Search results for: Human action recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3023

Search results for: Human action recognition

2543 Factors Affecting Employee Performance: A Case Study in Marketing and Trading Directorate, Pertamina Ltd.

Authors: Saptiadi Nugroho, A. Nur Muhamad Afif

Abstract:

Understanding factors that influence employee performance is very important. By finding the significant factors, organization could intervene to improve the employee performance that simultaneously will affect organization itself. In this research, four aspects consist of PCCD training, education level, corrective action, and work location were tested to identify their influence on employee performance. By using correlation analysis and T-Test, it was found that employee performance significantly influenced by PCCD training, work location, and corrective action. Meanwhile the education level did not influence employee performance.

Keywords: Training, employee development, performance management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
2542 Effective Traffic Lights Recognition Method for Real Time Driving Assistance Systemin the Daytime

Authors: Hyun-Koo Kim, Ju H. Park, Ho-Youl Jung

Abstract:

This paper presents an effective traffic lights recognition method at the daytime. First, Potential Traffic Lights Detector (PTLD) use whole color source of YCbCr channel image and make each binary image of green and red traffic lights. After PTLD step, Shape Filter (SF) use to remove noise such as traffic sign, street tree, vehicle, and building. At this time, noise removal properties consist of information of blobs of binary image; length, area, area of boundary box, etc. Finally, after an intermediate association step witch goal is to define relevant candidates region from the previously detected traffic lights, Adaptive Multi-class Classifier (AMC) is executed. The classification method uses Haar-like feature and Adaboost algorithm. For simulation, we are implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and rural roads. Through the test, we are compared with our method and standard object-recognition learning processes and proved that it reached up to 94 % of detection rate which is better than the results achieved with cascade classifiers. Computation time of our proposed method is 15 ms.

Keywords: Traffic Light Detection, Multi-class Classification, Driving Assistance System, Haar-like Feature, Color SegmentationMethod, Shape Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2780
2541 Holistic Face Recognition using Multivariate Approximation, Genetic Algorithms and AdaBoost Classifier: Preliminary Results

Authors: C. Villegas-Quezada, J. Climent

Abstract:

Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p" variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ - Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F -s polynomials to each of the Fi -s polynomials. The winner is the polynomial family closer to F -s corresponding to target face in data base.

Keywords: AdaBoost Classifier, Holistic Face Recognition, Minimax Multivariate Approximation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
2540 Humans as Enrichment: Human-Animal Interactions and the Perceived Benefit to the Cheetah (Acinonyx jubatus), Human and Zoological Establishment

Authors: S. J. Higgs, E. Van Eck, K. Heynis, S. H. Broadberry

Abstract:

Engagement with non-human animals is a rapidly-growing field of study within the animal science and social science sectors, with human-interactions occurring in many forms; interactions, encounters and animal-assisted therapy. To our knowledge, there has been a wide array of research published on domestic and livestock human-animal interactions, however, there appear to be fewer publications relating to zoo animals and the effect these interactions have on the animal, human and establishment. The aim of this study was to identify if there were any perceivable benefits from the human-animal interaction for the cheetah, the human and the establishment. Behaviour data were collected before, during and after the interaction on the behaviour of the cheetah and the human participants to highlight any trends with nine interactions conducted. All 35 participants were asked to fill in a questionnaire prior to the interaction and immediately after to ascertain if their perceptions changed following an interaction with the cheetah. An online questionnaire was also distributed for three months to gain an understanding of the perceptions of human-animal interactions from members of the public, gaining 229 responses. Both questionnaires contained qualitative and quantitative questions to allow for specific definitive answers to be analysed, but also expansion on the participants perceived perception of human-animal interactions. In conclusion, it was found that participants’ perceptions of human-animal interactions saw a positive change, with 64% of participants altering their opinion and viewing the interaction as beneficial for the cheetah (reduction in stress assumed behaviours) following participation in a 15-minute interaction. However, it was noted that many participants felt the interaction lacked educational values and therefore this is an area in which zoological establishments can work to further improve upon. The results highlighted many positive benefits for the human, animal and establishment, however, the study does indicate further areas for research in order to promote positive perceptions of human-animal interactions and to further increase the welfare of the animal during these interactions, with recommendations to create and regulate legislation.

