Search results for: selection combining.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1351

Search results for: selection combining.

901 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: Computer vision, deep learning, object detection, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
900 Rock Textures Classification Based on Textural and Spectral Features

Authors: Tossaporn Kachanubal, Somkait Udomhunsakul

Abstract:

In this paper, we proposed a method to classify each type of natural rock texture. Our goal is to classify 26 classes of rock textures. First, we extract five features of each class by using principle component analysis combining with the use of applied spatial frequency measurement. Next, the effective node number of neural network was tested. We used the most effective neural network in classification process. The results from this system yield quite high in recognition rate. It is shown that high recognition rate can be achieved in separation of 26 stone classes.

Keywords: Texture classification, SFM, neural network, rock texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
899 Stability Criteria for Neural Networks with Two Additive Time-varying Delay Components

Authors: Qingqing Wang, Shouming Zhong

Abstract:

This paper is concerned with the stability problem with two additive time-varying delay components. By choosing one augmented Lyapunov-Krasovskii functional, using some new zero equalities, and combining linear matrix inequalities (LMI) techniques, two new sufficient criteria ensuring the global stability asymptotic stability of DNNs is obtained. These stability criteria are present in terms of linear matrix inequalities and can be easily checked. Finally, some examples are showed to demonstrate the effectiveness and less conservatism of the proposed method.

Keywords: Neural networks, Globally asymptotic stability, LMI approach, Additive time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
898 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: Cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981
897 Analyzing the Effect of Materials’ Selection on Energy Saving and Carbon Footprint: A Case Study Simulation of Concrete Structure Building

Authors: M. Kouhirostamkolaei, M. Kouhirostami, M. Sam, J. Woo, A. T. Asutosh, J. Li, C. Kibert

Abstract:

Construction is one of the most energy consumed activities in the urban environment that results in a significant amount of greenhouse gas emissions around the world. Thus, the impact of the construction industry on global warming is undeniable. Thus, reducing building energy consumption and mitigating carbon production can slow the rate of global warming. The purpose of this study is to determine the amount of energy consumption and carbon dioxide production during the operation phase and the impact of using new shells on energy saving and carbon footprint. Therefore, a residential building with a re-enforced concrete structure is selected in Babolsar, Iran. DesignBuilder software has been used for one year of building operation to calculate the amount of carbon dioxide production and energy consumption in the operation phase of the building. The primary results show the building use 61750 kWh of energy each year. Computer simulation analyzes the effect of changing building shells -using XPS polystyrene and new electrochromic windows- as well as changing the type of lighting on energy consumption reduction and subsequent carbon dioxide production. The results show that the amount of energy and carbon production during building operation has been reduced by approximately 70% by applying the proposed changes. The changes reduce CO2e to 11345 kg CO2/yr. The result of this study helps designers and engineers to consider material selection’s process as one of the most important stages of design for improving energy performance of buildings.

Keywords: Construction materials, green construction, energy simulation, carbon footprint, energy saving, concrete structure, DesignBuilder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001
896 A Hybrid Data Mining Method for the Medical Classification of Chest Pain

Authors: Sung Ho Ha, Seong Hyeon Joo

Abstract:

Data mining techniques have been used in medical research for many years and have been known to be effective. In order to solve such problems as long-waiting time, congestion, and delayed patient care, faced by emergency departments, this study concentrates on building a hybrid methodology, combining data mining techniques such as association rules and classification trees. The methodology is applied to real-world emergency data collected from a hospital and is evaluated by comparing with other techniques. The methodology is expected to help physicians to make a faster and more accurate classification of chest pain diseases.

Keywords: Data mining, medical decisions, medical domainknowledge, chest pain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
895 New Approaches on Stability Analysis for Neural Networks with Time-Varying Delay

Authors: Qingqing Wang, Shouming Zhong

Abstract:

Utilizing the Lyapunov functional method and combining linear matrix inequality (LMI) techniques and integral inequality approach (IIA) to analyze the global asymptotic stability for delayed neural networks (DNNs),a new sufficient criterion ensuring the global stability of DNNs is obtained.The criteria are formulated in terms of a set of linear matrix inequalities,which can be checked efficiently by use of some standard numercial packages.In order to show the stability condition in this paper gives much less conservative results than those in the literature,numerical examples are considered.

