption in gas-burner space heaters. In oven of each gas-burner space heaters there is two snags to prevent the hot air (the result of combustion of natural gas) to go out of oven of the gas-burner space heaters directly without delivering its heat to the space of favorite environment like a room. These snags cause a excess circulating that helps hot air deliver its heat to the space of favorite environment. It means the exhaust air temperature will be decreased then when there are no snags. This is the aim of this essay to use maximum potential energy of the natural gas to make heat. In this study, by the help of a finite volume software (FLUENT) consumption of the gas-burner space heaters is simulated and optimized. At the end of this writing, by comparing the results of software and experimental results, it will be proved the authenticity of this method.

Keywords: FLUENT, Heat transfer, Oven of Gas-burner spaceheaters, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
2286 Software Test Data Generation using Ant Colony Optimization

Authors: Huaizhong Li, C.Peng Lam

Abstract:

State-based testing is frequently used in software testing. Test data generation is one of the key issues in software testing. A properly generated test suite may not only locate the errors in a software system, but also help in reducing the high cost associated with software testing. It is often desired that test data in the form of test sequences within a test suite can be automatically generated to achieve required test coverage. This paper proposes an Ant Colony Optimization approach to test data generation for the state-based software testing.

Keywords: Software testing, ant colony optimization, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3426
2285 Early Melt Season Variability of Fast Ice Degradation Due to Small Arctic Riverine Heat Fluxes

Authors: Grace E. Santella, Shawn G. Gallaher, Joseph P. Smith

Abstract:

In order to determine the importance of small-system riverine heat flux on regional landfast sea ice breakup, our study explores the annual spring freshet of the Sagavanirktok River from 2014-2019. Seasonal heat cycling ultimately serves as the driving mechanism behind the freshet; however, as an emerging area of study, the extent to which inland thermodynamics influence coastal tundra geomorphology and connected landfast sea ice has not been extensively investigated in relation to small-scale Arctic river systems. The Sagavanirktok River is a small-to-midsized river system that flows south-to-north on the Alaskan North Slope from the Brooks mountain range to the Beaufort Sea at Prudhoe Bay. Seasonal warming in the spring rapidly melts snow and ice in a northwards progression from the Brooks Range and transitional tundra highlands towards the coast and when coupled with seasonal precipitation, results in a pulsed freshet that propagates through the Sagavanirktok River. The concentrated presence of newly exposed vegetation in the transitional tundra region due to spring melting results in higher absorption of solar radiation due to a lower albedo relative to snow-covered tundra and/or landfast sea ice. This results in spring flood runoff that advances over impermeable early-season permafrost soils with elevated temperatures relative to landfast sea ice and sub-ice flow. We examine the extent to which interannual temporal variability influences the onset and magnitude of river discharge by analyzing field measurements from the United States Geological Survey (USGS) river and meteorological observation sites. Rapid influx of heat to the Arctic Ocean via riverine systems results in a noticeable decay of landfast sea ice independent of ice breakup seaward of the shear zone. Utilizing MODIS imagery from NASA’s Terra satellite, interannual variability of river discharge is visualized, allowing for optical validation that the discharge flow is interacting with landfast sea ice. Thermal erosion experienced by sediment fast ice at the arrival of warm overflow preconditions the ice regime for rapid thawing. We investigate the extent to which interannual heat flux from the Sagavanirktok River’s freshet significantly influences the onset of local landfast sea ice breakup. The early-season warming of atmospheric temperatures is evidenced by the presence of storms which introduce liquid, rather than frozen, precipitation into the system. The resultant decreased albedo of the transitional tundra supports the positive relationship between early-season precipitation events, inland thermodynamic cycling, and degradation of landfast sea ice. Early removal of landfast sea ice increases coastal erosion in these regions and has implications for coastline geomorphology which stress industrial, ecological, and humanitarian infrastructure.

Keywords: Albedo, freshet, landfast sea ice, riverine heat flux, seasonal heat cycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413
2284 Optimal DG Allocation in Distribution Network

Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei

Abstract:

This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.

Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678
2283 Quebec Elementary Pre-service Teachers’ Conceptual Representations about Heat and Temperature

Authors: Abdeljalil Métioui

Abstract:

This article identifies the conceptual representations of 128 students enrolled in elementary pre-service teachers’ education in the Province of Quebec, Canada (ages 19-24). To construct their conceptual representations relatively to notions of heat and temperature, we use a qualitative research approach. For that, we distributed them a questionnaire including four questions. The result demonstrates that these students tend to view the temperature as a measure of the hotness of an object or person. They also related the sensation of cold (or warm) to the difference in temperature, and for their majority, the physical change of the matter does not require a constant temperature. These representations are inaccurate relatively to the scientific views, and we will see that they are relevant to the design of teaching strategies based on conceptual conflict.

Keywords: Conceptual representations, heat, temperature, pre-service teachers, elementary school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
2282 Effect of Dietary Chromium Yeast on Thigh Meat Quality of Broiler Chicks in Heat Stress Condition

Authors: Majid Toghyani, Abbas Ali Gheisari, Ali Khodami, Mehdi Toghyani, Mohammad Mohammadrezaei, Ramin Bahadoran

Abstract:

This experiment was conducted to investigate the effect of different levels of dietary chromium yeast (Cr-yeast) on thigh meat quality of broiler chicks reared under heat stress condition. Two hundred and forty Ross male chickens in heat stress condition (33±3°C) were allocated to five treatments in a completely randomized design. Treatments were supplemented with 0 (control), 200, 400, 800 and 1200 μg kg-1 Cr in the form of Cr yeast. Twelve chicks from each treatment were slaughtered at 42 d, to evaluate moisture, protein, lipid, pH and lipid oxidation of thigh meat. Protein, moisture, lipid and pH of thigh meat were not affected by supplemental Cr. Thigh meat lipid tended to decrease in broilers received 1200 μg kg-1. Storage time increased lipid oxidation of meat (P<0.01). Lipid oxidation of thigh muscle for two days of storage were affected by supplemental Cr and decreased (P<0.05). Results of this study showed that dietary Cr-yeast supplementation improved the thigh meat quality of broiler chicks in heat stress condition.

Keywords: Broiler, Heat stress, Chromium yeast, Thigh meat quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
2281 GA based Optimal Sizing and Placement of Distributed Generation for Loss Minimization

Authors: Deependra Singh, Devender Singh, K. S. Verma

Abstract:

This paper addresses a novel technique for placement of distributed generation (DG) in electric power systems. A GA based approach for sizing and placement of DG keeping in view of system power loss minimization in different loading conditions is explained. Minimal system power loss is obtained under voltage and line loading constraints. Proposed strategy is applied to power distribution systems and its effectiveness is verified through simulation results on 16, 37-bus and 75-bus test systems.

Keywords: Distributed generation (DG), Genetic algorithms (GA), optimal sizing and placement, Power loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3434
2280 Tool Path Generation and Manufacturing Process for Blades of a Compressor Rotor

Authors: C. Tung, P.-L. Tso

Abstract:

This paper presents a complete procedure for tool path planning and blade machining in 5-axis manufacturing. The actual cutting contact and cutter locations can be determined by lead and tilt angles. The tool path generation is implemented by piecewise curved approximation and chordal deviation detection. An application about drive surface method promotes flexibility of tool control and stability of machine motion. A real manufacturing process is proposed to separate the operation into three regions with five stages and to modify the local tool orientation with an interactive algorithm.

Keywords: 5-axis machining, tool orientation, lead and tilt angles, tool path generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
2279 Automatic Generation of Ontology from Data Source Directed by Meta Models

Authors: Widad Jakjoud, Mohamed Bahaj, Jamal Bakkas

Abstract:

Through this paper we present a method for automatic generation of ontological model from any data source using Model Driven Architecture (MDA), this generation is dedicated to the cooperation of the knowledge engineering and software engineering. Indeed, reverse engineering of a data source generates a software model (schema of data) that will undergo transformations to generate the ontological model. This method uses the meta-models to validate software and ontological models.

