Search results for: rule based systems.
9288 Automatic Segmentation of the Clean Speech Signal
Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze
Abstract:
Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The MP is based on making the product of the speech wavelet transform coefficients (WTC). We have estimated our method on the Keele database. The results show the effectiveness of our method. It indicates that the two features can find word boundaries, and extracted the segments of the clean speech.
Keywords: Speech segmentation, Multi-scale product, Spectral centroid, Zero crossings rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25089287 Active Disturbance Rejection Control for Wind System Based On a DFIG
Authors: R. Chakib, A. Essadki, M. Cherkaoui
Abstract:
This paper proposes the study of a robust control of the doubly fed induction generator (DFIG) used in a wind energy production. The proposed control is based on the linear active disturbance rejection control (ADRC) and it is applied to the control currents rotor of the DFIG, the DC bus voltage and active and reactive power exchanged between the DFIG and the network. The system under study and the proposed control are simulated using MATLAB/SIMULINK.
Keywords: Doubly fed induction generator DFIG, Active disturbance rejection control ADRC, Vector control, MPPT, Extended state observer, back to back converter, Wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25139286 Applying Lagrangian Relaxation-Based Algorithm for the Airline Coordinated Flight Scheduling Problems
Authors: Chia-Hung Chen, Shangyao Yan
Abstract:
The solution algorithm, based on Lagrangian relaxation, a sub-gradient method and a heuristic to find the upper bound of the solution, is proposed to solve the coordinated fleet routing and flight scheduling problems. Numerical tests are performed to evaluate the proposed algorithm using real operating data from two Taiwan airlines. The test results indicate that the solution algorithm is a significant improvement over those obtained with CPLEX, consequently they could be useful for allied airlines to solve coordinated fleet routing and flight scheduling problems.
Keywords: Coordinated flight scheduling, multiple commodity network flow problem, Lagrangian relaxation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18149285 Social Networks and Absorptive Capacity
Authors: Rachelle Bosua, Nina Evans
Abstract:
The resource-based view of the firm regards knowledge as one of the most important organizational assets and a key strategic resource that contributes unique value to organizations. The acquisition, absorption and internalization of external knowledge are central to an organization-s innovative capabilities. This ability to evaluate, acquire and integrate new knowledge from its environment is referred to as a firm-s absorptive capacity (AC). This research in progress paper explores the link between interorganizational Social Networks (SNs) and a firm-s Absorptive Capacity (AC). Based on an in-depth literature survey of both concepts, four propositions are proposed that explain the link between AC and SNs. These propositions suggest that SNs are key to a firm-s AC. A qualitative research method is proposed to test the set of propositions in the next stage of this research.Keywords: Knowledge, Innovation, Absorptive Capacity, Social Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17479284 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix-to-Pix GAN
Authors: Muhammad Atif, Cang Yan
Abstract:
The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on Convolutional Neural Networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an Autoencoders-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the Pix-to-Pix GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.
Keywords: Low light image enhancement, deep learning, convolutional neural network, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 479283 Tensile and Fracture Properties of Cast and Forged Composite Synthesized by Addition of in-situ Generated Al3Ti-Al2O3 Particles to Magnesium
Authors: H. M. Nanjundaswamy, S. K. Nath, S. Ray
Abstract:
TiO2 particles have been added in molten aluminium to result in aluminium based cast Al/Al3Ti-Al2O3 composite, which has been added then to molten magnesium to synthesize magnesium based cast Mg-Al/Al3Ti-Al2O3 composite. The nominal compositions in terms of Mg, Al, and TiO2 contents in the magnesium based composites are Mg-9Al-0.6TiO2, Mg-9Al-0.8TiO2, Mg-9Al-1.0TiO2 and Mg-9Al-1.2TiO2 designated respectively as MA6T, MA8T, MA10T and MA12T. The microstructure of the cast magnesium based composite shows grayish rods of intermetallics Al3Ti, inherited from aluminium based composite but these rods, on hot forging, breaks into smaller lengths decreasing the average aspect ratio (length to diameter) from 7.5 to 3.0. There are also cavities in between the broken segments of rods. β-phase in cast microstructure, Mg17Al12, dissolves during heating prior to forging and re-precipitates as relatively finer particles on cooling. The amount of β-phase also decreases on forging as segregation is removed. In both the cast and forged composite, the Brinell hardness increases rapidly with increasing addition of TiO2 but the hardness is higher in forged composites by about 80 BHN. With addition of higher level of TiO2 in magnesium based cast composite, yield strength decreases progressively but there is marginal increase in yield strength over that of the cast Mg-9 wt. pct. Al, designated as MA alloy. But the ultimate tensile strength (UTS) in the cast composites decreases with the increasing particle content indicating possibly an early initiation of crack in the brittle inter-dendritic region and their easy propagation through the interfaces of the particles. In forged composites, there is a significant improvement in both yield strength and UTS with increasing TiO2 addition and also, over those observed in their cast counterpart, but at higher addition it decreases. It may also be noted that as in forged MA alloy, incomplete recovery of forging strain increases the strength of the matrix in the composites and the ductility decreases both in the forged alloy and the composites. Initiation fracture toughness, JIC, decreases drastically in cast composites compared to that in MA alloy due to the presence of intermetallic Al3Ti and Al2O3 particles in the composite. There is drastic reduction of JIC on forging both in the alloy and the composites, possibly due to incomplete recovery of forging strain in both as well as breaking of Al3Ti rods and the voids between the broken segments of Al3Ti rods in composites. The ratio of tearing modulus to elastic modulus in cast composites show higher ratio, which increases with the increasing TiO2 addition. The ratio decreases comparatively more on forging of cast MA alloy than those in forged composites.
