Search results for: Back Bone
117 Integration of Seismic and Seismological Data Interpretation for Subsurface Structure Identification
Authors: Iftikhar Ahmed Satti, Wan Ismail Wan Yusoff
Abstract:
The structural interpretation of a part of eastern Potwar (Missa Keswal) has been carried out with available seismological, seismic and well data. Seismological data contains both the source parameters and fault plane solution (FPS) parameters and seismic data contains ten seismic lines that were re-interpreted by using well data. Structural interpretation depicts two broad types of fault sets namely, thrust and back thrust faults. These faults together give rise to pop up structures in the study area and also responsible for many structural traps and seismicity. Seismic interpretation includes time and depth contour maps of Chorgali Formation while seismological interpretation includes focal mechanism solution (FMS), depth, frequency, magnitude bar graphs and renewal of Seismotectonic map. The Focal Mechanism Solutions (FMS) that surrounds the study area are correlated with the different geological and structural maps of the area for the determination of the nature of subsurface faults. Results of structural interpretation from both seismic and seismological data show good correlation. It is hoped that the present work will help in better understanding of the variations in the subsurface structure and can be a useful tool for earthquake prediction, planning of oil field and reservoir monitoring.Keywords: Focal mechanism solution (FMS), Fault plane solution (FPS), Reservoir monitoring, earthquake prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482116 ANN Based Currency Recognition System using Compressed Gray Scale and Application for Sri Lankan Currency Notes - SLCRec
Authors: D. A. K. S. Gunaratna, N. D. Kodikara, H. L. Premaratne
Abstract:
Automatic currency note recognition invariably depends on the currency note characteristics of a particular country and the extraction of features directly affects the recognition ability. Sri Lanka has not been involved in any kind of research or implementation of this kind. The proposed system “SLCRec" comes up with a solution focusing on minimizing false rejection of notes. Sri Lankan currency notes undergo severe changes in image quality in usage. Hence a special linear transformation function is adapted to wipe out noise patterns from backgrounds without affecting the notes- characteristic images and re-appear images of interest. The transformation maps the original gray scale range into a smaller range of 0 to 125. Applying Edge detection after the transformation provided better robustness for noise and fair representation of edges for new and old damaged notes. A three layer back propagation neural network is presented with the number of edges detected in row order of the notes and classification is accepted in four classes of interest which are 100, 500, 1000 and 2000 rupee notes. The experiments showed good classification results and proved that the proposed methodology has the capability of separating classes properly in varying image conditions.Keywords: Artificial intelligence, linear transformation and pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834115 Feasibility Investigation of Near Infrared Spectrometry for Particle Size Estimation of Nano Structures
Authors: A. Bagheri Garmarudi, M. Khanmohammadi, N. Khoddami, K. Shabani
Abstract:
Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Accordingly, proposing non-destructive, accurate and rapid techniques for this aim is of high interest. There are some conventional techniques to investigate the morphology and grain size of nano particles such as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffractometry (XRD). Vibrational spectroscopy is utilized to characterize different compounds and applied for evaluation of the average particle size based on relationship between particle size and near infrared spectra [1,4] , but it has never been applied in quantitative morphological analysis of nano materials. So far, the potential application of nearinfrared (NIR) spectroscopy with its ability in rapid analysis of powdered materials with minimal sample preparation, has been suggested for particle size determination of powdered pharmaceuticals. The relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN.Keywords: near infrared, particle size, chemometrics, neuralnetwork, nano structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842114 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model
Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong
Abstract:
In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.
Keywords: Artificial Neural Network, Taguchi Method, Real Estate Valuation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065113 Implementation of an Improved Secure System Detection for E-passport by using EPC RFID Tags
Authors: A. Baith Mohamed, Ayman Abdel-Hamid, Kareem Youssri Mohamed
Abstract:
Current proposals for E-passport or ID-Card is similar to a regular passport with the addition of tiny contactless integrated circuit (computer chip) inserted in the back cover, which will act as a secure storage device of the same data visually displayed on the photo page of the passport. In addition, it will include a digital photograph that will enable biometric comparison, through the use of facial recognition technology at international borders. Moreover, the e-passport will have a new interface, incorporating additional antifraud and security features. However, its problems are reliability, security and privacy. Privacy is a serious issue since there is no encryption between the readers and the E-passport. However, security issues such as authentication, data protection and control techniques cannot be embedded in one process. In this paper, design and prototype implementation of an improved E-passport reader is presented. The passport holder is authenticated online by using GSM network. The GSM network is the main interface between identification center and the e-passport reader. The communication data is protected between server and e-passport reader by using AES to encrypt data for protection will transferring through GSM network. Performance measurements indicate a 19% improvement in encryption cycles versus previously reported results.