Keywords: Neural networks, Globally asymptotic stability , LMI approach , IIA approach , Time-varying delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
894 Assessment of Downy mildew Resistance (Peronospora farinosa) in a Quinoa (Chenopodium quinoa Willd.) Germplasm

Authors: Manal Mhada, BrahimEzzahiri, Ouafae Benlhabib

Abstract:

Seventy-nine accessions, including two local wild species (Chenopodium album and C. murale) and several cultivated quinoa lines developed through recurrent selection in Morocco were screened for their resistance against Peronospora farinose, the causal agent of downy mildew disease. The method of artificial inoculation on detached healthy leaves taken from the middle stage of the plant was used. Screened accessions showed different levels of quantitative resistance to downy mildew as they were scored through the calculation of their area under disease progress curve and their two resistance components, the incubation period and the latent period. Significant differences were found between accessions regarding the three criteria (Incubation Period, Latent Period and Area Under Diseases Progress Curve). Accessions M2a and S938/1 were ranked resistant as they showed the longest Incubation Period (7 days) and Latent Period (12 days) and the lowest area under diseases progress curve (4). Therefore, M24 is the most susceptible accession as it has presented the highest area under diseases progress curve (34.5) and the shortest Incubation Period (1 day) and Latent Period (3 days). In parallel to this evaluation approach, the accession resistance was confirmed under the field conditions through natural infection by using the tree-leaf method. The high correlation found between detached leaf inoculation method and field screening under natural infection allows us to use this laboratory technique with sureness in further selection works.

Keywords: Detached leaf inoculation, Downy mildew, Field screening, Quinoa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
893 Grading and Sequencing Tasks in Task-Based Syllabus: A Critical Look at Criterion Selection

Authors: Hossein Ahmadi, Ogholgol Nazari

Abstract:

The necessity of grading and sequencing tasks has led to the development of different criteria in this regard. However, appropriateness of these criteria in different situations is less discussed. This paper attempts to shed more light on the priority of different criteria in relation with different factors including learners, teachers, educational, and cultural factors.

Keywords: Criteria, Grading, Sequencing, Language learning tasks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6662
892 Velocity Distribution in Open Channels: Combination of Log-law and Parabolic-law

Authors: Snehasis Kundu, Koeli Ghoshal

Abstract:

In this paper, based on flume experimental data, the velocity distribution in open channel flows is re-investigated. From the analysis, it is proposed that the wake layer in outer region may be divided into two regions, the relatively weak outer region and the relatively strong outer region. Combining the log law for inner region and the parabolic law for relatively strong outer region, an explicit equation for mean velocity distribution of steady and uniform turbulent flow through straight open channels is proposed and verified with the experimental data. It is found that the sediment concentration has significant effect on velocity distribution in the relatively weak outer region.

Keywords: Inner and outer region, Log law, Parabolic law, Richardson number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6091
891 A Reversible CMOS AD / DA Converter Implemented with Pseudo Floating-Gate

Authors: Omid Mirmotahari, Yngvar Berg, Ahmad Habibizad Navin

Abstract:

Reversible logic is becoming more and more prominent as the technology sets higher demands on heat, power, scaling and stability. Reversible gates are able at any time to "undo" the current step or function. Multiple-valued logic has the advantage of transporting and evaluating higher bits each clock cycle than binary. Moreover, we demonstrate in this paper, combining these disciplines we can construct powerful multiple-valued reversible logic structures. In this paper a reversible block implemented by pseudo floatinggate can perform AD-function and a DA-function as its reverse application.