Keywords: Composite, fracture toughness, forging, tensile properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13659282 Security of Mobile Agent in Ad hoc Network using Threshold Cryptography
Authors: S.M. Sarwarul Islam Rizvi, Zinat Sultana, Bo Sun, Md. Washiqul Islam
Abstract:
In a very simple form a Mobile Agent is an independent piece of code that has mobility and autonomy behavior. One of the main advantages of using Mobile Agent in a network is - it reduces network traffic load. In an, ad hoc network Mobile Agent can be used to protect the network by using agent based IDS or IPS. Besides, to deploy dynamic software in the network or to retrieve information from network nodes Mobile Agent can be useful. But in an ad hoc network the Mobile Agent itself needs some security. Security services should be guaranteed both for Mobile Agent and for Agent Server. In this paper to protect the Mobile Agent and Agent Server in an ad hoc network we have proposed a solution which is based on Threshold Cryptography, a new vibe in the cryptographic world where trust is distributed among multiple nodes in the network.
Keywords: Ad hoc network, Mobile Agent, Security, Threats, Threshold Cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19679281 Component-based Segmentation of Words from Handwritten Arabic Text
Authors: Jawad H AlKhateeb, Jianmin Jiang, Jinchang Ren, Stan S Ipson
Abstract:
Efficient preprocessing is very essential for automatic recognition of handwritten documents. In this paper, techniques on segmenting words in handwritten Arabic text are presented. Firstly, connected components (ccs) are extracted, and distances among different components are analyzed. The statistical distribution of this distance is then obtained to determine an optimal threshold for words segmentation. Meanwhile, an improved projection based method is also employed for baseline detection. The proposed method has been successfully tested on IFN/ENIT database consisting of 26459 Arabic words handwritten by 411 different writers, and the results were promising and very encouraging in more accurate detection of the baseline and segmentation of words for further recognition.Keywords: Arabic OCR, off-line recognition, Baseline estimation, Word segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22079280 Feasibility Study on Vanillin Production from Jatropha curcas Stem Using Steam Explosion as a Pretreatment
Authors: Pilanee Vaithanomsat, Waraporn Apiwatanapiwat
Abstract:
Jatropha curcas stem was analyzed for chemical compositions: 19.11% pentosan, 42.99% alphacellulose and 24.11% lignin based on dry weight of 100-g raw material. The condition to fractionate cellulose, hemicellulose and lignin in J. curcas stem using steam explosion was optimized. The procedure started from cutting J. curcas stem into small pieces and soaked in water for overnight. After that, they were steam exploded at 214 °C and 21 kg/cm2 for 5 min. The obtained hydrolysate contained 1.55 g/L ferulic acid which after that was used as substrate for vanillin production by Aspergillus niger and Pycnoporus cinnabarinus in one-step process. The maximum 0.65 g/L of vanillin were obtained with the conversion rate of 45.2% based on the initial ferulic acid.Keywords: Vanillin, production, Jatropha curcas stem, steam explosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23839279 Intelligent Video-Based Monitoring of Freeway Traffic
Authors: Saad M. Al-Garni, Adel A. Abdennour
Abstract:
Freeways are originally designed to provide high mobility to road users. However, the increase in population and vehicle numbers has led to increasing congestions around the world. Daily recurrent congestion substantially reduces the freeway capacity when it is most needed. Building new highways and expanding the existing ones is an expensive solution and impractical in many situations. Intelligent and vision-based techniques can, however, be efficient tools in monitoring highways and increasing the capacity of the existing infrastructures. The crucial step for highway monitoring is vehicle detection. In this paper, we propose one of such techniques. The approach is based on artificial neural networks (ANN) for vehicles detection and counting. The detection process uses the freeway video images and starts by automatically extracting the image background from the successive video frames. Once the background is identified, subsequent frames are used to detect moving objects through image subtraction. The result is segmented using Sobel operator for edge detection. The ANN is, then, used in the detection and counting phase. Applying this technique to the busiest freeway in Riyadh (King Fahd Road) achieved higher than 98% detection accuracy despite the light intensity changes, the occlusion situations, and shadows.Keywords: Background Extraction, Neural Networks, VehicleDetection, Freeway Traffic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19139278 BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis
Authors: Mohamed A. Mahfouz, M. A. Ismail
Abstract:
Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.Keywords: Machine learning, biclustering, bi-dimensional clustering, gene expression analysis, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19649277 Image Similarity: A Genetic Algorithm Based Approach
Authors: R. C. Joshi, Shashikala Tapaswi
Abstract:
The paper proposes an approach using genetic algorithm for computing the region based image similarity. The image is denoted using a set of segmented regions reflecting color and texture properties of an image. An image is associated with a family of image features corresponding to the regions. The resemblance of two images is then defined as the overall similarity between two families of image features, and quantified by a similarity measure, which integrates properties of all the regions in the images. A genetic algorithm is applied to decide the most plausible matching. The performance of the proposed method is illustrated using examples from an image database of general-purpose images, and is shown to produce good results.Keywords: Image Features, color descriptor, segmented classes, texture descriptors, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23269276 Modified Hankel Matrix Approach for Model Order Reduction in Time Domain
Authors: C. B. Vishwakarma
Abstract:
The author presented a method for model order reduction of large-scale time-invariant systems in time domain. In this approach, two modified Hankel matrices are suggested for getting reduced order models. The proposed method is simple, efficient and retains stability feature of the original high order system. The viability of the method is illustrated through the examples taken from literature.
Keywords: Model Order Reduction, Stability, Hankel Matrix, Time-Domain, Integral Square Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20789275 An Exploratory Environment for Concurrency Control Algorithms
Authors: Jinhua Guo
Abstract:
Designing, implementing, and debugging concurrency control algorithms in a real system is a complex, tedious, and errorprone process. Further, understanding concurrency control algorithms and distributed computations is itself a difficult task. Visualization can help with both of these problems. Thus, we have developed an exploratory environment in which people can prototype and test various versions of concurrency control algorithms, study and debug distributed computations, and view performance statistics of distributed systems. In this paper, we describe the exploratory environment and show how it can be used to explore concurrency control algorithms for the interactive steering of distributed computations.Keywords: Consistency, Distributed Computing, InteractiveSteering, Simulation, Visualization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18179274 Hand Gesture Detection via EmguCV Canny Pruning
Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae
Abstract:
Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.
Keywords: Canny pruning, hand recognition, machine learning, skin tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13099273 Building an Interactive Web-Based GIS System for Planning of Geological Survey Works
Authors: Wu Defu, Kiefer Chiam, Yang Kin Seng
Abstract:
The planning of geological survey works is an iterative process which involves planner, geologist, civil engineer and other stakeholders, who perform different roles and have different points of view. Traditionally, the team used paper maps or CAD drawings to present the proposal which is not an efficient way to present and share idea on the site investigation proposal such as sitting of borehole location or seismic survey lines. This paper focuses on how a GIS approach can be utilised to develop a webbased system to support decision making process in the planning of geological survey works and also to plan site activities carried out by Singapore Geological Office (SGO). The authors design a framework of building an interactive web-based GIS system, and develop a prototype, which enables the users to obtain rapidly existing geological information and also to plan interactively borehole locations and seismic survey lines via a web browser. This prototype system is used daily by SGO and has shown to be effective in increasing efficiency and productivity as the time taken in the planning of geological survey works is shortened. The prototype system has been developed using the ESRI ArcGIS API 3.7 for Flex which is based on the ArcGIS 10.2.1 platform.