Keywords: RFID "Radio Frequency Identification", EPC"Electronic Product Code", ICAO "International Civil Aviation Organization", IFF "Identify Friend or Foe"
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601112 Speaker Identification using Neural Networks
Authors: R.V Pawar, P.P.Kajave, S.N.Mali
Abstract:
The speech signal conveys information about the identity of the speaker. The area of speaker identification is concerned with extracting the identity of the person speaking the utterance. As speech interaction with computers becomes more pervasive in activities such as the telephone, financial transactions and information retrieval from speech databases, the utility of automatically identifying a speaker is based solely on vocal characteristic. This paper emphasizes on text dependent speaker identification, which deals with detecting a particular speaker from a known population. The system prompts the user to provide speech utterance. System identifies the user by comparing the codebook of speech utterance with those of the stored in the database and lists, which contain the most likely speakers, could have given that speech utterance. The speech signal is recorded for N speakers further the features are extracted. Feature extraction is done by means of LPC coefficients, calculating AMDF, and DFT. The neural network is trained by applying these features as input parameters. The features are stored in templates for further comparison. The features for the speaker who has to be identified are extracted and compared with the stored templates using Back Propogation Algorithm. Here, the trained network corresponds to the output; the input is the extracted features of the speaker to be identified. The network does the weight adjustment and the best match is found to identify the speaker. The number of epochs required to get the target decides the network performance.Keywords: Average Mean Distance function, Backpropogation, Linear Predictive Coding, MultilayeredPerceptron,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894111 A Real-Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport
Authors: Dimitrios E. Kontaxis, George Litainas, Dimitrios P. Ptochos, Vaggelis P. Ptochos, Sotirios P. Ptochos, Dimitrios Beletsis, Konstantinos Kritikakis, Milan Sunaric
Abstract:
Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination and sustainability of the supply chain procedures. The technology, the features and the characteristics of a complete, proprietary system, including hardware, firmware and software tools - developed in the context of a co-funded R&D program - are addressed and presented in this paper.
Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640110 Targeting the Life Cycle Stages of the Diamond Back Moth (Plutella xylostella) with Three Different Parasitoid Wasps
Authors: F. O. Faithpraise, J. Idung, C. R. Chatwin, R. C. D. Young, P. Birch
Abstract:
A continuous time model of the interaction between crop insect pests and naturally beneficial pest enemies is created using a set of simultaneous, non-linear, ordinary differential equations incorporating natural death rates based on the Weibull distribution. The crop pest is present in all its life-cycle stages of: egg, larva, pupa and adult. The beneficial insects, parasitoid wasps, may be present in either or all parasitized: eggs, larva and pupa. Population modelling is used to estimate the quantity of the natural pest enemies that should be introduced into the pest infested environment to suppress the pest population density to an economically acceptable level within a prescribed number of days. The results obtained illustrate the effect of different combinations of parasitoid wasps, using the Pascal distribution to estimate their success in parasitizing different pest developmental stages, to deliver pest control to a sustainable level. Effective control, within a prescribed number of days, is established by the deployment of two or all three species of wasps, which partially destroy pest: egg, larvae and pupae stages. The selected scenarios demonstrate effective sustainable control of the pest in less than thirty days.