Keywords: Meta model, model, ontology, data source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
2278 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw

Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar

Abstract:

Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.

Keywords: ANSYS-Fluent, hydrodynamic behavior, SSHE, thermal behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
2277 Steady State Transpiration Cooling System in Ni-Cr Open-Cellular Porous Plate

Authors: P. Amatachaya, P. Khantikomol, R. Sangchot, B. Krittacom

Abstract:

The steady-state temperature for one-dimensional transpiration cooling system has been conducted experimentally and numerically to investigate the heat transfer characteristics of combined convection and radiation. The Nickel –Chrome (Ni-Cr) open-cellular porous material having porosity of 0.93 and pores per inch (PPI) of 21.5 was examined. The upper surface of porous plate was heated by the heat flux of incoming radiation varying from 7.7 - 16.6 kW/m2 whereas air injection velocity fed into the lower surface was varied from 0.36 - 1.27 m/s, and was then rearranged as Reynolds number (Re). For the report of the results in the present study, two efficiencies including of temperature and conversion efficiency were presented. Temperature efficiency indicating how close the mean temperature of a porous heat plate to that of inlet air, and increased rapidly with the air injection velocity (Re). It was then saturated and had a constant value at Re higher than 10. The conversion efficiency, which was regarded as the ability of porous material in transferring energy by convection after absorbed from heat radiation, decreased with increasing of the heat flux and air injection velocity. In addition, it was then asymptotic to a constant value at the Re higher than 10. The numerical predictions also agreed with experimental data very well.

Keywords: Convection, open-cellular, radiation, transpiration cooling, Reynolds number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
2276 Thermodynamic Analysis of a Vapor Absorption System Using Modified Gouy-Stodola Equation

Authors: Gulshan Sachdeva, Ram Bilash

Abstract:

In this paper, the exergy analysis of vapor absorption refrigeration system using LiBr-H2O as working fluid is carried out with the modified Gouy-Stodola approach rather than the classical Gouy-Stodola equation and effect of varying input parameters is also studied on the performance of the system. As the modified approach uses the concept of effective temperature, the mathematical expressions for effective temperature have been formulated and calculated for each component of the system. Various constraints and equations are used to develop program in EES to solve these equations. The main aim of this analysis is to determine the performance of the system and the components having major irreversible loss. Results show that exergy destruction rate is considerable in absorber and generator followed by evaporator and condenser. There is an increase in exergy destruction in generator, absorber and condenser and decrease in the evaporator by the modified approach as compared to the conventional approach. The value of exergy determined by the modified Gouy-Stodola equation deviates maximum i.e. 26% in the generator as compared to the exergy calculated by the classical Gouy-Stodola method.

Keywords: Exergy analysis, Gouy-Stodola, refrigeration, vapor absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3648
2275 A New Physical Modeling for Multiquantum Well Structure APD Considering Nonuniformity of Electric Field in Active Regin

Authors: F. Barzegar, M. H. Sheikhi

Abstract:

In the present work we model a Multiquantum Well structure Separate Absorption and Charge Multiplication Avalanche Photodiode (MQW-SACM-APD), while the Absorption region coincide with the MQW. We consider the nonuniformity of electric field using split-step method in active region. This model is based on the carrier rate equations in the different regions of the device. Using the model we obtain the photocurrent, and dark current. As an example, InGaAs/InP SACM-APD and MQW-SACM-APD are simulated. There is a good agreement between the simulation and experimental results.

