Search results for: big data actors roles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7709

Search results for: big data actors roles

7259 An Efficient Approach to Mining Frequent Itemsets on Data Streams

Authors: Sara Ansari, Mohammad Hadi Sadreddini

Abstract:

The increasing importance of data stream arising in a wide range of advanced applications has led to the extensive study of mining frequent patterns. Mining data streams poses many new challenges amongst which are the one-scan nature, the unbounded memory requirement and the high arrival rate of data streams. In this paper, we propose a new approach for mining itemsets on data stream. Our approach SFIDS has been developed based on FIDS algorithm. The main attempts were to keep some advantages of the previous approach and resolve some of its drawbacks, and consequently to improve run time and memory consumption. Our approach has the following advantages: using a data structure similar to lattice for keeping frequent itemsets, separating regions from each other with deleting common nodes that results in a decrease in search space, memory consumption and run time; and Finally, considering CPU constraint, with increasing arrival rate of data that result in overloading system, SFIDS automatically detect this situation and discard some of unprocessing data. We guarantee that error of results is bounded to user pre-specified threshold, based on a probability technique. Final results show that SFIDS algorithm could attain about 50% run time improvement than FIDS approach.

Keywords: Data stream, frequent itemset, stream mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
7258 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: Anomaly detection, autoencoder, data centers, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
7257 Street Network in Bandung City, Indonesia: Comparison between City Center and New Commercial Area

Authors: Siska Soesanti, Norihiro Nakai

Abstract:

Bandung city center can be deemed as economic, social and cultural center. However the city center suffers from deterioration. The retail activities tend to shift outward the city center. Numerous idyllic residences changed into business premises in two villages situated in the north part of the city during 1990s, especially after a new highway and flyover opened. According to space syntax theory, the pattern of spatial integration in the urban grid is a prime determinant of movement patterns in the system. The syntactic analysis results show the flyover has insignificant influence on street network in the city center. However the flyover has been generating a major difference in the new commercial area since it has become relatively as strategic as the city center. Besides street network, local government policy, rapid private motorization and particular condition of each site also played important roles in encouraging the current commercial areas to flourish.

Keywords: City center, commercial area, space syntax, street network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
7256 AnQL: A Query Language for Annotation Documents

Authors: Neerja Bhatnagar, Ben A. Juliano, Renee S. Renner

Abstract:

This paper presents data annotation models at five levels of granularity (database, relation, column, tuple, and cell) of relational data to address the problem of unsuitability of most relational databases to express annotations. These models do not require any structural and schematic changes to the underlying database. These models are also flexible, extensible, customizable, database-neutral, and platform-independent. This paper also presents an SQL-like query language, named Annotation Query Language (AnQL), to query annotation documents. AnQL is simple to understand and exploits the already-existent wide knowledge and skill set of SQL.

Keywords: Annotation query language, data annotations, data annotation models, semantic data annotations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
7255 Machine Learning-Enabled Classification of Climbing Using Small Data

Authors: Nicholas Milburn, Yu Liang, Dalei Wu

Abstract:

Athlete performance scoring within the climbing domain presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.

Keywords: Classification, climbing, data imbalance, data scarcity, machine learning, time sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 567
7254 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule

Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.

Keywords: Instance selection, data reduction, MapReduce, kNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
7253 Optimization of Real Time Measured Data Transmission, Given the Amount of Data Transmitted

Authors: Michal Kopcek, Tomas Skulavik, Michal Kebisek, Gabriela Krizanova

Abstract:

The operation of nuclear power plants involves continuous monitoring of the environment in their area. This monitoring is performed using a complex data acquisition system, which collects status information about the system itself and values of many important physical variables e.g. temperature, humidity, dose rate etc. This paper describes a proposal and optimization of communication that takes place in teledosimetric system between the central control server responsible for the data processing and storing and the decentralized measuring stations, which are measuring the physical variables. Analyzes of ongoing communication were performed and consequently the optimization of the system architecture and communication was done.

