Search results for: process mining.
5445 Designing a Framework for Network Security Protection
Authors: Eric P. Jiang
Abstract:
As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.Keywords: classification, data analysis and mining, network intrusion detection, semi-supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17975444 Virtual Learning Process Environment: Cohort Analytics for Learning and Learning Processes
Authors: Ayodeji Adesina, Derek Molloy
Abstract:
Traditional higher-education classrooms allow lecturers to observe students- behaviours and responses to a particular pedagogy during learning in a way that can influence changes to the pedagogical approach. Within current e-learning systems it is difficult to perform continuous analysis of the cohort-s behavioural tendency, making real-time pedagogical decisions difficult. This paper presents a Virtual Learning Process Environment (VLPE) based on the Business Process Management (BPM) conceptual framework. Within the VLPE, course designers can model various education pedagogies in the form of learning process workflows using an intuitive flow diagram interface. These diagrams are used to visually track the learning progresses of a cohort of students. This helps assess the effectiveness of the chosen pedagogy, providing the information required to improve course design. A case scenario of a cohort of students is presented and quantitative statistical analysis of their learning process performance is gathered and displayed in realtime using dashboards.
Keywords: Business process management, cohort analytics, learning processes, virtual learning environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28205443 Simulation of the Reactive Rotational Molding Using Smoothed Particle Hydrodynamics
Authors: A. Hamidi, S. Khelladi, L. Illoul, A. Tcharkhtchi
Abstract:
Reactive rotational molding (RRM) is a process to manufacture hollow plastic parts with reactive material has several advantages compared to conventional roto molding of thermoplastic powders: process cycle time is shorter; raw material is less expensive because polymerization occurs during processing and high-performance polymers may be used such as thermosets, thermoplastics or blends. However, several phenomena occur during this process which makes the optimization of the process quite complex. In this study, we have used a mixture of isocyanate and polyol as a reactive system. The chemical transformation of this system to polyurethane has been studied by thermal analysis and rheology tests. Thanks to these results of the curing process and rheological measurements, the kinetic and rheokinetik of polyurethane was identified. Smoothed Particle Hydrodynamics, a Lagrangian meshless method, was chosen to simulate reactive fluid flow in 2 and 3D configurations of the polyurethane during the process taking into account the chemical, and chemiorehological results obtained experimentally in this study.Keywords: Reactive rotational molding, free surface flows, simulation, smoothed particle hydrodynamics, surface tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10785442 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications
Authors: W. Schellong
Abstract:
Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.
Keywords: Crossover technologies, data management, energy analysis, energy efficiency, process control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9685441 Multi Task Scheme to Monitor Multivariate Environments Using Artificial Neural Network
Authors: K. Atashgar
Abstract:
When an assignable cause(s) manifests itself to a multivariate process and the process shifts to an out-of-control condition, a root-cause analysis should be initiated by quality engineers to identify and eliminate the assignable cause(s) affected the process. A root-cause analysis in a multivariate process is more complex compared to a univariate process. In the case of a process involved several correlated variables an effective root-cause analysis can be only experienced when it is possible to identify the required knowledge including the out-of-control condition, the change point, and the variable(s) responsible to the out-of-control condition, all simultaneously. Although literature addresses different schemes to monitor multivariate processes, one can find few scientific reports focused on all the required knowledge. To the best of the author’s knowledge this is the first time that a multi task model based on artificial neural network (ANN) is reported to monitor all the required knowledge at the same time for a multivariate process with more than two correlated quality characteristics. The performance of the proposed scheme is evaluated numerically when different step shifts affect the mean vector. Average run length is used to investigate the performance of the proposed multi task model. The simulated results indicate the multi task scheme performs all the required knowledge effectively.