Keywords: Biological control, Diamondback moth, Parasitoid wasps, Population modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3057109 Clinical Factors of Quality Switched Ruby Laser Therapy for Lentigo Depigmentation
Authors: SunWoo Lee, TaeBum Lee, YoonHwa Park, YooJeong Kim
Abstract:
Solar lentigines appear predominantly on chronically sun-exposed areas of skin, such as the face and the back of the hands. Among the several ways to lentigines treatment, quality-switched lasers are well-known effective treatment for removing solar lentigines. The present pilot study was therefore designed to assess the efficacy of quality-switched ruby laser treatment of such lentigines compare between pretreatment and posttreatment of skin brightness. Twenty-two adults with chronic sun-damaged skin (mean age 52.8 years, range 37–74 years) were treated at the Korean site. A 694 nm Q-switched ruby laser was used, with the energy density set from 1.4 to 12.5 J/cm2, to treat solar lentigines. Average brightness of skin color before ruby laser treatment was 137.3 and its skin color was brightened after ruby laser treatment by 150.5. Also, standard deviation of skin color was decreased from 17.8 to 16.4. Regarding the multivariate model, age and energy were identified as significant factors for skin color brightness change in lentigo depigmentation by ruby laser treatment. Their respective odds ratios were 1.082 (95% CI, 1.007–1.163), and 1.431 (95% CI, 1.051–1.946). Lentigo depigmentation treatment using ruby lasers resulted in a high performance in skin color brightness. Among the relative factors involve with ruby laser treatment, age and energy were the most effective factors which skin color change to brighter than pretreatment.Keywords: Depigmentation, lentigo, quality switched ruby laser, skin color.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907108 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method
Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari
Abstract:
The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.Keywords: Optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434107 Armed Groups and Intra State Conflict: A Study on the Egyptian Case
Authors: Ghzlan Mahmoud Abdel Aziz
Abstract:
This case study aims to identify the intrastate conflicts between the nation state and armed groups. Nowadays, most wars weaken states against armed groups. Thus, it is very important to negotiate with such groups in order to reinforce the law for the protection of victims. These armed groups are the cause of conflicts and they are related with many of humanitarian issues that result out of conflicts. In this age of rivalry; terrorists, insurgents, or transnational criminal parties have surfaced to the top as a reaction to these armed groups in an effort to set up a new world order. Moreover, the intra state conflicts became increasingly treacherous than the interstate conflicts, particularly when nation state systems deal with armed groups which try to influence the state. The unexpected upraising of the Arab Spring during 2011 in parts of the Middle East and North Africa formed various patterns of conflicts. The events of the Arab Spring resulted in current and long term change across the region. Significant modifications in the level, strength and period of armed conflict around the world have been made. Egypt was in the center of these events. It has fought back the armed groups under the name of terrorism and spread common disorder and violence among civilians. On this note, this study focuses on the problem of the transformation in the methods of organized violence within one state rather than between two state or more and analyzes the objectives, strategies, and internal composition of armed groups and the environments that foster them, with a focus on the Egyptian case.
Keywords: Armed groups, conflicts, Egyptian armed forces, intrastate conflicts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337106 Applying the Regression Technique for Prediction of the Acute Heart Attack
Authors: Paria Soleimani, Arezoo Neshati
Abstract:
Myocardial infarction is one of the leading causes of death in the world. Some of these deaths occur even before the patient reaches the hospital. Myocardial infarction occurs as a result of impaired blood supply. Because the most of these deaths are due to coronary artery disease, hence the awareness of the warning signs of a heart attack is essential. Some heart attacks are sudden and intense, but most of them start slowly, with mild pain or discomfort, then early detection and successful treatment of these symptoms is vital to save them. Therefore, importance and usefulness of a system designing to assist physicians in early diagnosis of the acute heart attacks is obvious. The main purpose of this study would be to enable patients to become better informed about their condition and to encourage them to seek professional care at an earlier stage in the appropriate situations. For this purpose, the data were collected on 711 heart patients in Iran hospitals. 28 attributes of clinical factors can be reported by patients; were studied. Three logistic regression models were made on the basis of the 28 features to predict the risk of heart attacks. The best logistic regression model in terms of performance had a C-index of 0.955 and with an accuracy of 94.9%. The variables, severe chest pain, back pain, cold sweats, shortness of breath, nausea and vomiting, were selected as the main features.
Keywords: Coronary heart disease, acute heart attacks, prediction, logistic regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427105 In Search of a Suitable Neural Network Capable of Fast Monitoring of Congestion Level in Electric Power Systems
Authors: Pradyumna Kumar Sahoo, Prasanta Kumar Satpathy
Abstract:
This paper aims at finding a suitable neural network for monitoring congestion level in electrical power systems. In this paper, the input data has been framed properly to meet the target objective through supervised learning mechanism by defining normal and abnormal operating conditions for the system under study. The congestion level, expressed as line congestion index (LCI), is evaluated for each operating condition and is presented to the NN along with the bus voltages to represent the input and target data. Once, the training goes successful, the NN learns how to deal with a set of newly presented data through validation and testing mechanism. The crux of the results presented in this paper rests on performance comparison of a multi-layered feed forward neural network with eleven types of back propagation techniques so as to evolve the best training criteria. The proposed methodology has been tested on the standard IEEE-14 bus test system with the support of MATLAB based NN toolbox. The results presented in this paper signify that the Levenberg-Marquardt backpropagation algorithm gives best training performance of all the eleven cases considered in this paper, thus validating the proposed methodology.
