Search results for: neurodegenerative.
11 Comparisons of Fine Motor Functions in Subjects with Parkinson’s Disease and Essential Tremor
Authors: Nan-Ying Yu, Shao-Hsia Chang
Abstract:
This study explores the clinical features of neurodegenerative disease patients with tremor. We study the motor impairments in patients with Parkinson’s disease (PD) and essential tremor (ET). Since uncertainty exists on whether Parkinson's disease (PD) and essential tremor (ET) patients have similar degree of impairment during motor tasks, this study based on the self-developed computerized handwriting movement analysis to characterize motor functions of these two impairments. The recruited subjects were diagnosed and confirmed one of neurodegenerative diseases. They were undergone general clinical evaluations by physicians in the first year. We recruited 8 participants with PD and 10 with ET. Additional 12 participants without any neuromuscular dysfunction were recruited as control group. This study used fine motor control of penmanship on digital tablet for sensorimotor function tests. The movement speed in PD/ET group is found significant slower than subjects in normal control group. In movement intensity and speed, the result found subject with ET has similar clinical feature with PD subjects. The ET group shows smaller and slower movements than control group but not to the same extent as PD group. The results of this study contribute to the early screening and detection of diseases and the evaluation of disease progression.
Keywords: Parkinson’s disease, essential tremor, motor function, fine motor movement, computerized handwriting evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227810 The Links between Brain Insulin Resistance and Alzheimer’s Disease
Authors: Negar Khezri, Golnaz Yaghoubnezhadzanganeh, Amirreza Attarzadeh
Abstract:
Type 2 Diabetes (T2DM) and Alzheimer's disease (AD) are two main health problems influencing millions of people in the world. Neuron loss and synaptic impairment that interfere with cognition and memory cause for the behavioral indications of AD. While it is now accepted that insulin has central neuromodulatory purpose, it was contemplated for many years that brain is insusceptible to insulin, involving its function in memory and learning, which are impaired in AD. The common characteristics of both AD and T2D are impaired insulin signaling, oxidative stress, the excitation of inflammatory pathways and unqualified glucose metabolism. This review summarizes how the recognition of these mechanisms may lead to the development of alternative therapeutic approaches. Here we summarize how the recognition of these mechanisms may lead to the development of alternative therapeutic approaches.
Keywords: Alzheimer’s disease, diabetes, insulin resistance, neurodegenerative.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11379 Multidisciplinary Approach to Diagnosis of Primary Progressive Aphasia in a Younger Middle Aged Patient
Authors: Robert Krause
Abstract:
Primary progressive aphasia (PPA) is a neurodegenerative disease similar to frontotemporal and semantic dementia, while having a different clinical image and anatomic pathology topography. Nonetheless, they are often included under an umbrella term: frontotemporal lobar degeneration (FTLD). In the study, examples of diagnosing PPA are presented through the multidisciplinary lens of specialists from different fields (neurologists, psychiatrists, clinical speech therapists, clinical neuropsychologists and others) using a variety of diagnostic tools such as MR, PET/CT, genetic screening and neuropsychological and logopedic methods. Thanks to that, specialists can get a better and clearer understanding of PPA diagnosis. The study summarizes the concrete procedures and results of different specialists while diagnosing PPA in a patient of younger middle age and illustrates the importance of multidisciplinary approach to differential diagnosis of PPA.
