Search results for: Predicted models
2430 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis
Authors: Petr Gurný
Abstract:
One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the creditscoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.
Keywords: Credit-scoring Models, Multidimensional Subordinated Lévy Model, Probability of Default.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19192429 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: Data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12202428 Effect of Different pH on Canthaxanthin Degradation
Authors: N. Seyedrazi, S. H. Razavi, Z. Emam-Djomeh
Abstract:
In this research, natural canthaxanthin as one of the most important carotenoids was extracted from Dietzia natronolimnaea HS-1. The changes of canthaxanthin enriched in oilin- water emulsions with vegetable oil (5 mg/ 100 mL), Arabic gum (5 mg/100 mL), and potassium sorbate (0.5 g/100 mL) was investigated. The effects of different pH (3, 5 and 7), as well as, time treatment (3, 18 and 33 days) in the environmental temperature (24°C) on the degradation were studied by response surface methodology (RSM). The Hunter values (L*, a*, and b*) and the concentration of canthaxanthin (C, mg/L) illustrated more degradation of this pigment at low pHs (pH≤ 4) by passing the time (days≥10) with R² 97.00%, 91.31%, 97.60%, and 99.54% for C, L*, a*, and b* respectively. The predicted model were found to be significant (p<0.05).Keywords: Degradation, Emulsion, Response SurfaceMethodology (RSM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18422427 Facilitating Cooperative Knowledge Support by Role-Based Knowledge-Flow Views
Authors: Chih-Wei Lin, Duen-Ren Liu, Hui-Fang Chen
Abstract:
Effective knowledge support relies on providing operation-relevant knowledge to workers promptly and accurately. A knowledge flow represents an individual-s or a group-s knowledge-needs and referencing behavior of codified knowledge during operation performance. The flow has been utilized to facilitate organizational knowledge support by illustrating workers- knowledge-needs systematically and precisely. However, conventional knowledge-flow models cannot work well in cooperative teams, which team members usually have diverse knowledge-needs in terms of roles. The reason is that those models only provide one single view to all participants and do not reflect individual knowledge-needs in flows. Hence, we propose a role-based knowledge-flow view model in this work. The model builds knowledge-flow views (or virtual knowledge flows) by creating appropriate virtual knowledge nodes and generalizing knowledge concepts to required concept levels. The customized views could represent individual role-s knowledge-needs in teamwork context. The novel model indicates knowledge-needs in condensed representation from a roles perspective and enhances the efficiency of cooperative knowledge support in organizations.Keywords: cooperative knowledge support, knowledge flow, knowledge-flow view, role-based models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13032426 Meta Model Based EA for Complex Optimization
Authors: Maumita Bhattacharya
Abstract:
Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiencyKeywords: Meta model, Evolutionary algorithm, Stochastictechnique, Fitness function, Optimization, Support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20672425 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.
Keywords: Spatial Information Network, Traffic prediction, Wavelet decomposition, Time series model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6372424 Application of Transportation Models for Analysing Future Intercity and Intracity Travel Patterns in Kuwait
Authors: Srikanth Pandurangi, Basheer Mohammed, Nezar Al Sayegh
Abstract:
In order to meet the increasing demand for housing care for Kuwaiti citizens, the government authorities in Kuwait are undertaking a series of projects in the form of new large cities, outside the current urban area. Al Mutlaa City located to the north-west of the Kuwait Metropolitan Area is one such project out of the 15 planned new cities. The city accommodates a wide variety of residential developments, employment opportunities, commercial, recreational, health care and institutional uses. This paper examines the application of comprehensive transportation demand modeling works undertaken in VISUM platform to understand the future intracity and intercity travel distribution patterns in Kuwait. The scope of models developed varied in levels of detail: strategic model update, sub-area models representing future demand of Al Mutlaa City, sub-area models built to estimate the demand in the residential neighborhoods of the city. This paper aims at offering model update framework that facilitates easy integration between sub-area models and strategic national models for unified traffic forecasts. This paper presents the transportation demand modeling results utilized in informing the planning of multi-modal transportation system for Al Mutlaa City. This paper also presents the household survey data collection efforts undertaken using GPS devices (first time in Kuwait) and notebook computer based digital survey forms for interviewing representative sample of citizens and residents. The survey results formed the basis of estimating trip generation rates and trip distribution coefficients used in the strategic base year model calibration and validation process.Keywords: GPS based household surveys, transportation infrastructure, origin-destination trip matrices, traffic forecasts, transportation demand modeling, travel behavior patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17072423 Performance Improvement in the Bivariate Models by using Modified Marginal Variance of Noisy Observations for Image-Denoising Applications
Authors: R. Senthilkumar
Abstract:
Most simple nonlinear thresholding rules for wavelet- based denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. This paper attempts to give a recipe for selecting one of the popular image-denoising algorithms based on VisuShrink, SureShrink, OracleShrink, BayesShrink and BiShrink and also this paper compares different Bivariate models used for image denoising applications. The first part of the paper compares different Shrinkage functions used for image-denoising. The second part of the paper compares different bivariate models and the third part of this paper uses the Bivariate model with modified marginal variance which is based on Laplacian assumption. This paper gives an experimental comparison on six 512x512 commonly used images, Lenna, Barbara, Goldhill, Clown, Boat and Stonehenge. The following noise powers 25dB,26dB, 27dB, 28dB and 29dB are added to the six standard images and the corresponding Peak Signal to Noise Ratio (PSNR) values are calculated for each noise level.Keywords: BiShrink, Image-Denoising, PSNR, Shrinkage function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13472422 Fuzzy EOQ Models for Deteriorating Items with Stock Dependent Demand and Non-Linear Holding Costs
Authors: G. C. Mahata, A. Goswami
Abstract:
This paper deals with infinite time horizon fuzzy Economic Order Quantity (EOQ) models for deteriorating items with stock dependent demand rate and nonlinear holding costs by taking deterioration rate θ0 as a triangular fuzzy number (θ0 −δ 1, θ0, θ0 +δ 2), where 1 2 0 0 <δ ,δ <θ are fixed real numbers. The traditional parameters such as unit cost and ordering cost have been kept constant but holding cost is considered to vary. Two possibilities of variations in the holding cost function namely, a non-linear function of the length of time for which the item is held in stock and a non-linear function of the amount of on-hand inventory have been used in the models. The approximate optimal solution for the fuzzy cost functions in both these cases have been obtained and the effect of non-linearity in holding costs is studied with the help of a numerical example.
Keywords: Inventory Model, Deterioration, Holding Cost, Fuzzy Total Cost, Extension Principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18142421 Kinetic Studies on Microbial Production of Tannase Using Redgram Husk
Authors: S. K. Mohan, T. Viruthagiri, C. Arunkumar
Abstract:
Tannase (tannin acyl hydrolase, E.C.3.1.1.20) is an important hydrolysable enzyme with innumerable applications and industrial potential. In the present study, a kinetic model has been developed for the batch fermentation used for the production of tannase by A.flavus MTCC 3783. Maximum tannase activity of 143.30 U/ml was obtained at 96 hours under optimum operating conditions at 35oC, an initial pH of 5.5 and with an inducer tannic acid concentration of 3% (w/v) for a fermentation period of 120 hours. The biomass concentration reaches a maximum of 6.62 g/l at 96 hours and further there was no increase in biomass concentration till the end of the fermentation. Various unstructured kinetic models were analyzed to simulate the experimental values of microbial growth, tannase activity and substrate concentration. The Logistic model for microbial growth , Luedeking - Piret model for production of tannase and Substrate utilization kinetic model for utilization of substrate were capable of predicting the fermentation profile with high coefficient of determination (R2) values of 0.980, 0.942 and 0.983 respectively. The results indicated that the unstructured models were able to describe the fermentation kinetics more effectively.Keywords: Aspergillus flavus, Batch fermentation, Kinetic model, Tannase, Unstructured models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15642420 Estimation of Natural Frequency of the Bearing System under Periodic Force Based on Principal of Hydrodynamic Mass of Fluid
Authors: M. H. Pol, A. Bidi, A. V. Hoseini
Abstract:
Estimation of natural frequency of structures is very important and isn-t usually calculated simply and sometimes complicated. Lack of knowledge about that caused hard damage and hazardous effects. In this paper, with using from two different models in FEM method and based on hydrodynamic mass of fluids, natural frequency of an especial bearing (Fig. 1) in an electric field (or, a periodic force) is calculated in different stiffness and different geometric. In final, the results of two models and analytical solution are compared.Keywords: Natural frequency of the bearing, Hydrodynamic mass of fluid method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26462419 Application of Differential Transformation Method for Solving Dynamical Transmission of Lassa Fever Model
Authors: M. A. Omoloye, M. I. Yusuff, O. K. S. Emiola
Abstract:
The use of mathematical models for solving biological problems varies from simple to complex analyses, depending on the nature of the research problems and applicability of the models. The method is more common nowadays. Many complex models become impractical when transmitted analytically. However, alternative approach such as numerical method can be employed. It appropriateness in solving linear and non-linear model equation in Differential Transformation Method (DTM) which depends on Taylor series make it applicable. Hence this study investigates the application of DTM to solve dynamic transmission of Lassa fever model in a population. The mathematical model was formulated using first order differential equation. Firstly, existence and uniqueness of the solution was determined to establish that the model is mathematically well posed for the application of DTM. Numerically, simulations were conducted to compare the results obtained by DTM and that of fourth-order Runge-Kutta method. As shown, DTM is very effective in predicting the solution of epidemics of Lassa fever model.