Keywords: Communication protocol, transmission optimization, data acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
7252 Factors Adopting E-Travel Website: The Case of Indonesia

Authors: Vera Pujani, Alfitman, Refdinal Nazir

Abstract:

E-travel is travel agency-s companies employing internet and website as e-commerce context. This study presents numerous initial key factors of electronic travel model based on small travel agencies perspectives. Browsing previous studies related to website travel activities are conducted. Five small travel agencies in Indonesia has been deeply interviewed in case studies. The finding of this research is identifying numerous characteristics and dimension factors and travel website operations including ownermanager roles, business experiences, characteristically business, and technological aspects. This study is the preliminary research related to travel website adoption in Indonesia. The further study would be conducted in questionnaires of the quantitative research in Indonesia contexts as a developing country.

Keywords: Tourism, travel agency, e-commerce, website, developing country, small business, case study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038
7251 Teachers and Sports Coaches Supporting Young People-s Mental Health: Promotion, Prevention, and Early Intervention

Authors: Kelly R. Mazzer, Debra J. Rickwood, Thea Vanags

Abstract:

Young people have a high prevalence of mental health problems, yet tend not to seek help. Trusted adults in young people-s lives, such as teachers and sports coaches, can make a major positive contribution to the mental health of young people. Teachers and sports coaches may be in a position to be effective in supporting young people-s mental health through promotion, prevention and early intervention. This study reports findings from interviews with 21 teachers and 13 sports coaches of young people aged 12 to 18 in Canberra, Australia, regarding their perceptions of the relevance and effectiveness of their role in supporting young people-s mental health. Both teachers and coaches perceived having influential but slightly different roles to play in supporting mental health. There may be potential to elevate the influence of teachers and coaches as sources of support for young people and their mental health care.

Keywords: Early intervention, mental health promotion, coaches, teachers, young people

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2850
7250 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data

Authors: Hyun-Woo Cho

Abstract:

Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
7249 Possible Role of Polyamine on Tumor Spread after Surgical Trauma

Authors: Kuniyasu Soda

Abstract:

Surgical trauma seems to facilitate metastatic spread, although the underlying mechanisms are not known. Increased concentrations of polyamines (spermine and spermidine) in the blood seem to have associated with the enhanced malignant potential of cancer cells and decrease in anti-tumor immunity of cancer patients. In addition to de novo synthesis in rapidly growing cells such as normal regenerating cells and cancer cells, cells can take up polyamines from extra-cellular sources. We have shown that increased polyamine concentration results in decreases in cytokine production and expression of adhesion molecules involved in anti-tumor immunity, such as CD11a. And, immune cells in an environment with increased polyamine levels lose anti-tumor immune functions, such as lymphokine activated killer cell (LAK) activities. Because blood polyamine levels are increased in post-surgical patients, polyamine seems to have roles on post-traumatic tumor spread.

Keywords: Immune function, LAK, Polyamine, Surgical trauma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
7248 A GA-Based Role Assignment Approach for Web-based Cooperative Learning Environments

Authors: Yi-Chun Chang, Jian-Wei Li

Abstract:

Web-based cooperative learning focuses on (1) the interaction and the collaboration of community members, and (2) the sharing and the distribution of knowledge and expertise by network technology to enhance learning performance. Numerous research literatures related to web-based cooperative learning have demonstrated that cooperative scripts have a positive impact to specify, sequence, and assign cooperative learning activities. Besides, literatures have indicated that role-play in web-based cooperative learning environments enhances two or more students to work together toward the completion of a common goal. Since students generally do not know each other and they lack the face-to-face contact that is necessary for the negotiation of assigning group roles in web-based cooperative learning environments, this paper intends to further extend the application of genetic algorithm (GA) and propose a GA-based algorithm to tackle the problem of role assignment in web-based cooperative learning environments, which not only saves communication costs but also reduces conflict between group members in negotiating role assignments.