Keywords: Artificial neural network, Multivariate process, Statistical process control, Change point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16865440 Improvements in Material Handling: A Case Study of Cement Manufacturing Plant
Authors: A. Pancharya
Abstract:
The globalization of the Indian economy has thrown a great challenge to the Indian industries in respect of productivity, quality, cost, delivery etc. Achieving success• the global market has required fundamental shift in the way business is conducted and has dramatically affected virtually every aspect of process industry. The internal manufacturing process and supporting infrastructure should be such that it can compete successfully in global markets with better flexibility and delivery. The paper deals with a case study of a reputed process industry, some changes in the process has been suggested, which leads to reduction in labor cost and production cost.
Keywords: Indian cement industry, material handling, plant layout.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48965439 Using Gaussian Process in Wind Power Forecasting
Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui
Abstract:
The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.Keywords: Forecasting, Gaussian process, modeling, wind power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17915438 Improving TNT Curing Process by Using Infrared Camera
Authors: O. Srihakulung, Y. Soongsumal
Abstract:
Among the chemicals used for ammunition production, TNT (Trinitrotoluene) play a significant role since World War I and II. Various types of military weapon utilize TNT in casting process. However, the TNT casting process for warhead is difficult to control the cooling rate of the liquid TNT. This problem occurs because the casting process lacks the equipment to detect the temperature during the casting procedure This study presents the temperature detected by infrared camera to illustrate the cooling rate and cooling zone of curing, and demonstrates the optimization of TNT condition to reduce the risk of air gap occurred in the warhead which can result in the destruction afterward. Premature initiation of explosive-filled projectiles in response to set-back forces during gunfiring cause by casting defects. Finally the study can help improving the process of the TNT casting. The operators can control the curing of TNT inside the case by rising up the heating rod at the proper time. Consequently this can reduce tremendous time of rework if the air gaps occur and increase strength to lower elastic modulus. Therefore, it can be clearly concluded that the use of Infrared Cameras in this process is another method to improve the casting procedure.
Keywords: Infrared camera, TNT casting, warhead, curing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22675437 The Process of Crisis: Model of Its Development in the Organization
Authors: M. Mikušová
Abstract:
The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.
Keywords: Crisis, management, model, organization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11395436 Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis
Authors: Farhad Kolahan, A. Hamid Khajavi
Abstract:
Abrasive waterjet is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modeling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. Depth of cut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. The pairwise effects of process parameters settings on process response outputs are also shown graphically. The proposed model is then embedded into a Simulated Annealing algorithm to optimize the process parameters. The optimization is carried out for any desired values of depth of cut. The objective is to determine proper levels of process parameters in order to obtain a certain level of depth of cut. Computational results demonstrate that the proposed solution procedure is quite effective in solving such multi-variable problems.
Keywords: AWJ cutting, Mathematical modeling, Simulated Annealing, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21595435 An Approach for a Bidding Process Knowledge Capitalization
Authors: R. Chalal, A. R. Ghomari
Abstract:
Preparation and negotiation of innovative and future projects can be characterized as a strategic-type decision situation, involving many uncertainties and an unpredictable environment. We will focus in this paper on the bidding process. It includes cooperative and strategic decisions. Our approach for bidding process knowledge capitalization is aimed at information management in project-oriented organizations, based on the MUSIC (Management and Use of Co-operative Information Systems) model. We will show how to capitalize the company strategic knowledge and also how to organize the corporate memory. The result of the adopted approach is improvement of corporate memory quality.Keywords: Bidding process, corporate memory, Knowledge capitalization, knowledge acquisition, strategic decisions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16455434 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System
Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid
Abstract:
Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.