Keywords: Avalanche Photodiode, Physical Model, MultiquantumWell, Split Step Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
2274 Performance Characteristics of a Closed Circuit Cooling Tower with Multi Path

Authors: Gyu-Jin Shim, Seung-Moon Baek, Choon-Geun Moon, Ho-Saeng Lee, Jung-In Yoon

Abstract:

The experimental thermal performance of two heat exchangers in closed-wet cooling tower (CWCT) was investigated in this study. The test sections are heat exchangers which have multi path that is used as the entrance of cooling water and are consisting of bare-type copper tubes between 15.88mm and 19.05mm. The process fluids are the cooling water that flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water that flows gravitational direction in the outer side of it. Air contacts its outer side of that as it counterflows. Heat and mass transfer coefficients and cooling capacity were calculated with variations of process fluids, multi path and different diameter tubes to figure out the performance of characteristics of CWCT. The main results were summarized as follows: The results show this experiment is reliable with values of heat and mass transfer coefficients comparing to values of correlations. Heat and mass transfer coefficients and cooling capacity of two paths are higher than these with one path using 15.88 and 19.05mm tubes. Cooling capacity per unit volume with 15.88mm tube using one and two paths are higher than 19.05mm tube due to increase of surface area per unit volume.

Keywords: Closed–Wet Cooling Tower, Cooling Capacity, Heatand Mass Transfer Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2414
2273 Wet Strength Improvement of Pineapple Leaf Paper for Evaporative Cooling Pad

Authors: T. Khampan, N. Thavarungkul, J. Tiansuwan, S. Kamthai

Abstract:

This research aimed to modify pineapple leaf paper (PALP) for using as wet media in the evaporation cooling system by improving wet mechanical property (tensile strength) without compromising water absorption property. Polyamideamineepichorohydrin resin (PAE) and carboxymethylcellulose (CMC) were used to strengthen the paper, and the PAE and CMC ratio of 80:20 showed the optimum wet and dry tensile index values, which were higher than those of the commercial cooling pad (CCP). Compared with CCP, PALP itself and all the PAE/CMC modified PALP possessed better water absorption. The PAE/CMC modified PALP had potential to become a new type of wet media.

Keywords: wet strength, evaporative cooling, pineapple leaves, polyamideamine-epichorohydrin, carboxymethylcellulose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
2272 A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat

Authors: K. Fraňa, M. Müller

Abstract:

A presentation of the design of the Organic Rankine cycle (ORC) with heat regeneration and superheating processes is a subject of this paper. The maximum temperature level in the ORC is considered to be 110°C and the maximum pressure varies up to 2.5MPa. The selection process of the appropriate working fluids, thermal design and calculation of the cycle and its components are described. With respect to the safety, toxicity, flammability, price and thermal cycle efficiency, the working fluid selected is R134a. As a particular example, the thermal design of the condenser used for the ORC engine with a theoretical thermal power of 179 kW was introduced. The minimal heat transfer area for a completed condensation was determined to be approximately 520m2

Keywords: Organic Rankine Cycle, thermal efficiency, working fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4032
2271 Analysis of the Benefits of Motion Simulators in 5th Generation Fighter Pilots' Training

Authors: Ali Mithad Emre

Abstract:

In military aviation, the use of flight simulators has proliferated recently in order to train fifth generation fighter pilots. With these simulators, pilots can carry out real-time flights resulting in seeing their faults and can perform emergency drills prior to real flights. Since we cannot risk losing the aircraft and the pilot himself/herself in the flight training process, flight simulators are of great importance to adapt the fighter pilots competently to real flights aboard the fifth generation aircraft. The real flights are impossible to simulate thoroughly on the ground. To some extent, the fixed-based simulators may assist the pilot to steer aircraft technically and visually but flight simulators can’t trick the pilot’s vestibular, sensory, and perceptual systems without motion platforms. This paper discusses the benefits of motion simulators for fifth generation fighter pilots’ training in preference to the fixed-based counterparts by analyzing their pros and cons.

Keywords: Centrifuge, g-loc, military, pilot, sickness, simulator, VMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
2270 Applying Different Working Fluids in a Combined Power and Ejector Refrigeration Cycle with Low Temperature Heat Sources

Authors: Samad Jafarmadar, Amin Habibzadeh

Abstract:

A power and cooling cycle, which combines the organic Rankine cycle and the ejector refrigeration cycle supplied by waste heat energy sources, is discussed in this paper. 13 working fluids including wet, dry, and isentropic fluids are studied in order to find their performances on the combined cycle. Various operating conditions’ effects on the proposed cycle are examined by fixing power/refrigeration ratio. According to the results, dry and isentropic fluids have better performance compared with wet fluids.