Keywords: Reversible logic, bi-directional, Pseudo floating-gate(PFG), multiple-valued logic (MVL).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
890 Broadcasting to Handheld Devices: The Challenges

Authors: Nerey H. Mvungi

Abstract:

Digital Video Terrestrial Broadcasting (DVB-T) allows combining broadcasting, telephone and data services in one network. It has facilitated mobile TV broadcasting. Mobile TV broadcasting is dominated by fragmentation of standards in use in different continents. In Asia T-DMB and ISDB-T are used while Europe uses mainly DVB-H and in USA it is MediaFLO. Issues of royalty for developers of these different incompatible technologies, investments made and differing local conditions shall make it difficult to agree on a unified standard in a very near future. Despite this shortcoming, mobile TV has shown very good market potential. There are a number of challenges that still exist for regulators, investors and technology developers but the future looks bright. There is need for mobile telephone operators to cooperate with content providers and those operating terrestrial digital broadcasting infrastructure for mutual benefit.

Keywords: Broadcasting to handheld, broadcasting value chain, Digital broadcasting, mobile TV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
889 An Evolutionary Statistical Learning Theory

Authors: Sung-Hae Jun, Kyung-Whan Oh

Abstract:

Statistical learning theory was developed by Vapnik. It is a learning theory based on Vapnik-Chervonenkis dimension. It also has been used in learning models as good analytical tools. In general, a learning theory has had several problems. Some of them are local optima and over-fitting problems. As well, statistical learning theory has same problems because the kernel type, kernel parameters, and regularization constant C are determined subjectively by the art of researchers. So, we propose an evolutionary statistical learning theory to settle the problems of original statistical learning theory. Combining evolutionary computing into statistical learning theory, our theory is constructed. We verify improved performances of an evolutionary statistical learning theory using data sets from KDD cup.

Keywords: Evolutionary computing, Local optima, Over-fitting, Statistical learning theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
888 Single Valued Neutrosophic Hesitant Fuzzy Rough Set and Its Application

Authors: K. M. Alsager, N. O. Alshehri

Abstract:

In this paper, we proposed the notion of single valued neutrosophic hesitant fuzzy rough set, by combining single valued neutrosophic hesitant fuzzy set and rough set. The combination of single valued neutrosophic hesitant fuzzy set and rough set is a powerful tool for dealing with uncertainty, granularity and incompleteness of knowledge in information systems. We presented both definition and some basic properties of the proposed model. Finally, we gave a general approach which is applied to a decision making problem in disease diagnoses, and demonstrated the effectiveness of the approach by a numerical example.

Keywords: Single valued neutrosophic hesitant set, single valued neutrosophic hesitant relation, single valued neutrosophic hesitant fuzzy rough set, decision making method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
887 Uncertainty Multiple Criteria Decision Making Analysis for Stealth Combat Aircraft Selection

Authors: C. Ardil

Abstract:

Fuzzy set theory and its extensions (intuitionistic fuzzy sets, picture fuzzy sets, and neutrosophic sets) have been widely used to address imprecision and uncertainty in complex decision-making. However, they may struggle with inherent indeterminacy and inconsistency in real-world situations. This study introduces uncertainty sets as a promising alternative, offering a structured framework for incorporating both types of uncertainty into decision-making processes.This work explores the theoretical foundations and applications of uncertainty sets. A novel decision-making algorithm based on uncertainty set-based proximity measures is developed and demonstrated through a practical application: selecting the most suitable stealth combat aircraft.

The results highlight the effectiveness of uncertainty sets in ranking alternatives under uncertainty. Uncertainty sets offer several advantages, including structured uncertainty representation, robust ranking mechanisms, and enhanced decision-making capabilities due to their ability to account for ambiguity.Future research directions are also outlined, including comparative analysis with existing MCDM methods under uncertainty, sensitivity analysis to assess the robustness of rankings,and broader application to various MCDM problems with diverse complexities. By exploring these avenues, uncertainty sets can be further established as a valuable tool for navigating uncertainty in complex decision-making scenarios.