Keywords: Artificial neural network, bending angle, fuzzy logic, laser forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9645433 Multiple Model and Neural based Adaptive Multi-loop PID Controller for a CSTR Process
Authors: R.Vinodha S. Abraham Lincoln, J. Prakash
Abstract:
Multi-loop (De-centralized) Proportional-Integral- Derivative (PID) controllers have been used extensively in process industries due to their simple structure for control of multivariable processes. The objective of this work is to design multiple-model adaptive multi-loop PID strategy (Multiple Model Adaptive-PID) and neural network based multi-loop PID strategy (Neural Net Adaptive-PID) for the control of multivariable system. The first method combines the output of multiple linear PID controllers, each describing process dynamics at a specific level of operation. The global output is an interpolation of the individual multi-loop PID controller outputs weighted based on the current value of the measured process variable. In the second method, neural network is used to calculate the PID controller parameters based on the scheduling variable that corresponds to major shift in the process dynamics. The proposed control schemes are simple in structure with less computational complexity. The effectiveness of the proposed control schemes have been demonstrated on the CSTR process, which exhibits dynamic non-linearity.Keywords: Multiple-model Adaptive PID controller, Multivariableprocess, CSTR process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20195432 The Mechanistic and Oxidative Study of Methomyl and Parathion Degradation by Fenton Process
Authors: Chihhao Fan, Ming-Chu Liao
Abstract:
The purpose of this study is to investigate the chemical degradation of the organophosphorus pesticide of parathion and carbamate insecticide of methomyl in the aqueous phase through Fenton process. With the employment of batch Fenton process, the degradation of the two selected pesticides at different pH, initial concentration, humic acid concentration, and Fenton reagent dosages was explored. The Fenton process was found effective to degrade parathion and methomyl. The optimal dosage of Fenton reagents (i.e., molar concentration ratio of H2O2 to Fe2+) at pH 7 for parathion degradation was equal to 3, which resulted in 50% removal of parathion. Similarly, the optimal dosage for methomyl degradation was 1, resulting in 80% removal of methomyl. This study also found that the presence of humic substances has enhanced pesticide degradation by Fenton process significantly. The mass spectroscopy results showed that the hydroxyl free radical may attack the single bonds with least energy of investigated pesticides to form smaller molecules which is more easily to degrade either through physio-chemical or bilolgical processes.Keywords: Fenton Process, humic acid, methomyl, parathion, pesticides
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16345431 Drop Impact on a Vibrated, Heated Surface: Towards a Potential New Way of Elaborating Nuclear Fuel from Gel Microspheres
Authors: Méryl Brothier, Dominique Moulinier, Christophe Bertaux
Abstract:
The gel-supported precipitation (GSP) process can be used to make spherical particles (spherules) of nuclear fuel, particularly for very high temperature reactors (VHTR) and even for implementing the process called SPHEREPAC. In these different cases, the main characteristics are the sphericity of the particles to be manufactured and the control over their grain size. Nonetheless, depending on the specifications defined for these spherical particles, the GSP process has intrinsic limits, particularly when fabricating very small particles. This paper describes the use of secondary fragmentation (water, water/PVA and uranyl nitrate) on solid surfaces under varying temperature and vibration conditions to assess the relevance of using this new technique to manufacture very small spherical particles by means of a modified GSP process. The fragmentation mechanisms are monitored and analysed, before the trends for its subsequent optimised application are described.Keywords: Microsphere elaboration, nuclear fuel, droplet impact , gel-supported precipitation process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15965430 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.
Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12755429 Quality-Driven Business Process Refactoring
Authors: María Fernández-Ropero, Ricardo Pérez-Castillo, Ismael Caballero, Mario Piattini
Abstract:
Appropriate description of business processes through standard notations has become one of the most important assets for organizations. Organizations must therefore deal with quality faults in business process models such as the lack of understandability and modifiability. These quality faults may be exacerbated if business process models are mined by reverse engineering, e.g., from existing information systems that support those business processes. Hence, business process refactoring is often used, which change the internal structure of business processes whilst its external behavior is preserved. This paper aims to choose the most appropriate set of refactoring operators through the quality assessment concerning understandability and modifiability. These quality features are assessed through well-proven measures proposed in the literature. Additionally, a set of measure thresholds are heuristically established for applying the most promising refactoring operators, i.e., those that achieve the highest quality improvement according to the selected measures in each case.Keywords: business process model, modifiability, refactoring, understandability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15305428 A Generic Approach to Reuse Unified Modeling Language Components Following an Agile Process
Authors: Rim Bouhaouel, Naoufel Kraïem, Zuhoor Al Khanjari
Abstract:
Unified Modeling Language (UML) is considered as one of the widespread modeling language standardized by the Object Management Group (OMG). Therefore, the model driving engineering (MDE) community attempts to provide reuse of UML diagrams, and do not construct it from scratch. The UML model appears according to a specific software development process. The existing method generation models focused on the different techniques of transformation without considering the development process. Our work aims to construct an UML component from fragments of UML diagram basing on an agile method. We define UML fragment as a portion of a UML diagram, which express a business target. To guide the generation of fragments of UML models using an agile process, we need a flexible approach, which adapts to the agile changes and covers all its activities. We use the software product line (SPL) to derive a fragment of process agile method. This paper explains our approach, named RECUP, to generate UML fragments following an agile process, and overviews the different aspects. In this paper, we present the approach and we define the different phases and artifacts.Keywords: UML, component, fragment, agile, SPL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9185427 A New Approach for Predicting and Optimizing Weld Bead Geometry in GMAW
Authors: Farhad Kolahan, Mehdi Heidari
Abstract:
Gas Metal Arc Welding (GMAW) processes is an important joining process widely used in metal fabrication industries. This paper addresses modeling and optimization of this technique using a set of experimental data and regression analysis. The set of experimental data has been used to assess the influence of GMAW process parameters in weld bead geometry. The process variables considered here include voltage (V); wire feed rate (F); torch Angle (A); welding speed (S) and nozzle-to-plate distance (D). The process output characteristics include weld bead height, width and penetration. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the GMAW process parameters. The objective is to determine a suitable set of process parameters that can produce desired bead geometry, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.Keywords: Weld Bead Geometry, GMAW welding, Processparameters Optimization, Modeling, SA algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21905426 Simulation of the Extensional Flow Mixing of Molten Aluminium and Fly Ash Nanoparticles
Authors: O. Ualibek, C. Spitas, V. Inglezakis, G. Itskos
Abstract:
This study presents simulations of an aluminium melt containing an initially non-dispersed fly ash nanoparticle phase. Mixing is affected predominantly by means of forced extensional flow via either straight or slanted orifices. The sensitivity to various process parameters is determined. The simulated process is used for the production of cast fly ash-aluminium nanocomposites. The possibilities for rod and plate stock grading in the context of a continuous casting process implementation are discussed.Keywords: Metal matrix composites, fly ash nanoparticles, aluminium 2024, agglomeration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10065425 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process
Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.
Abstract:
It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16515424 The System Identification and PID Lead-lag Control for Two Poles Unstable SOPDT Process by Improved Relay Method
Authors: V. K. Singh, P. K. Padhy
Abstract:
This paper describes identification of the two poles unstable SOPDT process, especially with large time delay. A new modified relay feedback identification method for two poles unstable SOPDT process is proposed. Furthermore, for the two poles unstable SOPDT process, an additional Derivative controller is incorporated parallel with relay to relax the constraint on the ratio of delay to the unstable time constant, so that the exact model parameters of unstable processes can be identified. To cope with measurement noise in practice, a low pass filter is suggested to get denoised output signal toimprove the exactness of model parameter of unstable process. PID Lead-lag tuning formulas are derived for two poles unstable (SOPDT) processes based on IMC principle. Simulation example illustrates the effectiveness and the simplicity of the proposed identification and control method.Keywords: IMC structure, PID Lead-lag controller, Relayfeedback, SOPDT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20985423 Identifying Significant Factors of Brick Laying Process through Design of Experiment and Computer Simulation: A Case Study