Keywords: genetic algorithm (GA), role assignment, role-play; web-based cooperative learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
7247 A Comparison of Image Data Representations for Local Stereo Matching

Authors: André Smith, Amr Abdel-Dayem

Abstract:

The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.

Keywords: Colour data, local stereo matching, stereo correspondence, disparity map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916
7246 Flexible, Adaptable and Scaleable Business Rules Management System for Data Validation

Authors: Kashif Kamran, Farooque Azam

Abstract:

The policies governing the business of any organization are well reflected in her business rules. The business rules are implemented by data validation techniques, coded during the software development process. Any change in business policies results in change in the code written for data validation used to enforce the business policies. Implementing the change in business rules without changing the code is the objective of this paper. The proposed approach enables users to create rule sets at run time once the software has been developed. The newly defined rule sets by end users are associated with the data variables for which the validation is required. The proposed approach facilitates the users to define business rules using all the comparison operators and Boolean operators. Multithreading is used to validate the data entered by end user against the business rules applied. The evaluation of the data is performed by a newly created thread using an enhanced form of the RPN (Reverse Polish Notation) algorithm.

Keywords: Business Rules, data validation, multithreading, Reverse Polish Notation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
7245 Tidal Data Analysis using ANN

Authors: Ritu Vijay, Rekha Govil

Abstract:

The design of a complete expansion that allows for compact representation of certain relevant classes of signals is a central problem in signal processing applications. Achieving such a representation means knowing the signal features for the purpose of denoising, classification, interpolation and forecasting. Multilayer Neural Networks are relatively a new class of techniques that are mathematically proven to approximate any continuous function arbitrarily well. Radial Basis Function Networks, which make use of Gaussian activation function, are also shown to be a universal approximator. In this age of ever-increasing digitization in the storage, processing, analysis and communication of information, there are numerous examples of applications where one needs to construct a continuously defined function or numerical algorithm to approximate, represent and reconstruct the given discrete data of a signal. Many a times one wishes to manipulate the data in a way that requires information not included explicitly in the data, which is done through interpolation and/or extrapolation. Tidal data are a very perfect example of time series and many statistical techniques have been applied for tidal data analysis and representation. ANN is recent addition to such techniques. In the present paper we describe the time series representation capabilities of a special type of ANN- Radial Basis Function networks and present the results of tidal data representation using RBF. Tidal data analysis & representation is one of the important requirements in marine science for forecasting.

Keywords: ANN, RBF, Tidal Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
7244 Spatial Data Mining by Decision Trees

Authors: S. Oujdi, H. Belbachir

Abstract:

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Keywords: C4.5 Algorithm, Decision trees, S-CART, Spatial data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986
7243 Affine Projection Algorithm with Variable Data-Reuse Factor

Authors: ChangWoo Lee, Young Kow Lee, Sung Jun Ban, SungHoo Choi, Sang Woo Kim

Abstract:

This paper suggests a new Affine Projection (AP) algorithm with variable data-reuse factor using the condition number as a decision factor. To reduce computational burden, we adopt a recently reported technique which estimates the condition number of an input data matrix. Several simulations show that the new algorithm has better performance than that of the conventional AP algorithm.

Keywords: Affine projection algorithm, variable data-reuse factor, condition number, convergence rate, misalignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
7242 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization

Authors: Hironori Karachi, Haruka Yamashita

Abstract:

Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.

Keywords: Data science, non-negative matrix factorization, missing data, quality of services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 453
7241 Using Data Mining for Learning and Clustering FCM

Authors: Somayeh Alizadeh, Mehdi Ghazanfari, Mohammad Fathian

Abstract:

Fuzzy Cognitive Maps (FCMs) have successfully been applied in numerous domains to show relations between essential components. In some FCM, there are more nodes, which related to each other and more nodes means more complex in system behaviors and analysis. In this paper, a novel learning method used to construct FCMs based on historical data and by using data mining and DEMATEL method, a new method defined to reduce nodes number. This method cluster nodes in FCM based on their cause and effect behaviors.