Keywords: Engineering geology, Flex, Geological survey planning, Geoscience, GIS, Site investigation, WebGIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36889272 A Neuroscience-Based Learning Technique: Framework and Application to STEM
Authors: Dante J. Dorantes-González, Aldrin Balsa-Yepes
Abstract:
Existing learning techniques such as problem-based learning, project-based learning, or case study learning are learning techniques that focus mainly on technical details, but give no specific guidelines on learner’s experience and emotional learning aspects such as arousal salience and valence, being emotional states important factors affecting engagement and retention. Some approaches involving emotion in educational settings, such as social and emotional learning, lack neuroscientific rigorousness and use of specific neurobiological mechanisms. On the other hand, neurobiology approaches lack educational applicability. And educational approaches mainly focus on cognitive aspects and disregard conditioning learning. First, authors start explaining the reasons why it is hard to learn thoughtfully, then they use the method of neurobiological mapping to track the main limbic system functions, such as the reward circuit, and its relations with perception, memories, motivations, sympathetic and parasympathetic reactions, and sensations, as well as the brain cortex. The authors conclude explaining the major finding: The mechanisms of nonconscious learning and the triggers that guarantee long-term memory potentiation. Afterward, the educational framework for practical application and the instructors’ guidelines are established. An implementation example in engineering education is given, namely, the study of tuned-mass dampers for earthquake oscillations attenuation in skyscrapers. This work represents an original learning technique based on nonconscious learning mechanisms to enhance long-term memories that complement existing cognitive learning methods.
Keywords: Emotion, emotion-enhanced memory, learning technique, STEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10159271 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet
Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel
Abstract:
Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.Keywords: Sanitation systems, nano membrane toilet, LCA, stochastic uncertainty analysis, Monte Carlo Simulations, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9889270 Protein-Protein Interaction Detection Based on Substring Sensitivity Measure
Authors: Nazar Zaki, Safaai Deris, Hany Alashwal
Abstract:
Detecting protein-protein interactions is a central problem in computational biology and aberrant such interactions may have implicated in a number of neurological disorders. As a result, the prediction of protein-protein interactions has recently received considerable attention from biologist around the globe. Computational tools that are capable of effectively identifying protein-protein interactions are much needed. In this paper, we propose a method to detect protein-protein interaction based on substring similarity measure. Two protein sequences may interact by the mean of the similarities of the substrings they contain. When applied on the currently available protein-protein interaction data for the yeast Saccharomyces cerevisiae, the proposed method delivered reasonable improvement over the existing ones.
Keywords: Protein-Protein Interaction, support vector machine, feature extraction, pairwise alignment, Smith-Waterman score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19379269 K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors
Authors: Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang
Abstract:
Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs.
Keywords: Feature matching, k-means clustering, scale invariant feature transform, linear exhaustive search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10869268 A Rough-set Based Approach to Design an Expert System for Personnel Selection
Authors: Ehsan Akhlaghi
Abstract:
Effective employee selection is a critical component of a successful organization. Many important criteria for personnel selection such as decision-making ability, adaptability, ambition, and self-organization are naturally vague and imprecise to evaluate. The rough sets theory (RST) as a new mathematical approach to vagueness and uncertainty is a very well suited tool to deal with qualitative data and various decision problems. This paper provides conceptual, descriptive, and simulation results, concentrating chiefly on human resources and personnel selection factors. The current research derives certain decision rules which are able to facilitate personnel selection and identifies several significant features based on an empirical study conducted in an IT company in Iran.Keywords: Decision Making, Expert System, PersonnelSelection, Rough Set Theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23599267 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features
Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli
Abstract:
Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.
Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23129266 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features
Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli
Abstract:
Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17019265 Fast Wavelet Image Denoising Based on Local Variance and Edge Analysis
Authors: Gaoyong Luo
Abstract:
The approach based on the wavelet transform has been widely used for image denoising due to its multi-resolution nature, its ability to produce high levels of noise reduction and the low level of distortion introduced. However, by removing noise, high frequency components belonging to edges are also removed, which leads to blurring the signal features. This paper proposes a new method of image noise reduction based on local variance and edge analysis. The analysis is performed by dividing an image into 32 x 32 pixel blocks, and transforming the data into wavelet domain. Fast lifting wavelet spatial-frequency decomposition and reconstruction is developed with the advantages of being computationally efficient and boundary effects minimized. The adaptive thresholding by local variance estimation and edge strength measurement can effectively reduce image noise while preserve the features of the original image corresponding to the boundaries of the objects. Experimental results demonstrate that the method performs well for images contaminated by natural and artificial noise, and is suitable to be adapted for different class of images and type of noises. The proposed algorithm provides a potential solution with parallel computation for real time or embedded system application.Keywords: Edge strength, Fast lifting wavelet, Image denoising, Local variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20289264 Sliding Mode Control of a Bus Suspension System
Authors: Mujde Turkkan, Nurkan Yagiz
Abstract:
The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.