Authors: M. H. Zarei, A. Nikakhtar, A. H. Roudsari, N. Madadi, K. Y. Wong
Abstract:
Improving performance measures in the construction processes has been a major concern for managers and decision makers in the industry. They seek for ways to recognize the key factors which have the largest effect on the process. Identifying such factors can guide them to focus on the right parts of the process in order to gain the best possible result. In the present study design of experiment (DOE) has been applied to a computer simulation model of brick laying process to determine significant factors while productivity has been chosen as the response of the experiment. To this end, four controllable factors and their interaction have been experimented and the best factor level has been calculated for each one. The results indicate that three factors, namely, labor of brick, labor of mortar and inter arrival time of mortar along with interaction of labor of brick and labor of mortar are significant.Keywords: Brick laying process, computer simulation, design of experiment, significant factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21045422 Automation of Heat Exchanger using Neural Network
Authors: Sudhir Agashe, Ashok Ghatol, Sujata Agashe
Abstract:
In this paper the development of a heat exchanger as a pilot plant for educational purpose is discussed and the use of neural network for controlling the process is being presented. The aim of the study is to highlight the need of a specific Pseudo Random Binary Sequence (PRBS) to excite a process under control. As the neural network is a data driven technique, the method for data generation plays an important role. In light of this a careful experimentation procedure for data generation was crucial task. Heat exchange is a complex process, which has a capacity and a time lag as process elements. The proposed system is a typical pipe-in- pipe type heat exchanger. The complexity of the system demands careful selection, proper installation and commissioning. The temperature, flow, and pressure sensors play a vital role in the control performance. The final control element used is a pneumatically operated control valve. While carrying out the experimentation on heat exchanger a welldrafted procedure is followed giving utmost attention towards safety of the system. The results obtained are encouraging and revealing the fact that if the process details are known completely as far as process parameters are concerned and utilities are well stabilized then feedback systems are suitable, whereas neural network control paradigm is useful for the processes with nonlinearity and less knowledge about process. The implementation of NN control reinforces the concepts of process control and NN control paradigm. The result also underlined the importance of excitation signal typically for that process. Data acquisition, processing, and presentation in a typical format are the most important parameters while validating the results.Keywords: Process identification, neural network, heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15765421 Understanding and Predicting Foam in Anaerobic Digester
Authors: I. R. Kanu, T. J. Aspray, A. J. Adeloye
Abstract:
As a result of the ambiguity and complexity surrounding anaerobic digester foaming, efforts have been made by various researchers to understand the process of anaerobic digester foaming so as to proffer a solution that can be universally applied rather than site specific. All attempts ranging from experimental analysis to comparative review of other process has not fully explained the conditions and process of foaming in anaerobic digester. Studying the current available knowledge on foam formation and relating it to anaerobic digester process and operating condition, this piece of work presents a succinct and enhanced understanding of foaming in anaerobic digesters as well as introducing a simple method to identify the onset of anaerobic digester foaming based on analysis of historical data from a field scale system.
Keywords: Anaerobic digester, foam, biogas, surfactants, wastewater sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29745420 Detergent Removal from Rinsing Water by Peroxi Electrocoagulation Process
Authors: A. Benhadji, M. Taleb Ahmed
Abstract:
Among the various methods of treatment, advanced oxidation processes (AOP) are the most promising ones. In this study, Peroxi Electrocoagulation Process (PEP) was investigated for the treatment of detergent wastewater. The process was compared with electrooxidation treatment. The results showed that chemical oxygen demand (COD) was high 7584 mgO2.L-1, while the biochemical oxygen demand was low (250 mgO2.L-1). This wastewater was hardly biodegradable. Electrochemical process was carried out for the removal of detergent using a glass reactor with a volume of 1 L and fitted with three electrodes. A direct current (DC) supply was used. Samples were taken at various current density (0.0227 A/cm2 to 0.0378 A/cm2) and reaction time (1-2-3-4 and 5 hour). Finally, the COD was determined. The results indicated that COD removal efficiency of PEP was observed to increase with current intensity and reached to 77% after 5 h. The highest removal efficiency was observed after 5 h of treatment.