Keywords: Line congestion index, critical bus, contingency, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788104 Movement of Location of Tip Vortex Cavitation along Blade Edge due to Reduction of Flow Rate in an Axial Pump
Authors: Mohammad T. Shervani-Tabar, Navid Shervani-Tabar
Abstract:
Tip vortex cavitation is one of well known patterns of cavitation phenomenon which occurs in axial pumps. This pattern of cavitation occurs due to pressure difference between the pressure and suction sides of blades of an axial pump. Since the pressure in the pressure side of the blade is higher than the pressure in its suction side, thus a very small portion of liquid flow flows back from pressure side to the suction side. This fact is cause of tip vortex cavitation and gap cavitation that may occur in axial pumps. In this paper the results of our experimental investigation about movement of tip vortex cavitation along blade edge due to reduction of pump flow rate in an axial pump is reported. Results show that reduction of pump flow rate in conjunction with increasing of outlet pressure causes movement of tip vortex cavitation along blade edge towards the blade tip. Results also show that by approaching tip vortex cavitation to the blade tip, vortex tip pattern of cavitation replaces with a cavitation phenomenon on the blade tip. Furthermore by further reduction of pump flow rate and increasing of outlet pressure, an unstable cavitation phenomenon occurs between each blade leading edge and the next blade trailing edge.Keywords: Axial Flow Pump, Cavitation, Gap Cavitation, Tip Vortex Cavitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903103 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems
Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil
Abstract:
In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.
Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3424102 Ethereum Based Smart Contracts for Trade and Finance
Authors: Rishabh Garg
Abstract:
Traditionally, business parties build trust with a centralized operating mechanism, such as payment by letter of credit. However, the increase in cyber-attacks and malicious hacking has jeopardized business operations and finance practices. Emerging markets, due to their high banking risks and the large presence of digital financing, are looking for technology that enables transparency and traceability of any transaction in trade, finance or supply chain management. Blockchain systems, in the absence of any central authority, enable transactions across the globe with the help of decentralized applications. DApps consist of a front-end, a blockchain back-end, and middleware, that is, the code that connects the two. The front-end can be a sophisticated web app or mobile app, which is used to implement the functions/methods on the smart contract. Web apps can employ technologies such as HTML, CSS, React and Express. In this wake, fintech and blockchain products are popping up in brokerages, digital wallets, exchanges, post-trade clearance, settlement, middleware, infrastructure and base protocols. The present paper provides a technology driven solution, financial inclusion and innovative working paradigm for business and finance.
Keywords: Authentication, blockchain, channel, cryptography, DApps, data portability, Decentralized Public Key Infrastructure, Ethereum, hash function, Hashgraph, Privilege creep, Proof of Work algorithm, revocation, storage variables, Zero Knowledge Proof.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588101 The Proof of Analogous Results for Martingales and Partial Differential Equations Options Price Valuation Formulas Using Stochastic Differential Equation Models in Finance
Authors: H. D. Ibrahim, H. C. Chinwenyi, A. H. Usman
Abstract:
Valuing derivatives (options, futures, swaps, forwards, etc.) is one uneasy task in financial mathematics. The two ways this problem can be effectively resolved in finance is by the use of two methods (Martingales and Partial Differential Equations (PDEs)) to obtain their respective options price valuation formulas. This research paper examined two different stochastic financial models which are Constant Elasticity of Variance (CEV) model and Black-Karasinski term structure model. Assuming their respective option price valuation formulas, we proved the analogous of the Martingales and PDEs options price valuation formulas for the two different Stochastic Differential Equation (SDE) models. This was accomplished by using the applications of Girsanov theorem for defining an Equivalent Martingale Measure (EMM) and the Feynman-Kac theorem. The results obtained show the systematic proof for analogous of the two (Martingales and PDEs) options price valuation formulas beginning with the Martingales option price formula and arriving back at the Black-Scholes parabolic PDEs and vice versa.