Keywords: Differential Transform Method, Existence and uniqueness, Lassa fever, Runge-Kutta Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4892418 The Effect of Modification and Initial Concentration on Ammonia Removal from Leachate by Zeolite
Authors: Fulya Aydın, Ayşe Kuleyin
Abstract:
The purpose of this study is to investigate the capacity of natural Turkish zeolite for NH4-N removal from landfill leachate. The effects of modification and initial concentration on the removal of NH4-N from leachate were also investigated. The kinetics of adsorption of NH4-N has been discussed using three kinetic models, i.e., the pseudo-second order model, the Elovich equation, the intraparticle diffuion model. Kinetic parameters and correlation coefficients were determined. Equilibrium isotherms for the adsorption of NH4-N were analyzed by Langmuir, Freundlich and Tempkin isotherm models. Langmuir isotherm model was found to best represent the data for NH4-N.Keywords: Leachate, Ammonium, zeolite
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23662417 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting
Authors: Yiannis G. Smirlis
Abstract:
The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.Keywords: Data envelopment analysis, interval DEA, efficiency classification, efficiency prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9372416 Prediction of Computer and Video Game Playing Population: An Age Structured Model
Authors: T. K. Sriram, Joydip Dhar
Abstract:
Models based on stage structure have found varied applications in population models. This paper proposes a stage structured model to study the trends in the computer and video game playing population of US. The game paying population is divided into three compartments based on their age group. After simulating the mathematical model, a forecast of the number of game players in each stage as well as an approximation of the average age of game players in future has been made.
Keywords: Age structure, Forecasting, Mathematical modeling, Stage structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19012415 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics
Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim
Abstract:
A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.
Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5842414 Specialized Reduced Models of Dynamic Flows in 2-Stroke Engines
Authors: S. Cagin, X. Fischer, E. Delacourt, N. Bourabaa, C. Morin, D. Coutellier, B. Carré, S. Loumé
Abstract:
The complexity of scavenging by ports and its impact on engine efficiency create the need to understand and to model it as realistically as possible. However, there are few empirical scavenging models and these are highly specialized. In a design optimization process, they appear very restricted and their field of use is limited. This paper presents a comparison of two methods to establish and reduce a model of the scavenging process in 2-stroke diesel engines. To solve the lack of scavenging models, a CFD model has been developed and is used as the referent case. However, its large size requires a reduction. Two techniques have been tested depending on their fields of application: The NTF method and neural networks. They both appear highly appropriate drastically reducing the model’s size (over 90% reduction) with a low relative error rate (under 10%). Furthermore, each method produces a reduced model which can be used in distinct specialized fields of application: the distribution of a quantity (mass fraction for example) in the cylinder at each time step (pseudo-dynamic model) or the qualification of scavenging at the end of the process (pseudo-static model).
