Effects of Level Densities and Those of a-Parameter in the Framework of Preequilibrium Model for 63,65Cu(n,xp) Reactions in Neutrons at 9 to 15 MeV
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Effects of Level Densities and Those of a-Parameter in the Framework of Preequilibrium Model for 63,65Cu(n,xp) Reactions in Neutrons at 9 to 15 MeV

Authors: L. Yettou

Abstract:

In this study, the calculations of proton emission spectra produced by 63Cu(n,xp) and 65Cu(n,xp) reactions are used in the framework of preequilibrium models using the EMPIRE code and TALYS code. Exciton Model predidtions combined with the Kalbach angular distribution systematics and the Hybrid Monte Carlo Simulation (HMS) were used. The effects of levels densities and those of a-parameter have been investigated for our calculations. The comparison with experimental data shows clear improvement over the Exciton Model and HMS calculations.

Keywords: Preequilibrium models, level density, level density a-parameter, 63Cu(n, xp) and 65Cu(n, xp) reactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 522

References:


[1] EMPIRE-3.2 (Malta) (August2013; http://www.nndc.bnl.gov/empire/ (current as of July 12, 2015).
[2] J. Koning, S. Hilaire, and M. C. Duijvestijn, “Talys-1.0,” Proc. Int. Conf. Nuclear Data for Science and Technology (ND-2007), Nice, France, (April 22–27, 2007).
[3] L. Yettou, Preequilibrium models for 63Cu(n, xp) Reaction in Neutrons at 9, 11, 14.8 and 15 MeV Using the EMPIRE 3.2 Code, Nucl. Sci. Eng, 183. 275-285. (June 2016).
[4] L. Yettou, Calculation of pre-equilibrium effects in neutron-induced cross section on 65Cu, ND 2016: International Conference on Nuclear Data for Science and Technology, Bruges, Belgium ; EPJ Web of Conferences, Volume 146, id. 12024.
[5] J. J. Griffin, Phys. Rev. Lett., 17, 478 (1966); http//dx.doi.org/10.1103/PhysRevLett.17.478.
[6] C. K. Cline and M. Blann Nucl. Phys. A, 172, 225 (1971); http://dx.doi.org/10.1016/0375-9474(71)90713-5.
[7] C. K. Cline Nucl. Phys. A, 193, 417 (1972); http://dx.doi.org/10.1016/0375-9474(72)90330-2.
[8] I. RIBANSKY, P. OBLOZINSKY, and E. BETAK, Nucl. Phys. A, 205, 545 (1973); http://dx.doi.org/10.1016/0375-9474(73)90705-7.
[9] W. Hauser and H. Feshbach, Phys. Rev., 87, 366(1952),http://dx.doi.org/10.1103/PhysRev.87.366; see also L. WOLFENSTEIN, Phys. Rev., 82, 690 (1951), http://dx.doi.org/10.1103/PhysRev.82.690.
[10] C. Kalbach, “Systematics of Continuum Angular Distributions: Extensions to Higher Energies,” Phys. Rev. C, 37, 2350(1988); http://dx.doi.org/10.1103/PhysRevC.37.2350.
[11] J. P. Delaroche et al., Nucl. Phys. A, 390, 541 (1982); http://dx.doi.org/10.1016/0375-9474(82)90282-2.
[12] A. J. Koning and J. P. Delaroche, “Local and Global Nucleon Optical Models from 1 keV to 200 MeV,”Nucl. Phys. A, 713, 231 (2003); http://dx.doi.org/10.1016/S0375-9474(02)01321-0.
[13] M. Ahmad et al., “Charged-Particle Emission in Reactions of 9- and 11-MeV Neutrons with 63,65Cu,”Nucl. Sci.Eng., 95, 296 (1987); http://dx.doi.org/10.13182/NSE95-296.
[14] S. Goriely, M. Samyn, and J. M. Pearson,Phys. Rev. C, 75, 064312 (2007); http://dx.doi.org/10.1103/PhysRevC.75.064312.
[15] A. V. Ignatyuk, G. N. Smirenkin, and A. S.Tishin, Sov. J. Nucl. Phys., 21, 255 (1975).
[16] C. Tsabaris et al., “Measured and Calculated Differential and Total Yield Cross-Section Data of 58Ni(n,x) and 63Cu(n,xp) in the Neutron Energy Range from 2.0 to 15.6 MeV,”Nucl. Sci. Eng., 128, 1, 47 (1998); http://dx.doi.org/10.13182/NSE128-47.
[17] S. M. Grimes et al., “Charged-Particle Emission in Reactions of 15-MeV Neutrons with Isotopes of Chromium, Iron, Nickel, and Copper,”Phys. Rev. C, 19, 2127 (1979); http://dx.doi.org/10.1103/PhysRevC.19.2127.
[18] B. Morillon and P. Romain, “Bound Single-Particle States and Scattering of Nucleons on Spherical Nuclei with a Global Optical Model,”Phys. Rev. C, 76, 044601 (2007); http://dx.doi.org/10.1103/PhysRevC.76.044601.
[19] C. Tsabaris, E. Wattecamps, and G. Rollin, “Double Differential (n,xp) and (n,x alpha) Cross Section Measurements of Al-27, Ni-58 and Cu-63 in the Neutron Energy Range from 2.0 to 15.5 MeV,”Proc. Conf. Nuclear Data for Science and Technology, Gatlinburg, Tennessee, May 9 –13, 1994, p. 282, American Nuclear Society (1994).
[20] D. L. Allan, “Protons from the Interaction of 14 MeV Neutrons with Medium Weight Nuclei,”Proc. Phys. Soc. A, 70, 195 (1957); http://dx.doi.org/10.1088/0370-1298/70/3/305.
[21] A. Gilbert and A. G. W. Cameron,Can. J. Phys., 43, 1446 (1965);http://dx.doi.org/10.1139/p65-139.
[22] W. Dilg, W. Schantl, H. Vonach, and M. Uhl, Nucl. Phys. A217, 269 (1973).
[23] R. Capote et al., “Reference Input Parameter Library (RIPL-3),”Nucl. Data Sheets, 110, 12, 3107 (2009); http://dx.doi.org/10.1016/j.nds.2009.10.004.
[24] Xiaohua Li and Chonghai Cai, Nucl. Phys. A 801, 43-67 (2008)
[25] M. Blann, Phys. Rev. C, 54, 1341 (1996); http://dx.doi.org/10.1103/PhysRevC.54.1341.
[26] R. L. Varner, W.J. Thompson, T.L. McAbee, E.J. Ludwig, T.B. Clegg, Phys. Rep. 201, 57 (1991)
[27] S. Kailas et al., Phys. Rev. C 20, 1272(1979); Pramana. J.Phys. 27, 139(1986)