Keywords: Advanced oxidation processes, chemical oxygen demand, COD, detergent, peroxi electrocoagulation process, PEP, wastewater
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9185419 Topological Properties of an Exponential Random Geometric Graph Process
Authors: Yilun Shang
Abstract:
In this paper we consider a one-dimensional random geometric graph process with the inter-nodal gaps evolving according to an exponential AR(1) process. The transition probability matrix and stationary distribution are derived for the Markov chains concerning connectivity and the number of components. We analyze the algorithm for hitting time regarding disconnectivity. In addition to dynamical properties, we also study topological properties for static snapshots. We obtain the degree distributions as well as asymptotic precise bounds and strong law of large numbers for connectivity threshold distance and the largest nearest neighbor distance amongst others. Both exact results and limit theorems are provided in this paper.Keywords: random geometric graph, autoregressive process, degree, connectivity, Markovian, wireless network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14605418 Modeling And Analysis of Simple Open Cycle Gas Turbine Using Graph Networks
Authors: Naresh Yadav, I.A. Khan, Sandeep Grover
Abstract:
This paper presents a unified approach based graph theory and system theory postulates for the modeling and analysis of Simple open cycle Gas turbine system. In the present paper, the simple open cycle gas turbine system has been modeled up to its subsystem level and system variables have been identified to develop the process subgraphs. The theorems and algorithms of the graph theory have been used to represent behavioural properties of the system like rate of heat and work transfers rates, pressure drops and temperature drops in the involved processes of the system. The processes have been represented as edges of the process subgraphs and their limits as the vertices of the process subgraphs. The system across variables and through variables has been used to develop terminal equations of the process subgraphs of the system. The set of equations developed for vertices and edges of network graph are used to solve the system for its process variables.Keywords: Simple open cycle gas turbine, Graph theoretic approach, process subgraphs, gas turbines system modeling, systemtheory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26455417 Change Management in Business Process Modeling Based on Object Oriented Petri Net
Authors: Bassam Atieh Rajabi, Sai Peck Lee
Abstract:
Business Process Modeling (BPM) is the first and most important step in business process management lifecycle. Graph based formalism and rule based formalism are the two most predominant formalisms on which process modeling languages are developed. BPM technology continues to face challenges in coping with dynamic business environments where requirements and goals are constantly changing at the execution time. Graph based formalisms incur problems to react to dynamic changes in Business Process (BP) at the runtime instances. In this research, an adaptive and flexible framework based on the integration between Object Oriented diagramming technique and Petri Net modeling language is proposed in order to support change management techniques for BPM and increase the representation capability for Object Oriented modeling for the dynamic changes in the runtime instances. The proposed framework is applied in a higher education environment to achieve flexible, updatable and dynamic BP.Keywords: Business Process Modeling, Change Management, Graph Based Modeling, Rule Based Modeling, Object Oriented PetriNet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20395416 Developing New Processes and Optimizing Performance Using Response Surface Methodology
Authors: S. Raissi
Abstract:
Response surface methodology (RSM) is a very efficient tool to provide a good practical insight into developing new process and optimizing them. This methodology could help engineers to raise a mathematical model to represent the behavior of system as a convincing function of process parameters. Through this paper the sequential nature of the RSM surveyed for process engineers and its relationship to design of experiments (DOE), regression analysis and robust design reviewed. The proposed four-step procedure in two different phases could help system analyst to resolve the parameter design problem involving responses. In order to check accuracy of the designed model, residual analysis and prediction error sum of squares (PRESS) described. It is believed that the proposed procedure in this study can resolve a complex parameter design problem with one or more responses. It can be applied to those areas where there are large data sets and a number of responses are to be optimized simultaneously. In addition, the proposed procedure is relatively simple and can be implemented easily by using ready-made standard statistical packages.Keywords: Response Surface Methodology (RSM), Design of Experiments (DOE), Process modeling, Process setting, Process optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841