Keywords: Primary progressive aphasia, etiology, diagnosis, younger middle age.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6518 Motor Imagery Based Brain-Computer Interface for Cerebellar Impaired Patients
Authors: Young-Seok Choi
Abstract:
Cerebellar ataxia is a steadily progressive neurodegenerative disease associated with loss of motor control, leaving patients unable to walk, talk, or perform activities of daily living. Direct motor instruction in cerebella ataxia patients has limited effectiveness, presumably because an inappropriate closed-loop cerebellar response to the inevitable observed error confounds motor learning mechanisms. Could the use of EEG based BCI provide advanced biofeedback to improve motor imagery and provide a “backdoor” to improving motor performance in ataxia patients? In order to determine the feasibility of using EEG-based BCI control in this population, we compare the ability to modulate mu-band power (8-12 Hz) by performing a cued motor imagery task in an ataxia patient and healthy control.Keywords: Cerebellar ataxia, Electroencephalogram, brain-computer interface, motor imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17507 An Automatic Sleep Spindle Detector based on WT, STFT and WMSD
Authors: J. Costa, M. Ortigueira, A. Batista, T. Paiva
Abstract:
Sleep spindles are the most interesting hallmark of stage 2 sleep EEG. Their accurate identification in a polysomnographic signal is essential for sleep professionals to help them mark Stage 2 sleep. Sleep Spindles are also promising objective indicators for neurodegenerative disorders. Visual spindle scoring however is a tedious workload. In this paper three different approaches are used for the automatic detection of sleep spindles: Short Time Fourier Transform, Wavelet Transform and Wave Morphology for Spindle Detection. In order to improve the results, a combination of the three detectors is presented and comparison with human expert scorers is performed. The best performance is obtained with a combination of the three algorithms which resulted in a sensitivity and specificity of 94% when compared to human expert scorers.Keywords: EEG, Short Time Fourier Transform, Sleep Spindles, Wave Morphology for Spindle Detection, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23796 Evaluation of the MCFLIRT Correction Algorithm in Head Motion from Resting State fMRI Data
Authors: V. Sacca, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
In the last few years, resting-state functional MRI (rs-fMRI) was widely used to investigate the architecture of brain networks by investigating the Blood Oxygenation Level Dependent response. This technique represented an interesting, robust and reliable approach to compare pathologic and healthy subjects in order to investigate neurodegenerative diseases evolution. On the other hand, the elaboration of rs-fMRI data resulted to be very prone to noise due to confounding factors especially the head motion. Head motion has long been known to be a source of artefacts in task-based functional MRI studies, but it has become a particularly challenging problem in recent studies using rs-fMRI. The aim of this work was to evaluate in MS patients a well-known motion correction algorithm from the FMRIB's Software Library - MCFLIRT - that could be applied to minimize the head motion distortions, allowing to correctly interpret rs-fMRI results.
Keywords: Head motion correction, MCFLIRT algorithm, multiple sclerosis, resting state fMRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11835 Using Speech Emotion Recognition as a Longitudinal Biomarker for Alzheimer’s Disease
Authors: Yishu Gong, Liangliang Yang, Jianyu Zhang, Zhengyu Chen, Sihong He, Xusheng Zhang, Wei Zhang
Abstract:
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide and is characterized by cognitive decline and behavioral changes. People living with Alzheimer’s disease often find it hard to complete routine tasks. However, there are limited objective assessments that aim to quantify the difficulty of certain tasks for AD patients compared to non-AD people. In this study, we propose to use speech emotion recognition (SER), especially the frustration level as a potential biomarker for quantifying the difficulty patients experience when describing a picture. We build an SER model using data from the IEMOCAP dataset and apply the model to the DementiaBank data to detect the AD/non-AD group difference and perform longitudinal analysis to track the AD disease progression. Our results show that the frustration level detected from the SER model can possibly be used as a cost-effective tool for objective tracking of AD progression in addition to the Mini-Mental State Examination (MMSE) score.
Keywords: Alzheimer’s disease, Speech Emotion Recognition, longitudinal biomarker, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2734 Investigations of Protein Aggregation Using Sequence and Structure Based Features
Authors: M. Michael Gromiha, A. Mary Thangakani, Sandeep Kumar, D. Velmurugan
Abstract:
The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides.
Keywords: Aggregation prone regions, amyloids, thermophilic proteins, amino acid residues, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14983 In vitro and in vivo Assessment of Cholinesterase Inhibitory Activity of the Bark Extracts of Pterocarpus santalinus L. for the Treatment of Alzheimer’s Disease
Authors: K. Biswas, U. H. Armin, S. M. J. Prodhan, J. A. Prithul, S. Sarker, F. Afrin
Abstract:
Alzheimer’s disease (AD) (a progressive neurodegenerative disorder) is mostly predominant cause of dementia in the elderly. Prolonging the function of acetylcholine by inhibiting both acetylcholinesterase and butyrylcholinesterase is most effective treatment therapy of AD. Traditionally Pterocarpus santalinus L. is widely known for its medicinal use. In this study, in vitro acetylcholinesterase inhibitory activity was investigated and methanolic extract of the plant showed significant activity. To confirm this activity (in vivo), learning and memory enhancing effects were tested in mice. For the test, memory impairment was induced by scopolamine (cholinergic muscarinic receptor antagonist). Anti-amnesic effect of the extract was investigated by the passive avoidance task in mice. The study also includes brain acetylcholinesterase activity. Results proved that scopolamine induced cognitive dysfunction was significantly decreased by administration of the extract solution, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that bark extract of Pterocarpus santalinus can be better option for further studies on AD via their acetylcholinesterase inhibitory actions.