Keywords: Uncertainty set, stealth combat aircraft selection multiple criteria decision-making analysis, MCDM, uncertainty proximity analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201
886 Determination the Curve Number Catchment by Using GIS and Remote Sensing

Authors: Abouzar Nasiri, Hamid Alipur

Abstract:

In recent years, geographic information systems (GIS) and remote sensing using has increased to estimate runoff catchment. In this research, runoff curve number maps for captive catchment of Tehran by helping GIS and also remote sensing which based on factors such as vegetation, lands using, group of soil hydrology and hydrological conditions were obtained. Runoff curve numbers map was obtained by combining these maps in ARC GIS and SCS table. To evaluate the accuracy of the results, the maximum flow rate of flood which was obtained from curve numbers, was compared with the measured maximum flood rate at the watershed outlet and correctness of curve numbers were approved.

Keywords: Curve number, GIS, Remote sensing, Runoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4982
885 Survey of Potato Viral Infection Using Das-Elisa Method in Georgia

Authors: Maia Kukhaleishvili, Ekaterine Bulauri, Iveta Megrelishvili, Tamar Shamatava, Tamar Chipashvili

Abstract:

Plant viruses can cause loss of yield and quality in a lot of important crops. Symptoms of pathogens are variable depending on the cultivars and virus strain. Selection of resistant potato varieties would reduce the risk of virus transmission and significant economic impact. Other way to avoid reduced harvest yields is regular potato seed production sampling and testing for viral infection. The aim of this study was to determine the occurrence and distribution of viral diseases according potato cultivars for further selection of virus-free material in Georgia. During the summer 2015- 2016, 5 potato cultivars (Sante, Laura, Jelly, Red Sonia, Anushka) at 5 different farms located in Akhalkalaki were tested for 6 different potato viruses: Potato virus A (PVA), Potato virus M (PVM), Potato virus S (PVS), Potato virus X (PVX), Potato virus Y (PVY) and potato leaf roll virus (PLRV). A serological method, Double Antibody Sandwich-Enzyme linked Immunosorbent Assay (DASELISA) was used at the laboratory to analyze the results. The result showed that PVY (21.4%) and PLRV (19.7%) virus presence in collected samples was relatively high compared to others. Researched potato cultivars except Jelly and Laura were infected by PVY with different concentrations. PLRV was found only in three potato cultivars (Sante, Jelly, Red Sonia) and PVM virus (3.12%) was characterized with low prevalence. PVX, PVA and PVS virus infection was not reported. It would be noted that 7.9% of samples were containing PVY/PLRV mix infection. Based on the results it can be concluded that PVY and PLRV infections are dominant in all research cultivars. Therefore significant yield losses are expected. Systematic, long-term control of potato viral infection, especially seed-potatoes, must be regarded as the most important factor to increase seed productivity.

Keywords: Diseases, infection, potato, virus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
884 Development of an Ensemble Classification Model Based on Hybrid Filter-Wrapper Feature Selection for Email Phishing Detection

Authors: R. B. Ibrahim, M. S. Argungu, I. M. Mungadi

Abstract:

It is obvious in this present time, internet has become an indispensable part of human life since its inception. The Internet has provided diverse opportunities to make life so easy for human beings, through the adoption of various channels. Among these channels are email, internet banking, video conferencing, and the like. Email is one of the easiest means of communication hugely accepted among individuals and organizations globally. But over decades the security integrity of this platform has been challenged with malicious activities like Phishing. Email phishing is designed by phishers to fool the recipient into handing over sensitive personal information such as passwords, credit card numbers, account credentials, social security numbers, etc. This activity has caused a lot of financial damage to email users globally which has resulted in bankruptcy, sudden death of victims, and other health-related sicknesses. Although many methods have been proposed to detect email phishing, in this research, the results of multiple machine-learning methods for predicting email phishing have been compared with the use of filter-wrapper feature selection. It is worth noting that all three models performed substantially but one outperformed the other. The dataset used for these models is obtained from Kaggle online data repository, while three classifiers: decision tree, Naïve Bayes, and Logistic regression are ensemble (Bagging) respectively. Results from the study show that the Decision Tree (CART) bagging ensemble recorded the highest accuracy of 98.13% using PEF (Phishing Essential Features). This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, hybrid, filter-wrapper, phishing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185
883 Miniaturized Wideband Single-Feed Shorted-Edge Stacked Patch Antenna for C-Band Applications

Authors: Abdelheq Boukarkar, Omar Guermoua

Abstract:

In this paper, we propose a miniaturized and wideband patch antenna for C-band applications. The antenna miniaturization is obtained by loading shorting vias along one patch edge. At the same time, the wideband performance is achieved by combining two resonances using one feed line. The measured results reveal that the antenna covers the frequency band 4.32 GHz to 6.52 GHz (41%) with a peak gain and a peak efficiency of 5.5 dBi and 87%, respectively. The antenna occupies a relatively small size of only 26 x 22 x 5.6 mm3, making it suitable for compact wireless devices requiring a stable unidirectional gain over a wide frequency range.