Keywords: Option price valuation, Martingales, Partial Differential Equations, PDEs, Equivalent Martingale Measure, Girsanov Theorem, Feyman-Kac Theorem, European Put Option.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391100 Design and Application of NFC-Based Identity and Access Management in Cloud Services
Authors: Shin-Jer Yang, Kai-Tai Yang
Abstract:
In response to a changing world and the fast growth of the Internet, more and more enterprises are replacing web-based services with cloud-based ones. Multi-tenancy technology is becoming more important especially with Software as a Service (SaaS). This in turn leads to a greater focus on the application of Identity and Access Management (IAM). Conventional Near-Field Communication (NFC) based verification relies on a computer browser and a card reader to access an NFC tag. This type of verification does not support mobile device login and user-based access management functions. This study designs an NFC-based third-party cloud identity and access management scheme (NFC-IAM) addressing this shortcoming. Data from simulation tests analyzed with Key Performance Indicators (KPIs) suggest that the NFC-IAM not only takes less time in identity identification but also cuts time by 80% in terms of two-factor authentication and improves verification accuracy to 99.9% or better. In functional performance analyses, NFC-IAM performed better in salability and portability. The NFC-IAM App (Application Software) and back-end system to be developed and deployed in mobile device are to support IAM features and also offers users a more user-friendly experience and stronger security protection. In the future, our NFC-IAM can be employed to different environments including identification for mobile payment systems, permission management for remote equipment monitoring, among other applications.
Keywords: Cloud service, multi-tenancy, NFC, IAM, mobile device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 111899 A Family Cars- Life Cycle Cost (LCC)-Oriented Hybrid Modelling Approach Combining ANN and CBR
Authors: Xiaochuan Chen, Jianguo Yang, Beizhi Li
Abstract:
Design for cost (DFC) is a method that reduces life cycle cost (LCC) from the angle of designers. Multiple domain features mapping (MDFM) methodology was given in DFC. Using MDFM, we can use design features to estimate the LCC. From the angle of DFC, the design features of family cars were obtained, such as all dimensions, engine power and emission volume. At the conceptual design stage, cars- LCC were estimated using back propagation (BP) artificial neural networks (ANN) method and case-based reasoning (CBR). Hamming space was used to measure the similarity among cases in CBR method. Levenberg-Marquardt (LM) algorithm and genetic algorithm (GA) were used in ANN. The differences of LCC estimation model between CBR and artificial neural networks (ANN) were provided. ANN and CBR separately each method has its shortcomings. By combining ANN and CBR improved results accuracy was obtained. Firstly, using ANN selected some design features that affect LCC. Then using LCC estimation results of ANN could raise the accuracy of LCC estimation in CBR method. Thirdly, using ANN estimate LCC errors and correct errors in CBR-s estimation results if the accuracy is not enough accurate. Finally, economically family cars and sport utility vehicle (SUV) was given as LCC estimation cases using this hybrid approach combining ANN and CBR.Keywords: case-based reasoning, life cycle cost (LCC), artificialneural networks (ANN), family cars
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196298 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique
Authors: Karchung, S. Ruangsinchaiwanich
Abstract:
This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.
Keywords: Electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96997 An Approach of Quantum Steganography through Special SSCE Code
Authors: Indradip Banerjee, Souvik Bhattacharyya, Gautam Sanyal
Abstract:
Encrypted messages sending frequently draws the attention of third parties, perhaps causing attempts to break and reveal the original messages. Steganography is introduced to hide the existence of the communication by concealing a secret message in an appropriate carrier like text, image, audio or video. Quantum steganography where the sender (Alice) embeds her steganographic information into the cover and sends it to the receiver (Bob) over a communication channel. Alice and Bob share an algorithm and hide quantum information in the cover. An eavesdropper (Eve) without access to the algorithm can-t find out the existence of the quantum message. In this paper, a text quantum steganography technique based on the use of indefinite articles (a) or (an) in conjunction with the nonspecific or non-particular nouns in English language and quantum gate truth table have been proposed. The authors also introduced a new code representation technique (SSCE - Secret Steganography Code for Embedding) at both ends in order to achieve high level of security. Before the embedding operation each character of the secret message has been converted to SSCE Value and then embeds to cover text. Finally stego text is formed and transmits to the receiver side. At the receiver side different reverse operation has been carried out to get back the original information.Keywords: Quantum Steganography, SSCE (Secret SteganographyCode for Embedding), Security, Cover Text, Stego Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210996 Significance of Bike-Frame Geometric Factors for Cycling Efficiency and Muscle Activation
Authors: Luen Chow Chan
Abstract:
With the advocacy of green transportation and green traveling, cycling has become increasingly popular nowadays. Physiology and bike design are key factors for the influence of cycling efficiency. Therefore, this study aimed to investigate the significance of bike-frame geometric factors on cycling efficiency and muscle activation for different body sizes of non-professional Asian male cyclists. Participants who represented various body sizes, as measured by leg and back lengths, carried out cycling tests using a tailor-assembled road bike with different ergonomic design configurations including seat-height adjustments (i.e., 96%, 100%, and 104% of trochanteric height) and bike frame sizes (i.e., small and medium frames) for an assessable distance of 1 km. A specific power meter and self-developed adaptable surface electromyography (sEMG) were used to measure average pedaling power and cadence generated and muscle activation, respectively. The results showed that changing the seat height was far more significant than the body and bike frame sizes. The sEMG data evidently provided a better understanding of muscle activation as a function of different seat heights. Therefore, the interpretation of this study is that the major bike ergonomic design factor dominating the cycling efficiency of Asian participants with different body sizes was the seat height.