Keywords: Acinonyx jubatus, encounters, human-animal interactions, perceptions, zoological establishments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
2539 Human Immunodeficiency Virus Infection and Cardiac Autonomic Neuropathy

Authors: Sharan Badiger, Prema T. Akkasaligar, Deepak Kadeli

Abstract:

Human Immunodeficiency Virus is known to affect almost all organ systems in the body. In addition to central nervous system it also affects the autonomic nervous system. Autonomic nervous dysfunction has been known to severely affect the quality of life in human immunodeficiency virus positive patients. It is known to have caused fatal consequences in late stages of the disease in patients who go in for invasive diagnostic or therapeutic procedures. The aim of this review is to determine the incidence, clinical significance and frequency of cardiac autonomic neuropathy in patients human immunodeficiency virus infection.

Keywords: Autonomic nervous system, autonomic nervous dysfunction, cardiac autonomic dysfunction, human immunodeficiency virus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1081
2538 Mathematical Model for the Transmission of Leptospirosis in Juvennile and Adults Humans

Authors: P. Pongsumpun

Abstract:

Leptospirosis occurs worldwide (except the poles of the earth), urban and rural areas, developed and developing countries, especially in Thailand. It can be transmitted to the human by rats through direct and indirect ways. Human can be infected by either touching the infected rats or contacting with water, soil containing urine from the infected rats through skin, eyes and nose. The data of the people who are infected with this disease indicates that most of the patients are adults. The transmission of this disease is studied through mathematical model. The population is separated into human and rat. The human is divided into two classes, namely juvenile and adult. The model equation is constructed for each class. The standard dynamical modeling method is then used for analyzing the behaviours of solutions. In addition, the conditions of the parameters for the disease free and endemic states are obtained. Numerical solutions are shown to support the theoretical predictions. The results of this study guide the way to decrease the disease outbreak.

Keywords: Adult human, juvenile human, leptospirosis, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2588
2537 Visual Object Tracking and Interception in Industrial Settings

Authors: Ahmet Denker, Tuğrul Adıgüzel

Abstract:

This paper presents a solution for a robotic manipulation problem. We formulate the problem as combining target identification, tracking and interception. The task in our solution is sensing a target on a conveyor belt and then intercepting robot-s end-effector at a convenient rendezvous point. We used an object recognition method which identifies the target and finds its position from visualized scene picture, then the robot system generates a solution for rendezvous problem using the target-s initial position and belt velocity . The interception of the target and the end-effector is executed at a convenient rendezvous point along the target-s calculated trajectory. Experimental results are obtained using a real platform with an industrial robot and a vision system over it.

Keywords: Object recognition, rendezvous planning, robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
2536 Intelligent Vision System for Human-Robot Interface

Authors: Al-Amin Bhuiyan, Chang Hong Liu

Abstract:

This paper addresses the development of an intelligent vision system for human-robot interaction. The two novel contributions of this paper are 1) Detection of human faces and 2) Localizing the eye. The method is based on visual attributes of human skin colors and geometrical analysis of face skeleton. This paper introduces a spatial domain filtering method named ?Fuzzily skewed filter' which incorporates Fuzzy rules for deciding the gray level of pixels in the image in their neighborhoods and takes advantages of both the median and averaging filters. The effectiveness of the method has been justified over implementing the eye tracking commands to an entertainment robot, named ''AIBO''.

Keywords: Fuzzily skewed filter, human-robot interface, rmscontrast, skin color segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
2535 The Links between Brain Insulin Resistance and Alzheimer’s Disease

Authors: Negar Khezri, Golnaz Yaghoubnezhadzanganeh, Amirreza Attarzadeh

Abstract:

Type 2 Diabetes (T2DM) and Alzheimer's disease (AD) are two main health problems influencing millions of people in the world. Neuron loss and synaptic impairment that interfere with cognition and memory cause for the behavioral indications of AD. While it is now accepted that insulin has central neuromodulatory purpose, it was contemplated for many years that brain is insusceptible to insulin, involving its function in memory and learning, which are impaired in AD. The common characteristics of both AD and T2D are impaired insulin signaling, oxidative stress, the excitation of inflammatory pathways and unqualified glucose metabolism. This review summarizes how the recognition of these mechanisms may lead to the development of alternative therapeutic approaches. Here we summarize how the recognition of these mechanisms may lead to the development of alternative therapeutic approaches.