Keywords: Pterocarpus santalinus, cholinesterase inhibitor, passive avoidance, Alzheimer’s disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8272 Stochastic Simulation of Reaction-Diffusion Systems
Authors: Paola Lecca, Lorenzo Dematte
Abstract:
Reactiondiffusion systems are mathematical models that describe how the concentration of one or more substances distributed in space changes under the influence of local chemical reactions in which the substances are converted into each other, and diffusion which causes the substances to spread out in space. The classical representation of a reaction-diffusion system is given by semi-linear parabolic partial differential equations, whose general form is ÔêétX(x, t) = DΔX(x, t), where X(x, t) is the state vector, D is the matrix of the diffusion coefficients and Δ is the Laplace operator. If the solute move in an homogeneous system in thermal equilibrium, the diffusion coefficients are constants that do not depend on the local concentration of solvent and of solutes and on local temperature of the medium. In this paper a new stochastic reaction-diffusion model in which the diffusion coefficients are function of the local concentration, viscosity and frictional forces of solvent and solute is presented. Such a model provides a more realistic description of the molecular kinetics in non-homogenoeus and highly structured media as the intra- and inter-cellular spaces. The movement of a molecule A from a region i to a region j of the space is described as a first order reaction Ai k- → Aj , where the rate constant k depends on the diffusion coefficient. Representing the diffusional motion as a chemical reaction allows to assimilate a reaction-diffusion system to a pure reaction system and to simulate it with Gillespie-inspired stochastic simulation algorithms. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the specific speed of reaction and diffusion events. Redi is the software tool, developed to implement the model of reaction-diffusion kinetics and dynamics. It is a free software, that can be downloaded from http://www.cosbi.eu. To demonstrate the validity of the new reaction-diffusion model, the simulation results of the chaperone-assisted protein folding in cytoplasm obtained with Redi are reported. This case study is redrawing the attention of the scientific community due to current interests on protein aggregation as a potential cause for neurodegenerative diseases.
Keywords: Reaction-diffusion systems, Fick's law, stochastic simulation algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17361 Antioxidative, Anticholinesterase and Anti-Neuroinflammatory Properties of Malaysian Brown and Green Seaweeds
Authors: Siti Aisya Gany, Swee Ching Tan, Sook Yee Gan
Abstract:
Diminished antioxidant defense or increased production of reactive oxygen species in the biological system can result in oxidative stress which may lead to various neurodegenerative diseases including Alzheimer’s disease (AD). Microglial activation also contributes to the progression of AD by producing several proinflammatory cytokines, nitric oxide (NO) and prostaglandin E2 (PGE2). Oxidative stress and inflammation have been reported to be possible pathophysiological mechanisms underlying AD. In addition, the cholinergic hypothesis postulates that memory impairment in patient with AD is also associated with the deficit of cholinergic function in the brain. Although a number of drugs have been approved for the treatment of AD, most of these synthetic drugs have diverse side effects and yield relatively modest benefits. Marine algae have great potential in pharmaceutical and biomedical applications as they are valuable sources of bioactive properties such as anticoagulation, antimicrobial, antioxidative, anticancer and anti-inflammatory. Hence, this study aimed to provide an overview of the properties of Malaysian seaweeds (Padina australis, Sargassum polycystum and Caulerpa racemosa) in inhibiting oxidative stress, neuroinflammation and cholinesterase enzymes. These seaweeds significantly exhibited potent DPPH and moderate superoxide anion radical scavenging ability (P<0.05). Hexane and methanol extracts of S. polycystum exhibited the most potent radical scavenging ability with IC50 values of 0.157±0.004mg/ml and 0.849±0.02mg/ml for DPPH and ABTS assays, respectively. Hexane extract of C. racemosa gave the strongest superoxide radical inhibitory effect (IC50 of 0.386±0.01mg/ml). Most seaweed extracts significantly inhibited the production of cytokine (IL-6, IL-1 β, TNFα) and NO in a concentration-dependent manner without causing significant cytotoxicity to the lipopolysaccharide (LPS)-stimulated microglia cells (P<0.05). All extracts suppressed cytokine and NO level by more than 50% at the concentration of 0.4mg/ml. In addition, C. racemosa and S. polycystum also showed anti-acetylcholinesterase activities with the IC50 values ranging from 0.086-0.115 mg/ml. Moreover, C. racemosa and P. australis were also found to be active against butyrylcholinesterase with IC50 values ranging from 0.118- 0.287 mg/ml.
Keywords: Anticholinesterase, antioxidative, neuroinflammation, seaweeds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2883