Keywords: Bike frame sizes, cadence rate, pedaling power, seat height.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92695 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.
Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94294 A Profile of Recent Upsurge of Brucellosis of Veterinary Health Care Workers Engaged in Brucella Vaccination Program in West Bengal, India
Authors: Satadal Das, Parthasarathi Sengupta
Abstract:
With millions of livestock wealth in India including cattle, and buffaloes, the National Animal Disease Control Program targeted a massive Brucella vaccination program. As a part of it in the state of West Bengal Veterinary healthcare assistants participated in the program in 2021. The aim of this study was to elucidate the burden of brucellosis in those healthcare assistants and to pinpoint the main causes of such infection. We contacted the healthcare assistants to find out whether they were infected during the vaccination program. Our findings indicated many Veterinary healthcare assistants who participated in the program developed symptoms and signs suggestive of brucellosis. Laboratory tests indicated many confirmed Brucellosis cases. However, this may not include many asymptomatic cases. Detailed analysis revealed that in most of them there was a history of needle prick injury about a month back during the vaccination program, which was mainly due to ferocious or disturbed animals. Few also complained that they were not properly trained or proper personal protective types of equipment were not provided. All of them were treated in referral hospitals following a standard protocol of the Government Health Department and now they are followed up. Thus we conclude that proper care during the vaccination of animals should be followed, prophylactic treatment for needle prick injuries should be given, and training and supply of personal protective equipment should be monitored.
Keywords: Occupational brucellosis, needle prick injury, brucella vaccination, personal protective equipment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42893 Designing Social Care Policies in the Long Term: A Study Using Regression, Clustering and Backpropagation Neural Nets
Authors: Sotirios Raptis
Abstract:
Linking social needs to social classes using different criteria may lead to social services misuse. The paper discusses using ML and Neural Networks (NNs) in linking public services in Scotland in the long term and advocates, this can result in a reduction of the services cost connecting resources needed in groups for similar services. The paper combines typical regression models with clustering and cross-correlation as complementary constituents to predict the demand. Insurance companies and public policymakers can pack linked services such as those offered to the elderly or to low-income people in the longer term. The work is based on public data from 22 services offered by Public Health Services (PHS) Scotland and from the Scottish Government (SG) from 1981 to 2019 that are broken into 110 years series called factors and uses Linear Regression (LR), Autoregression (ARMA) and 3 types of back-propagation (BP) Neural Networks (BPNN) to link them under specific conditions. Relationships found were between smoking related healthcare provision, mental health-related health services, and epidemiological weight in Primary 1(Education) Body Mass Index (BMI) in children. Primary component analysis (PCA) found 11 significant factors while C-Means (CM) clustering gave 5 major factors clusters.
Keywords: Probability, cohorts, data frames, services, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46492 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition
Authors: J. K. Adedeji, S. T. Ijatuyi
Abstract:
The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.