Keywords: Diesel engine, Design optimization, Model reduction, Neural network, NTF algorithm, Scavenging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13302413 On the Performance of Information Criteria in Latent Segment Models
Authors: Jaime R. S. Fonseca
Abstract:
Nevertheless the widespread application of finite mixture models in segmentation, finite mixture model selection is still an important issue. In fact, the selection of an adequate number of segments is a key issue in deriving latent segments structures and it is desirable that the selection criteria used for this end are effective. In order to select among several information criteria, which may support the selection of the correct number of segments we conduct a simulation study. In particular, this study is intended to determine which information criteria are more appropriate for mixture model selection when considering data sets with only categorical segmentation base variables. The generation of mixtures of multinomial data supports the proposed analysis. As a result, we establish a relationship between the level of measurement of segmentation variables and some (eleven) information criteria-s performance. The criterion AIC3 shows better performance (it indicates the correct number of the simulated segments- structure more often) when referring to mixtures of multinomial segmentation base variables.Keywords: Quantitative Methods, Multivariate Data Analysis, Clustering, Finite Mixture Models, Information Theoretical Criteria, Simulation experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15192412 Mapping Knowledge Model Onto Java Codes
Authors: B.A.Gobin, R.K.Subramanian
Abstract:
This paper gives an overview of the mapping mechanism of SEAM-a methodology for the automatic generation of knowledge models and its mapping onto Java codes. It discusses the rules that will be used to map the different components in the knowledge model automatically onto Java classes, properties and methods. The aim of developing this mechanism is to help in the creation of a prototype which will be used to validate the knowledge model which has been generated automatically. It will also help to link the modeling phase with the implementation phase as existing knowledge engineering methodologies do not provide for proper guidelines for the transition from the knowledge modeling phase to development phase. This will decrease the development overheads associated to the development of Knowledge Based Systems.Keywords: KBS, OWL, ontology, knowledge models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13842411 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.
Keywords: Automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20042410 Identification, Prediction and Detection of the Process Fault in a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique
Authors: Masoud Sadeghian, Alireza Fatehi
Abstract:
In this paper, we use nonlinear system identification method to predict and detect process fault of a cement rotary kiln. After selecting proper inputs and output, an input-output model is identified for the plant. To identify the various operation points in the kiln, Locally Linear Neuro-Fuzzy (LLNF) model is used. This model is trained by LOLIMOT algorithm which is an incremental treestructure algorithm. Then, by using this method, we obtained 3 distinct models for the normal and faulty situations in the kiln. One of the models is for normal condition of the kiln with 15 minutes prediction horizon. The other two models are for the two faulty situations in the kiln with 7 minutes prediction horizon are presented. At the end, we detect these faults in validation data. The data collected from White Saveh Cement Company is used for in this study.Keywords: Cement Rotary Kiln, Fault Detection, Delay Estimation Method, Locally Linear Neuro Fuzzy Model, LOLIMOT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16732409 Multi-models Approach for Describing and Verifying Constraints Based Interactive Systems
Authors: Mamoun Sqali, Mohamed Wassim Trojet
Abstract:
The requirements analysis, modeling, and simulation have consistently been one of the main challenges during the development of complex systems. The scenarios and the state machines are two successful models to describe the behavior of an interactive system. The scenarios represent examples of system execution in the form of sequences of messages exchanged between objects and are a partial view of the system. In contrast, state machines can represent the overall system behavior. The automation of processing scenarios in the state machines provide some answers to various problems such as system behavior validation and scenarios consistency checking. In this paper, we propose a method for translating scenarios in state machines represented by Discreet EVent Specification and procedure to detect implied scenarios. Each induced DEVS model represents the behavior of an object of the system. The global system behavior is described by coupling the atomic DEVS models and validated through simulation. We improve the validation process with integrating formal methods to eliminate logical inconsistencies in the global model. For that end, we use the Z notation.
Keywords: Scenarios, DEVS, synthesis, validation and verification, simulation, formal verification, z notation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13852408 The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan
Authors: U. Waqas, M. F. Ahmed, A. Mehmood, M. A. Rashid
Abstract:
In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.
Keywords: Data quality, null hypothesis, seismic lines, seismic reflection survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6152407 Hybrid Project Management Model Based on Lean and Agile Approach
Authors: F. Z. Eddoug, J. Benhra, R. Benabbou
Abstract:
Excellence and Success are the ultimate goal for any project and in order to achieve it, every project manager looks for the convenient tools and methods. This work proposes a framework that seeks an efficient management of general project through a lean and agile approach. In order to get this objective, the article was divided in two stages, the first one was emphasized on exploring and analyzing the existing project management models and then in the second one the desired framework was created, beginning by focusing on seven existing models and then proposing for each phase of the framework the convenient lean and agile tools.