Keywords: Clustering, Data Mining, Fuzzy Cognitive Map(FCM), Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
7240 Principal Role and School Structure

Authors: Behnaz Mohajeran, Alireza Ghaleei

Abstract:

This main purpose of the study reported here was to investigate the extent to which the form of school governance (particularly decision-making) had an impact upon the effectiveness of the school with reference to parental involvement, planning and budgeting, professional development of teachers, school facilities and resources, and student outcomes. Particular attention was given to decision-making within the governance arrangements. The study was based on four case studies of high schools in New South Wales, Australia including one government school, one independent Christian community school, one independent Catholic school, and one Catholic systemic school. The focus of the research was principals, teachers, parents, and students of four schools with varying governance structures. To gain a greater insight into the issues, the researchers collected information by questionnaire, semi-structured interview, and review of school key documents. This study found that it was not so much structure but the centrality of the school Principal and the way that the Principal perceived his/her roles in relation to others that impacted most on school governance.

Keywords: governance structure, principal role, schooleffectiveness, stakeholder involvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
7239 Behavioural-Orientation and Continuity of Informality in Ghana

Authors: Yvonne Ayerki Lamptey

Abstract:

The expanding informal sector in developing countries and in Ghana in particular from the 1980s has now been aggravated by the growing population and downsizing in both the public and private sectors, with displaced workers finding alternative livelihoods in the informal sector. Youth and graduate unemployment also swell the numbers and further promote the continuity of the sector. Formal workers and institutions facilitate the growth and complicate demarcations between informality within the formal and informal sectors. In spite of its growth and increasing importance, the informal economy does not feature in policy debates and has often been neglected by the Ghana government. The phenomenon has evolved with modernity into myriad unimaginable forms. Indeed, actors within the sector often clash with the interventions provided by policy makers - because neither the operatives nor the activities they perform can be clearly defined. This study uses in-depth interviews to explore the behavioural nature of the informal workers in Ghana to understand how the operatives describe and perceive the sector, and to identify the factors that influence their drive to stay within the sector. This paper concludes that the operatives clearly distinguish between the formal and informal sectors and identify the characteristics and conditions that constitute the informal sector. Other workers are trapped between formality and informality. The findings also enumerate the push and pull factors contributing to the growth of the sector.

Keywords: Informal work, informal sector, operatives, Sub-Saharan Africa, unemployment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
7238 Modeling Low Voltage Power Line as a Data Communication Channel

Authors: Eklas Hossain, Sheroz Khan, Ahad Ali

Abstract:

Power line communications may be used as a data communication channel in public and indoor distribution networks so that it does not require the installing of new cables. Industrial low voltage distribution network may be utilized for data transfer required by the on-line condition monitoring of electric motors. This paper presents a pilot distribution network for modeling low voltage power line as data transfer channel. The signal attenuation in communication channels in the pilot environment is presented and the analysis is done by varying the corresponding parameters for the signal attenuation.

Keywords: Data communication, indoor distribution networks, low voltage, power line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3282
7237 Generating Concept Trees from Dynamic Self-organizing Map

Authors: Norashikin Ahmad, Damminda Alahakoon

Abstract:

Self-organizing map (SOM) provides both clustering and visualization capabilities in mining data. Dynamic self-organizing maps such as Growing Self-organizing Map (GSOM) has been developed to overcome the problem of fixed structure in SOM to enable better representation of the discovered patterns. However, in mining large datasets or historical data the hierarchical structure of the data is also useful to view the cluster formation at different levels of abstraction. In this paper, we present a technique to generate concept trees from the GSOM. The formation of tree from different spread factor values of GSOM is also investigated and the quality of the trees analyzed. The results show that concept trees can be generated from GSOM, thus, eliminating the need for re-clustering of the data from scratch to obtain a hierarchical view of the data under study.