Keywords: Alzheimer’s disease, diabetes, insulin resistance, neurodegenerative.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
2534 Domestic Violence against Children and Trafficking in Human Beings: Two Worrying Phenomena in Kosovo

Authors: Adile Shaqiri, Arjeta Shaqiri Latifi

Abstract:

Domestic violence, trafficking with human beings especially violence against children, is a worldwide problem. Hence, it remains one of the most widespread forms of violence in Kosovo and which often continues to be described as a "closed door issue". Recognition, acceptance and prioritization of cases of domestic violence definitely require a much greater awareness of individuals in institutions for the risks, consequences and costs that the lack of such a well-coordinated response brings to the country. Considering that children are the future and the wealth of the country, violence and neglect against them should be treated as carefully as possible. The purpose of this paper is to identify steps towards prevention of the domestic violence and trafficking with human beings, so that the reflection of the consequences and the psychological flow do not reflect to a large extent in society. In this study is described: How is the phenomenon of domestic violence related to trafficking in human beings? The methods used are: historical, comparative, qualitative. Data derived from the relevant institutions were presented, i.e., by the actors who are the first reactors as well as the policy makers. Although these phenomena are present in all countries of the world, Kosovo is no exception and therefore comparisons of the development of child abuse have been made with other countries in the region as well. Since Kosovo is a country in transition, a country with a relatively high level of education, low economic development, high unemployment, political instability, dysfunctional legal infrastructure, it can be concluded that the potential for the development of negative phenomena is present and inevitable. Thus, during the research, the stages of development of these phenomena are analyzed, determining the causes and consequences which come from abuse, neglect of children and the impact on trafficking in human beings. The Kosovar family (parental responsibility), culture and religion, social services, the dignity of the abused child, etc. were analyzed. The review was also done on the legislation, educational institutions (curricula), governmental and non-governmental institutions their responsibilities and cooperation towards combating child abuse and trafficking. It is worth noting that during the work on paper, recommendations and conclusions have been drawn where it is concluded that we need an environment with educational reforms, stability in the political environment, economic development, a review of social policies, greater awareness of society, more adequate information through media, so that information and awareness could penetrate even in the most remote places of Kosovo society.

Keywords: Awareness, education, information, society, violence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
2533 Fast and Accuracy Control Chart Pattern Recognition using a New cluster-k-Nearest Neighbor

Authors: Samir Brahim Belhaouari

Abstract:

By taking advantage of both k-NN which is highly accurate and K-means cluster which is able to reduce the time of classification, we can introduce Cluster-k-Nearest Neighbor as "variable k"-NN dealing with the centroid or mean point of all subclasses generated by clustering algorithm. In general the algorithm of K-means cluster is not stable, in term of accuracy, for that reason we develop another algorithm for clustering our space which gives a higher accuracy than K-means cluster, less subclass number, stability and bounded time of classification with respect to the variable data size. We find between 96% and 99.7 % of accuracy in the lassification of 6 different types of Time series by using K-means cluster algorithm and we find 99.7% by using the new clustering algorithm.