Keywords: Agility, hybrid project management, lean, scrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4192406 Co-payment Strategies for Chronic Medications: A Qualitative and Comparative Analysis at European Level
Authors: Pedro M. Abreu, Bruno R. Mendes
Abstract:
The management of pharmacotherapy and the process of dispensing medicines is becoming critical in clinical pharmacy due to the increase of incidence and prevalence of chronic diseases, the complexity and customization of therapeutic regimens, the introduction of innovative and more expensive medicines, the unbalanced relation between expenditure and revenue as well as due to the lack of rationalization associated with medication use. For these reasons, co-payments emerged in Europe in the 70s and have been applied over the past few years in healthcare. Co-payments lead to a rationing and rationalization of user’s access under healthcare services and products, and simultaneously, to a qualification and improvement of the services and products for the end-user. This analysis, under hospital practices particularly and co-payment strategies in general, was carried out on all the European regions and identified four reference countries, that apply repeatedly this tool and with different approaches. The structure, content and adaptation of European co-payments were analyzed through 7 qualitative attributes and 19 performance indicators, and the results expressed in a scorecard, allowing to conclude that the German models (total score of 68,2% and 63,6% in both elected co-payments) can collect more compliance and effectiveness, the English models (total score of 50%) can be more accessible, and the French models (total score of 50%) can be more adequate to the socio-economic and legal framework. Other European models did not show the same quality and/or performance, so were not taken as a standard in the future design of co-payments strategies. In this sense, we can see in the co-payments a strategy not only to moderate the consumption of healthcare products and services, but especially to improve them, as well as a strategy to increment the value that the end-user assigns to these services and products, such as medicines.
Keywords: Clinical pharmacy, co-payments, healthcare, medicines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13572405 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models
Authors: Yoonsuh Jung
Abstract:
As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an ‘optimal’ value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.Keywords: Cross Validation, Parameter Averaging, Parameter Selection, Regularization Parameter Search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15722404 Seismic Vulnerability Assessment of Buildings in Algiers Area
Authors: F. Lazzali, M. Farsi
Abstract:
Several models of vulnerability assessment have been proposed. The selection of one of these models depends on the objectives of the study. The classical methodologies for seismic vulnerability analysis, as a part of seismic risk analysis, have been formulated with statistical criteria based on a rapid observation. The information relating to the buildings performance is statistically elaborated. In this paper, we use the European Macroseismic Scale EMS-98 to define the relationship between damage and macroseismic intensity to assess the seismic vulnerability. Applying to Algiers area, the first step is to identify building typologies and to assign vulnerability classes. In the second step, damages are investigated according to EMS-98.
Keywords: Damage, EMS-98, inventory building, vulnerability classes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18172403 Effects of Level Densities and Those of a-Parameter in the Framework of Preequilibrium Model for 63,65Cu(n,xp) Reactions in Neutrons at 9 to 15 MeV
Authors: L. Yettou
Abstract:
In this study, the calculations of proton emission spectra produced by 63Cu(n,xp) and 65Cu(n,xp) reactions are used in the framework of preequilibrium models using the EMPIRE code and TALYS code. Exciton Model predidtions combined with the Kalbach angular distribution systematics and the Hybrid Monte Carlo Simulation (HMS) were used. The effects of levels densities and those of a-parameter have been investigated for our calculations. The comparison with experimental data shows clear improvement over the Exciton Model and HMS calculations.
Keywords: Preequilibrium models, level density, level density a-parameter, 63Cu(n, xp) and 65Cu(n, xp) reactions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5222402 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models
Authors: I. V. Pinto, M. R. Sooriyarachchi
Abstract:
It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.
Keywords: Goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, type-I error, penalized quasi-likelihood, power, quasi-likelihood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7332401 Photogrammetry and GIS Integration for Archaeological Documentation of Ahl-Alkahf, Jordan
Authors: Rami Al-Ruzouq, Abdallah Al-Zoubi, Abdel-Rahman Abueladas, Petya Dimitrova
Abstract:
Protection and proper management of archaeological heritage are an essential process of studying and interpreting the generations present and future. Protecting the archaeological heritage is based upon multidiscipline professional collaboration. This study aims to gather data by different sources (Photogrammetry and Geographic Information System (GIS)) integrated for the purpose of documenting one the of significant archeological sites (Ahl-Alkahf, Jordan). 3D modeling deals with the actual image of the features, shapes and texture to represent reality as realistically as possible by using texture. The 3D coordinates that result of the photogrammetric adjustment procedures are used to create 3D-models of the study area. Adding Textures to the 3D-models surfaces gives a 'real world' appearance to the displayed models. GIS system combined all data, including boundary maps, indicating the location of archeological sites, transportation layer, digital elevation model and orthoimages. For realistic representation of the study area, 3D - GIS model prepared, where efficient generation, management and visualization of such special data can be achieved.
Keywords: Archaeology, close range photogrammetry, ortho-photo, 3D-GIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163