Keywords: Miniaturized antennas, patch antennas, stable gain, wideband antennas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538
882 Driving Behaviors at Intersections (Case Study- Tehran-Zone 3-Region 3)

Authors: A. Mansour Khaki, A. E. Forouhid, S. Hemmati, M. Rahnamay-Naeini

Abstract:

In this article we research on the drivers’ behavior at intersections. Some significant behaviors are chosen and designed a questionnaire which was about 2 pages. In this questionnaire, samples were being asked to answer by checking the box. The answers have been from always to never. This questionnaire related to our selection’s behaviors. Finally it has been resulted that most of aggressive behaviors were being common in them. Also it has been suggested some solutions for each of them.

Keywords: Driver, behavior, intersection, study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
881 Research on Building Urban Sustainability along the Coastal Area in China

Authors: Sun Jiaojiao, Fu Jiayan

Abstract:

At present, in China, the research about the urban sustainability construction is still in the exploratory stage. The ecological problems of the coastal area are more sensitive and complicated. In the background of global warming with serious ecological damage, this paper deeply researches on the main characteristics of urban sustainability and measures how to build urban sustainability. Through combining regional environmental with economic ability along the coastal area, then authors put forward the system planning framework, construction strategy and the evaluation index system, in order to seek the way of building urban sustainability along coastal area in China.

Keywords: Urban sustainability, coastal areas, construction strategy, evaluation index system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
880 System Reduction by Eigen Permutation Algorithm and Improved Pade Approximations

Authors: Jay Singh, Kalyan Chatterjee, C. B. Vishwakarma

Abstract:

A mixed method by combining a Eigen algorithm and improved pade approximations is proposed for reducing the order of the large-scale dynamic systems. The most dominant Eigen value of both original and reduced order systems remain same in this method. The proposed method guarantees stability of the reduced model if the original high-order system is stable and is comparable in quality with the other well known existing order reduction methods. The superiority of the proposed method is shown through examples taken from the literature.

Keywords: Eigen algorithm, Order reduction, improved pade approximations, Stability, Transfer function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
879 An E-Retailing System Architecture Based on Cloud Computing

Authors: Chanchai Supaartagorn

Abstract:

E-retailing is the sale of goods online that takes place over the Internet. The Internet has shrunk the entire World. World eretailing is growing at an exponential rate in the Americas, Europe and Asia. However, e-retailing costs require expensive investment, such as hardware, software, and security systems. Cloud computing technology is internet-based computing for the management and delivery of applications and services. Cloud-based e-retailing application models allow enterprises to lower their costs with their effective implementation of e-retailing activities. In this paper, we describe the concept of cloud computing and present the architecture of cloud computing, combining the features of e-retailing. In addition, we propose a strategy for implementing cloud computing with e-retailing. Finally, we explain the benefits from the architecture.

Keywords: Architecture, cloud computing, e-retailing, internet-based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3174
878 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis

Authors: Isao Taguchi, Yasuo Sugai

Abstract:

This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.

Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
877 A Robust Frequency Offset Estimator for Orthogonal Frequency Division Multiplexing

Authors: Keunhong Chae, Seokho Yoon

Abstract:

We address the integer frequency offset (IFO) estimation under the influence of the timing offset (TO) in orthogonal frequency division multiplexing (OFDM) systems. Incorporating the IFO and TO into the symbol set used to represent the received OFDM symbol, we investigate the influence of the TO on the IFO, and then, propose a combining method between two consecutive OFDM correlations, reducing the influence. The proposed scheme has almost the same complexity as that of the conventional schemes, whereas it does not need the TO knowledge contrary to the conventional schemes. From numerical results it is confirmed that the proposed scheme is insensitive to the TO, consequently, yielding an improvement of the IFO estimation performance over the conventional schemes when the TO exists.