Keywords: Neural network, gravitational resistance, pattern recognition, non-linear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80291 Basic Research for Electroretinogram Moving the Center of the Multifocal Hexagonal Stimulus Array
Authors: Naoto Suzuki
Abstract:
Many ophthalmologists can examine declines in visual sensitivity at arbitrary points on the retina using a precise perimetry device with a fundus camera function. However, the retinal layer causing the decline in visual sensitivity cannot be identified by this method. We studied an electroretinogram (ERG) function that can move the center of the multifocal hexagonal stimulus array in order to investigate cryptogenic diseases, such as macular dystrophy, acute zonal occult outer retinopathy, and multiple evanescent white dot syndrome. An electroretinographic optical system, specifically a perimetric optical system, was added to an experimental device carrying the same optical system as a fundus camera. We also added an infrared camera, a cold mirror, a halogen lamp, and a monitor. The software was generated to show the multifocal hexagonal stimulus array on the monitor using C++Builder XE8 and to move the center of the array up and down as well as back and forth. We used a multifunction I/O device and its design platform LabVIEW for data retrieval. The plate electrodes were used to measure electrodermal activities around the eyes. We used a multifocal hexagonal stimulus array with 37 elements in the software. The center of the multifocal hexagonal stimulus array could be adjusted to the same position as the examination target of the precise perimetry. We successfully added the moving ERG function to the experimental ophthalmologic device.
Keywords: Moving ERG, precise perimetry, retinal layers, visual sensitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78390 A Case Study on Management of Coal Seam Gas By-Product Water
Authors: Mojibul Sajjad, Mohammad G. Rasul, Md. Sharif Imam Ibne Amir
Abstract:
The rate of natural gas dissociation from the Coal Matrix depends on depressurization of reservoir through removing of the cleat water from the coal seam. These waters are similar to brine and aged of very long years. For improving the connectivity through fracking /fracturing, high pressure liquids are pumped off inside the coal body. A significant quantity of accumulated water, a combined mixture of cleat water and fracking fluids (back flow water) is pumped out through gas well. In Queensland, Australia Coal Seam Gas (CSG) industry is in booming state and estimated of 30,000 wells would be active for CSG production forecasting life span of 30 years. Integrated water management along with water softening programs is practiced for subsequent treatment and later on discharge to nearby surface water catchment. Water treatment is an important part of the CSG industry. A case study on a CSG site and review on the test results are discussed for assessing the Standards & Practices for management of CSG by-product water and their subsequent disposal activities. This study was directed toward (i) water management and softening process in Spring Gully CSG field, (ii) Comparative analysis on experimental study and standards and (iii) Disposal of the treated water. This study also aimed for alternative usages and their impact on vegetation, living species as well as long term effects.
Keywords: Coal Seam Gas (CSG), Cleat Water, Hydro-Fracking, Desalination, Reverse Osmosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268589 Procedure for Impact Testing of Fused Recycled Glass
Authors: David Halley, Tyra Oseng-Rees, Luca Pagano, Juan A Ferriz-Papi
Abstract:
Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed.
Keywords: Construction materials, drop weight impact, impact testing, recycled glass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153788 Investigation of the Surface Features of the Jupiter’s Galilean Moons
Authors: Revaz Chigladze
Abstract:
The purpose of the research is to investigate the surfaces of Jupiter's Galilean moons (satellites), namely to identify which moon has the most uniform surface among them, what is the difference between the front (in the direction of motion) and the back sides of each moon's surface, as well as the temporal variations of the moons. Since 1981, the E. Kharadze Georgian National Astrophysical Observatory has been conducting polarimetric (P) and photometric (M) observations of Jupiter's Galilean moons with telescopes of different diameters (40-cm and 125-cm), as well as polarimeter Automatic Scanning Electron Polarimeter (ASEP)-78, the latest generation photometer with polarimeter and modern light receiver Santana Barbara Instrument Group (SBIG). As it turns out from the analysis of the observed material, parameters P and M depend on: α, the phase angle of the moon (satellite); L, the orbital latitude of the moon (satellite); λ, the wavelength, and t, the period of observation, i.e., P = P (α, L, λ, t), and similarly: M = M (α, L, λ, t). Based on the analysis of the obtained results, we get: The magnitude of the degree of polarization of Jupiter's Galilean moons near the opposition significantly differs from zero. Europa appears to have the most uniform surface, and Callisto has the least. Time variations are most characteristic of Io, which confirms the presence of volcanic activity on its surface. Based on the observed materials, it can be seen that the intensity of light reflected from the front hemisphere of the first three moons: Io, Europa, and Ganymede, is less than the intensity of light reflected from the rear hemisphere, while the picture with Callisto is opposite. The paper provides an explanation of this fact.
Keywords: Galilean moons, polarization, degree of polarization, photometry, front and rear hemispheres.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154