Keywords: Sliding mode control, bus model, air suspension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17719263 Strategic Management Accounting: Implementation and Control
Authors: Alireza Azimi Sani
Abstract:
This paper discusses the design characteristics management accounting systems should have to be useful for strategic planning and control and provides brief introductions to strategic variance analysis, profit-linked performance measurement models and balanced scorecard. It shows two multi-period, multiproduct models are specified, can be related to Porter's strategy framework and cost and revenue drivers, and can be used to support strategic planning, control and cost management.
Keywords: Accounting, balanced scorecard, profit-linked, strategic management, variance analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50219262 An Adaptive Setting of Frequency Relay with Consideration on Load and Power System Dynamics
Authors: J. Mirzaei, H. Kazemi Kargar
Abstract:
This paper presents a new approach for setting frequency relays based on the dynamic of power system. A simplified model of the power system based on the load-frequency control loop will be developed to be used instead of the complete model of the power system. The effects of the equipments and their responses on the frequency variations of the power plant will be investigated and then a method for adaptive settings of frequency relays will be explained. The proposed method will be investigated by analyzing a simplified model of a power plant by MATLAB software.Keywords: Adaptive Settings, Frequency Relay (FR), PowerSystem Dynamics, SFR model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14369261 Minimum Energy of a Prismatic Joint with out: Actuator: Application on RRP Robot
Authors: Tawiwat V., Tosapolporn P., Kedit J.
Abstract:
This research proposes the state of art on how to control or find the trajectory paths of the RRP robot when the prismatic joint is malfunction. According to this situation, the minimum energy of the dynamic optimization is applied. The RRP robot or similar systems have been used in many areas such as fire fighter truck, laboratory equipment and military truck for example a rocket launcher. In order to keep on task that assigned, the trajectory paths must be computed. Here, the open loop control is applied and the result of an example show the reasonable solution which can be applied to the controllable system.
Keywords: RRP robot, Optimal Control, Minimum Energy and Under Actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13009260 The Effect of Pleurotus sajor-caju (PSC) Addition on the Nutritional Composition and Sensory Properties of Poultry-Based Patty
Authors: W. I. Wan Rosli, M. A. Solihah., N. A. Nik Fakurudin, M. S. Aishah, S. S. J. Mohsin
Abstract:
The nutrient composition and sensory properties of poultry-based patties (PBPs) incorporated with various levels of grey oyster mushroom (Pleurotus sajor-caju, PSC) were studied. The PBPs were formulated with either 0%, 25% or 50% of fresh ground PSC. Results show poultry patty formulated with 25% PSC had protein content of 17.46% lower than the control patty which had 18.13% but it was not significant. Meanwhile, both cooked poultry patties containing 25% and 50% PSC significantly recorded lower concentration of fat at 10.67% and 7.15%, respectively. On the other hand, poultry patty added with 50% ground PSC shows the highest concentration of total dietary fibre (TDF) of 4.90 g/100g compared to poultry patty containing 25% of mushroom (3.40 g/100g) and to the control (1.90g/100g). In addition, patty incorporated with 25% PSC had moisture content of 57.91% which is significantly lower than patty formulated with 50% which had moisture of 61.80%. In the sensory evaluation, there were no differences recorded in all sensory attributes of PSC-based patties judged by untrained panelists. In conclusion, the addition of PSC to replace poultry meat can be recommended for the purpose of lowering production cost, enhancing nutritional composition and maintaining the acceptability of poultry patties.Keywords: oyster mushroom (PSC), poultry patty, nutrient composition, sensory evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17549259 Loan Guarantee Schemes: Private and Public Examples
Authors: Simeon Karafolas, Maciej Woźniak
Abstract:
Guarantee schemes have been introduced in the economic and financial system as response to difficulties of SMEs for the access to the banking credit. Guarantee companies first appeared at the 19e century. Last wave of the development of those schemes appeared at the decade of 1990’s in particular to the new countries members of the EU. Guarantee schemes are presented as public owned guarantee companies, private ones mainly through a mutual form, but also under a mixed form. The paper based on guarantee schemes of five countries tries to investigate the differences that can exist within different guarantee companies. This investigation is based on some indicators that are time of response to the demand of guarantee, threshold of guarantee, acceptance of applications for guarantee, jobs created or saved and bureaucratic issues. It appears that guarantee companies have not the same reaction to the demand of SMEs and some of them are much more active.
Keywords: DIFASS, Guarantees, Loans.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008