Keywords: Pattern recognition, Time series, k-Nearest Neighbor, k-means cluster, Gaussian Mixture Model, Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
2532 Tele-Operated Anthropomorphic Arm and Hand Design

Authors: Namal A. Senanayake, Khoo B. How, Quah W. Wai

Abstract:

In this project, a tele-operated anthropomorphic robotic arm and hand is designed and built as a versatile robotic arm system. The robot has the ability to manipulate objects such as pick and place operations. It is also able to function by itself, in standalone mode. Firstly, the robotic arm is built in order to interface with a personal computer via a serial servo controller circuit board. The circuit board enables user to completely control the robotic arm and moreover, enables feedbacks from user. The control circuit board uses a powerful integrated microcontroller, a PIC (Programmable Interface Controller). The PIC is firstly programmed using BASIC (Beginner-s All-purpose Symbolic Instruction Code) and it is used as the 'brain' of the robot. In addition a user friendly Graphical User Interface (GUI) is developed as the serial servo interface software using Microsoft-s Visual Basic 6. The second part of the project is to use speech recognition control on the robotic arm. A speech recognition circuit board is constructed with onboard components such as PIC and other integrated circuits. It replaces the computers- Graphical User Interface. The robotic arm is able to receive instructions as spoken commands through a microphone and perform operations with respect to the commands such as picking and placing operations.

Keywords: Tele-operated Anthropomorphic Robotic Arm and Hand, Robot Motion System, Serial Servo Controller, Speech Recognition Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
2531 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: Neural network, gravitational resistance, pattern recognition, non-linear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
2530 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: Deep learning network, smart metering, water end use, water-energy data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
2529 Investigating Breakdowns in Human Robot Interaction: A Conversation Analysis Guided Single Case Study of a Human-Robot Communication in a Museum Environment

Authors: B. Arend, P. Sunnen, P. Caire

Abstract:

In a single case study, we show how a conversation analysis (CA) approach can shed light onto the sequential unfolding of human-robot interaction. Relying on video data, we are able to show that CA allows us to investigate the respective turn-taking systems of humans and a NAO robot in their dialogical dynamics, thus pointing out relevant differences. Our fine grained video analysis points out occurring breakdowns and their overcoming, when humans and a NAO-robot engage in a multimodally uttered multi-party communication during a sports guessing game. Our findings suggest that interdisciplinary work opens up the opportunity to gain new insights into the challenging issues of human robot communication in order to provide resources for developing mechanisms that enable complex human-robot interaction (HRI).

Keywords: Human-robot interaction, conversation analysis, dialogism, museum, breakdown.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
2528 Animal-Assisted Therapy for Persons with Disabilities Based on Canine Tail Language Interpretation via Gaussian-Trapezoidal Fuzzy Emotional Behavior Model

Authors: W. Phanwanich, O. Kumdee, P. Ritthipravat, Y. Wongsawat

Abstract:

In order to alleviate the mental and physical problems of persons with disabilities, animal-assisted therapy (AAT) is one of the possible modalities that employs the merit of the human-animal interaction. Nevertheless, to achieve the purpose of AAT for persons with severe disabilities (e.g. spinal cord injury, stroke, and amyotrophic lateral sclerosis), real-time animal language interpretation is desirable. Since canine behaviors can be visually notable from its tail, this paper proposes the automatic real-time interpretation of canine tail language for human-canine interaction in the case of persons with severe disabilities. Canine tail language is captured via two 3-axis accelerometers. Directions and frequencies are selected as our features of interests. The novel fuzzy rules based on Gaussian-Trapezoidal model and center of gravity (COG)-based defuzzification method are proposed in order to interpret the features into four canine emotional behaviors, i.e., agitate, happy, scare and neutral as well as its blended emotional behaviors. The emotional behavior model is performed in the simulated dog and has also been evaluated in the real dog with the perfect recognition rate.

Keywords: Animal-assisted therapy (AAT), Persons with disabilities, Canine tail language, Fuzzy emotional behavior model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
2527 Image Rotation Using an Augmented 2-Step Shear Transform

Authors: Hee-Choul Kwon, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.

Keywords: High speed rotation operation, image rotation, transform matrix, image processing, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2653
2526 Multi-Font Farsi/Arabic Isolated Character Recognition Using Chain Codes

Authors: H. Izakian, S. A. Monadjemi, B. Tork Ladani, K. Zamanifar

Abstract:

Nowadays, OCR systems have got several applications and are increasingly employed in daily life. Much research has been done regarding the identification of Latin, Japanese, and Chinese characters. However, very little investigation has been performed regarding Farsi/Arabic characters recognition. Probably the reason is difficulty and complexity of those characters identification compared to the others and limitation of IT activities in Farsi and Arabic speaking countries. In this paper, a technique has been employed to identify isolated Farsi/Arabic characters. A chain code based algorithm along with other significant peculiarities such as number and location of dots and auxiliary parts, and the number of holes existing in the isolated character has been used in this study to identify Farsi/Arabic characters. Experimental results show the relatively high accuracy of the method developed when it is tested on several standard Farsi fonts.