Keywords: dynamic self-organizing map, concept formation, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
7236 Optical Fiber Data Throughput in a Quantum Communication System

Authors: Arash Kosari, Ali Araghi

Abstract:

A mathematical model for an optical-fiber communication channel is developed which results in an expression that calculates the throughput and loss of the corresponding link. The data are assumed to be transmitted by using of separate photons with different polarizations. The derived model also shows the dependency of data throughput with length of the channel and depolarization factor. It is observed that absorption of photons affects the throughput in a more intensive way in comparison with that of depolarization. Apart from that, the probability of depolarization and the absorption of radiated photons are obtained.

Keywords: Absorption, data throughput, depolarization, optical fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
7235 Fuzzy Clustering of Categorical Attributes and its Use in Analyzing Cultural Data

Authors: George E. Tsekouras, Dimitris Papageorgiou, Sotiris Kotsiantis, Christos Kalloniatis, Panagiotis Pintelas

Abstract:

We develop a three-step fuzzy logic-based algorithm for clustering categorical attributes, and we apply it to analyze cultural data. In the first step the algorithm employs an entropy-based clustering scheme, which initializes the cluster centers. In the second step we apply the fuzzy c-modes algorithm to obtain a fuzzy partition of the data set, and the third step introduces a novel cluster validity index, which decides the final number of clusters.

Keywords: Categorical data, cultural data, fuzzy logic clustering, fuzzy c-modes, cluster validity index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
7234 A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Authors: R. Sahraian, A. Karampour Haghighi, E. Ghasemi

Abstract:

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.

Keywords: Integrated process planning and scheduling, multi objective, MILP, Particle swarm optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
7233 Weighted Data Replication Strategy for Data Grid Considering Economic Approach

Authors: N. Mansouri, A. Asadi

Abstract:

Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.

Keywords: Data grid, data replication, simulation, replica selection, replica placement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
7232 A Proposal of an Automatic Formatting Method for Transforming XML Data

Authors: Zhe JIN, Motomichi TOYAMA

Abstract:

PPX(Pretty Printer for XML) is a query language that offers a concise description method of formatting the XML data into HTML. In this paper, we propose a simple specification of formatting method that is a combination description of automatic layout operators and variables in the layout expression of the GENERATE clause of PPX. This method can automatically format irregular XML data included in a part of XML with layout decision rule that is referred to DTD. In the experiment, a quick comparison shows that PPX requires far less description compared to XSLT or XQuery programs doing same tasks.

Keywords: PPX, Irregular XML data, Layout decision rule, HTML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
7231 Data Mining in Oral Medicine Using Decision Trees

Authors: Fahad Shahbaz Khan, Rao Muhammad Anwer, Olof Torgersson, Göran Falkman

Abstract:

Data mining has been used very frequently to extract hidden information from large databases. This paper suggests the use of decision trees for continuously extracting the clinical reasoning in the form of medical expert-s actions that is inherent in large number of EMRs (Electronic Medical records). In this way the extracted data could be used to teach students of oral medicine a number of orderly processes for dealing with patients who represent with different problems within the practice context over time.

Keywords: Data mining, Oral Medicine, Decision Trees, WEKA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2501
7230 An Efficient Data Collection Approach for Wireless Sensor Networks

Authors: Hanieh Alipour, Alireza Nemaney Pour

Abstract:

One of the most important applications of wireless sensor networks is data collection. This paper proposes as efficient approach for data collection in wireless sensor networks by introducing Member Forward List. This list includes the nodes with highest priority for forwarding the data. When a node fails or dies, this list is used to select the next node with higher priority. The benefit of this node is that it prevents the algorithm from repeating when a node fails or dies. The results show that Member Forward List decreases power consumption and latency in wireless sensor networks.

Keywords: Data Collection, Wireless Sensor Network, SensorNode, Tree-Based

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408