Keywords: Estimation, integer frequency offset, OFDM, timing offset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
876 Application of Hybrid Genetic Algorithm Based on Simulated Annealing in Function Optimization

Authors: Panpan Xu, Shulin Sui, Zongjie Du

Abstract:

Genetic algorithm is widely used in optimization problems for its excellent global search capabilities and highly parallel processing capabilities; but, it converges prematurely and has a poor local optimization capability in actual operation. Simulated annealing algorithm can avoid the search process falling into local optimum. A hybrid genetic algorithm based on simulated annealing is designed by combining the advantages of genetic algorithm and simulated annealing algorithm. The numerical experiment represents the hybrid genetic algorithm can be applied to solve the function optimization problems efficiently.

Keywords: Genetic algorithm, Simulated annealing, Hybrid genetic algorithm, Function optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556
875 Influence of Some Technological Parameters on the Content of Voids in Composite during On-Line Consolidation with Filament Winding Technology

Authors: M. Stefanovska, B. Samakoski, S. Risteska, G. Maneski

Abstract:

In this study was performed in situ consolidation of polypropylene matrix/glass reinforced roving by combining heating systems and roll pressing. The commingled roving during hoop winding was winded on a cylindrical mandrel. The work also presents the advances made in the processing of these materials into composites by conventional technique filament winding. Experimental studies were performed with changing parameters – temperature, pressure and speed. Finally, it describes the investigation of the optimal processing conditions that maximize the mechanical properties of the composites. These properties are good enough for composites to be used as engineering materials in many structural applications.

Keywords: Commingled fiber, consolidation heat, filament winding, voids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
874 An E-learning System Architecture based on Cloud Computing

Authors: Md. Anwar Hossain Masud, Xiaodi Huang

Abstract:

The massive proliferation of affordable computers, Internet broadband connectivity and rich education content has created a global phenomenon in which information and communication technology (ICT) is being used to transform education. Therefore, there is a need to redesign the educational system to meet the needs better. The advent of computers with sophisticated software has made it possible to solve many complex problems very fast and at a lower cost. This paper introduces the characteristics of the current E-Learning and then analyses the concept of cloud computing and describes the architecture of cloud computing platform by combining the features of E-Learning. The authors have tried to introduce cloud computing to e-learning, build an e-learning cloud, and make an active research and exploration for it from the following aspects: architecture, construction method and external interface with the model.

Keywords: Architecture, Cloud Computing, E-learning, Information Technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11080
873 New Adaptive Linear Discriminante Analysis for Face Recognition with SVM

Authors: Mehdi Ghayoumi

Abstract:

We have applied new accelerated algorithm for linear discriminate analysis (LDA) in face recognition with support vector machine. The new algorithm has the advantage of optimal selection of the step size. The gradient descent method and new algorithm has been implemented in software and evaluated on the Yale face database B. The eigenfaces of these approaches have been used to training a KNN. Recognition rate with new algorithm is compared with gradient.

Keywords: lda, adaptive, svm, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
872 Strategies to Achieve Deep Decarbonization in Power Generation: A Review

Authors: Abdullah Alotaiq

Abstract:

The transition to low-carbon power generation is essential for mitigating climate change and achieving sustainability. This process, however, entails considerable costs, and understanding the factors influencing these costs is critical. This is necessary to cater to the increasing demand for low-carbon electricity across heating, industry, and transportation sectors. A crucial aspect of this transition is identifying cost-effective and feasible paths for decarbonization, which is integral to global climate mitigation efforts. It is concluded that hybrid solutions, combining different low-carbon technologies, are optimal for minimizing costs and enhancing flexibility. These solutions also address the challenges associated with phasing out existing fossil fuel-based power plants and broadening the spectrum of low-carbon power generation options.

Keywords: Review, power generation, energy transition, decarbonization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83