Keywords: Farsi characters, OCR, feature extraction, chain code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2393
2525 Learning a Song: an ACT-R Model

Authors: Belkacem Chikhaoui, Helene Pigot, Mathieu Beaudoin, Guillaume Pratte, Philippe Bellefeuille, Fernando Laudares

Abstract:

The way music is interpreted by the human brain is a very interesting topic, but also an intricate one. Although this domain has been studied for over a century, many gray areas remain in the understanding of music. Recent advances have enabled us to perform accurate measurements of the time taken by the human brain to interpret and assimilate a sound. Cognitive computing provides tools and development environments that facilitate human cognition simulation. ACT-R is a cognitive architecture which offers an environment for implementing human cognitive tasks. This project combines our understanding of the music interpretation by a human listener and the ACT-R cognitive architecture to build SINGER, a computerized simulation for listening and recalling songs. The results are similar to human experimental data. Simulation results also show how it is easier to remember short melodies than long melodies which require more trials to be recalled correctly.

Keywords: Computational model, cognitive modeling, simulation, learning, song, music.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
2524 Relations between Human Capital Investments and Business Excellence in Croatian Companies

Authors: Ivana Tadić, Željana Aljinović Barać, Nikolina Plazonić

Abstract:

Living today in turbulent business environment forces companies to distinguish from each other, securing sustainable competitive growth and competitive advantage. The best possible solution is to invest (effort and financial resources) within companies’ different practices of human resource management (HRM), more specifically in employees’ knowledge, skills and abilities. Applying this approach companies will create enviable level of human capital securing its economic growth. Employees become human capital for their employers at the moment when they contribute with their own knowledge and abilities in creating material and non-material value of the company. The main aim of this research is to explore the relations between human capital investments and business excellence of Croatian companies. Furthermore, the differences in the level of human capital investments with regard to several companies’ characteristics (e.g. size of the company, ownership and type of the industry) are investigated.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676
2523 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks

Authors: Naghmeh Moradpoor Sheykhkanloo

Abstract:

Thousands of organisations store important and confidential information related to them, their customers, and their business partners in databases all across the world. The stored data ranges from less sensitive (e.g. first name, last name, date of birth) to more sensitive data (e.g. password, pin code, and credit card information). Losing data, disclosing confidential information or even changing the value of data are the severe damages that Structured Query Language injection (SQLi) attack can cause on a given database. It is a code injection technique where malicious SQL statements are inserted into a given SQL database by simply using a web browser. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLi attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLi attack categories, and a NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLi attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.

Keywords: Neural Networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
2522 MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking

Authors: Tohru Kawabe

Abstract:

In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Sliding Mode Control, Model Predictive Control, Integral Action, Electric Vehicle, Slip suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
2521 Social Media as a Tool for Political Communication: A Case Study of India

Authors: Srikanth Bade

Abstract:

This paper discusses how the usage of social media has altered certain discourses and communicated with the political institutions for major actions in Indian scenario. The advent of new technology in the form of social media has engrossed the general public to discuss in the open forum. How they promulgated their ideas into action is captured in this study. Moreover, these discourses happening in the social media is analyzed from certain philosophical traditions by adopting a framework. Hence, this paper analyses the role of social media in political communication and change the political discourse. Also, this paper tries to address the issue that whether the deliberation made through social media had indeed communicated the issue of political matters to the decision making authorities.