Keywords: Combined power and refrigeration cycle, low temperature heat sources, organic rankine cycle, working fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
2269 Application of Vortex Induced Vibration Energy Generation Technologies to the Offshore Oil and Gas Platform: The Feasibility Study

Authors: T. Yui Khing, M. A. Zahari, S. S. Dol

Abstract:

Ocean current is always available around the surrounding of SHELL Sabah Water Platform and data are collected every 10 minutes, 24 hours a day, for a period of 365 days. Due to low current speed, conventional hydrokinetic power generation is not feasible, thus leading to the study of low current enabled vortex induced vibration power generation application. In this case, the design of a vortex induced vibration application is studied to obtain an optimum design for the VIV oscillator. Power output is then determined to study the feasibility of the VIV application in low current condition.

Keywords: Renewable energy, Vortex induced vibration, Turbulence, Lock-in.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
2268 Energy Consumption, Emission Absorption and Carbon Emission Reduction on Semarang State University Campus

Authors: Dewi Liesnoor Setyowati, Puji Hardati, Tri Marhaeni Puji Astuti, Muhammad Amin

Abstract:

Universitas Negeri Semarang (UNNES) is a university with a vision of conservation. The impact of the UNNES conservation is the existence of a positive response from the community for the effort of greening the campus and the planting of conservation value in the academic community. But in reality,  energy consumption in UNNES campus tends to increase. The objectives of the study were to analyze the energy consumption in the campus area, to analyze the absorption of emissions by trees and the awareness of UNNES citizens in reducing emissions. Research focuses on energy consumption, carbon emissions, and awareness of citizens in reducing emissions. Research subjects in this study are UNNES citizens (lecturers, students and employees). The research area covers 6 faculties and one administrative center building. Data collection is done by observation, interview and documentation. The research used a quantitative descriptive method to analyze the data. The number of trees in UNNES is 10,264. Total emission on campus UNNES is 7.862.281.56 kg/year, the tree absorption is 6,289,250.38 kg/year. In UNNES campus area there are still 1,575,031.18 kg/year of emissions, not yet absorbed by trees. There are only two areas of the faculty whose trees are capable of absorbing emissions. The awareness of UNNES citizens in reducing energy consumption is seen in change the habit of: using energy-saving equipment (65%); reduce energy consumption per unit (68%); do energy literacy for UNNES citizens (74%). UNNES leaders always provide motivation to the citizens of UNNES, to reduce and change patterns of energy consumption.

Keywords: Energy consumption, carbon emission absorption, emission reduction, energy literation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799
2267 Mixed Convection in a Vertical Heated Channel: Influence of the Aspect Ratio

Authors: Ameni Mokni , Hatem Mhiri , Georges Le Palec , Philippe Bournot

Abstract:

In mechanical and environmental engineering, mixed convection is a frequently encountered thermal fluid phenomenon which exists in atmospheric environment, urban canopy flows, ocean currents, gas turbines, heat exchangers, and computer chip cooling systems etc... . This paper deals with a numerical investigation of mixed convection in a vertical heated channel. This flow results from the mixing of the up-going fluid along walls of the channel with the one issued from a flat nozzle located in its entry section. The fluiddynamic and heat-transfer characteristics of vented vertical channels are investigated for constant heat-flux boundary conditions, a Rayleigh number equal to 2.57 1010, for two jet Reynolds number Re=3 103 and 2104 and the aspect ratio in the 8-20 range. The system of governing equations is solved with a finite volumes method and an implicit scheme. The obtained results show that the turbulence and the jet-wall interaction activate the heat transfer, as does the drive of ambient air by the jet. For low Reynolds number Re=3 103, the increase of the aspect Ratio enhances the heat transfer of about 3%, however; for Re=2 104, the heat transfer enhancement is of about 12%. The numerical velocity, pressure and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and average Nusselt number, in terms of Rayleigh, Reynolds numbers and dimensionless geometric parameters are presented.

Keywords: Aspect Ratio, Channel, Jet, Mixed convection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161