Keywords: Collective action and social capital, political communication, political discourse, social media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
2520 Augmented Reality Interaction System in 3D Environment

Authors: Sunhyoung Lee, Askar Akshabayev, Beisenbek Baisakov, Youngjoon Han, Hernsoo Hahn

Abstract:

It is important to give input information without other device in AR system. One solution is using hand for augmented reality application. Many researchers have proposed different solutions for hand interface in augmented reality. Analyze Histogram and connecting factor is can be example for that. Various Direction searching is one of robust way to recognition hand but it takes too much calculating time. And background should be distinguished with skin color. This paper proposes a hand tracking method to control the 3D object in augmented reality using depth device and skin color. Also in this work discussed relationship between several markers, which is based on relationship between camera and marker. One marker used for displaying virtual object and three markers for detecting hand gesture and manipulating the virtual object.

Keywords: Augmented Reality, depth map, hand recognition, kinect, marker, YCbCr color model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
2519 Complex-Valued Neural Network in Image Recognition: A Study on the Effectiveness of Radial Basis Function

Authors: Anupama Pande, Vishik Goel

Abstract:

A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and vision processing. In Neural networks, radial basis functions are often used for interpolation in multidimensional space. A Radial Basis function is a function, which has built into it a distance criterion with respect to a centre. Radial basis functions have often been applied in the area of neural networks where they may be used as a replacement for the sigmoid hidden layer transfer characteristic in multi-layer perceptron. This paper aims to present exhaustive results of using RBF units in a complex-valued neural network model that uses the back-propagation algorithm (called 'Complex-BP') for learning. Our experiments results demonstrate the effectiveness of a Radial basis function in a complex valued neural network in image recognition over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error on a neural network model with RBF units. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

Keywords: Complex valued neural network, Radial BasisFunction, Image recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
2518 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments

Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein

Abstract:

Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.

Keywords: Virtual Reality, effective computing, effective VR, emotion-based effective physiological database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
2517 An Improved Algorithm of SPIHT based on the Human Visual Characteristics

Authors: Meng Wang, Qi-rui Han

Abstract:

Because of excellent properties, people has paid more attention to SPIHI algorithm, which is based on the traditional wavelet transformation theory, but it also has its shortcomings. Combined the progress in the present wavelet domain and the human's visual characteristics, we propose an improved algorithm based on human visual characteristics of SPIHT in the base of analysis of SPIHI algorithm. The experiment indicated that the coding speed and quality has been enhanced well compared to the original SPIHT algorithm, moreover improved the quality of the transmission cut off.

Keywords: Lifted wavelet transform, SPIHT, Human Visual Characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
2516 Effects of Human Capital and Openness on Economic Growth of Developed and Developing Countries: A Panel Data Analysis

Authors: Fatma Didin Sonmez, Pinar Sener

Abstract:

Technology transfer by international trade and foreign direct investment is the most important positive outcome of open economy. It is widely accepted that new technology and knowledge have an important role in enhancing economic growth. Human capital is the other important factor assisting economic growth. In this study, the role of human capital in the growth process is examined in a view of new endogenous growth theory emphasizing on the technology transfer resulting from international trade. Using the panel data of 10 developed and 10 developing countries, impact of human capital and openness on the rate of economic growth of different countries is analysed. Evidence suggests the view that human capital and openness contribute to the economic growth in both developing and developed countries, but with different rates.

Keywords: economic growth, human capital, openness, technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
2515 The Labeled Classification and its Application

Authors: M. Nemissi, H. Seridi, H. Akdag

Abstract:

This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.

Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
2514 Dignity and Suffering: Reading of Human Rights in Untouchable by Anand

Authors: Norah A. Elgibreen

Abstract:

Cultural stories are political. They register cultural phenomena and their relations with the world and society in term of their existence, function, characteristics by using different context. This paper will provide a new way of rethinking which will help us to rethink the relationship between fiction and politics. It discusses the theme of human rights and it shows the relevance between art and politics by studying the civil society through a literary framework. Reasons to establish a relationship between fiction and politics are the relevant themes and universal issues among the two disciplines. Both disciplines are sets of views and ideas formulated by the human mind to explain political or cultural phenomenon. Other reasons are the complexity and depth of the author-s vision, and the need to explain the violations of human rights in a more active structure which can relate to emotional and social existence.

Keywords: dignity, human rights, politics and literature, Untouchable.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3303