Search results for: iterative dynamic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5246

Search results for: iterative dynamic algorithm

776 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: Load forecasting, artificial neural network, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 686
775 A Comparison of SVM-based Criteria in Evolutionary Method for Gene Selection and Classification of Microarray Data

Authors: Rameswar Debnath, Haruhisa Takahashi

Abstract:

An evolutionary method whose selection and recombination operations are based on generalization error-bounds of support vector machine (SVM) can select a subset of potentially informative genes for SVM classifier very efficiently [7]. In this paper, we will use the derivative of error-bound (first-order criteria) to select and recombine gene features in the evolutionary process, and compare the performance of the derivative of error-bound with the error-bound itself (zero-order) in the evolutionary process. We also investigate several error-bounds and their derivatives to compare the performance, and find the best criteria for gene selection and classification. We use 7 cancer-related human gene expression datasets to evaluate the performance of the zero-order and first-order criteria of error-bounds. Though both criteria have the same strategy in theoretically, experimental results demonstrate the best criterion for microarray gene expression data.

Keywords: support vector machine, generalization error-bound, feature selection, evolutionary algorithm, microarray data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
774 Modified Fuzzy ARTMAP and Supervised Fuzzy ART: Comparative Study with Multispectral Classification

Authors: F.Alilat, S.Loumi, H.Merrad, B.Sansal

Abstract:

In this article a modification of the algorithm of the fuzzy ART network, aiming at returning it supervised is carried out. It consists of the search for the comparison, training and vigilance parameters giving the minimum quadratic distances between the output of the training base and those obtained by the network. The same process is applied for the determination of the parameters of the fuzzy ARTMAP giving the most powerful network. The modification consist in making learn the fuzzy ARTMAP a base of examples not only once as it is of use, but as many time as its architecture is in evolution or than the objective error is not reached . In this way, we don-t worry about the values to impose on the eight (08) parameters of the network. To evaluate each one of these three networks modified, a comparison of their performances is carried out. As application we carried out a classification of the image of Algiers-s bay taken by SPOT XS. We use as criterion of evaluation the training duration, the mean square error (MSE) in step control and the rate of good classification per class. The results of this study presented as curves, tables and images show that modified fuzzy ARTMAP presents the best compromise quality/computing time.

Keywords: Neural Networks, fuzzy ART, fuzzy ARTMAP, Remote sensing, multispectral Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
773 Multiple Model and Neural based Adaptive Multi-loop PID Controller for a CSTR Process

Authors: R.Vinodha S. Abraham Lincoln, J. Prakash

Abstract:

Multi-loop (De-centralized) Proportional-Integral- Derivative (PID) controllers have been used extensively in process industries due to their simple structure for control of multivariable processes. The objective of this work is to design multiple-model adaptive multi-loop PID strategy (Multiple Model Adaptive-PID) and neural network based multi-loop PID strategy (Neural Net Adaptive-PID) for the control of multivariable system. The first method combines the output of multiple linear PID controllers, each describing process dynamics at a specific level of operation. The global output is an interpolation of the individual multi-loop PID controller outputs weighted based on the current value of the measured process variable. In the second method, neural network is used to calculate the PID controller parameters based on the scheduling variable that corresponds to major shift in the process dynamics. The proposed control schemes are simple in structure with less computational complexity. The effectiveness of the proposed control schemes have been demonstrated on the CSTR process, which exhibits dynamic non-linearity.

Keywords: Multiple-model Adaptive PID controller, Multivariableprocess, CSTR process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
772 Derivation of Empirical Formulae to Predict Pressure and Impulsive Asymptotes for P-I Diagrams of One-way RC Panels

Authors: Azrul A. Mutalib, Masoud Abedini, Shahrizan Baharom, Hong Hao

Abstract:

There are only limited studies that directly correlate the increase in reinforced concrete (RC) panel structural capacities in resisting the blast loads with different RC panel structural properties in terms of blast loading characteristics, RC panel dimensions, steel reinforcement ratio and concrete material strength. In this paper, numerical analyses of dynamic response and damage of the one-way RC panel to blast loads are carried out using the commercial software LS-DYNA. A series of simulations are performed to predict the blast response and damage of columns with different level and magnitude of blast loads. The numerical results are used to develop pressureimpulse (P-I) diagrams of one-way RC panels. Based on the numerical results, the empirical formulae are derived to calculate the pressure and impulse asymptotes of the P-I diagrams of RC panels. The results presented in this paper can be used to construct P-I diagrams of RC panels with different concrete and reinforcement properties. The P-I diagrams are very useful to assess panel capacities in resisting different blast loads.

Keywords: One-way reinforced concrete (RC) panels, Explosive loads, LS-DYNA Software, Pressure-Impulse (P-I) diagram, Numerical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763
771 Physics of Decision for Polling Place Management: A Case Study from the 2020 USA Presidential Election

Authors: Nafe Moradkhani, Frederick Benaben, Benoit Montreuil, Ali Vatankhah Barenji, Dima Nazzal

Abstract:

In the context of the global pandemic, the practical management of the 2020 presidential election in the USA was a strong concern. To anticipate and prepare for this election accurately, one of the main challenges was to confront: (i) forecasts of voter turnout, (ii) capacities of the facilities and, (iii) potential configuration options of resources. The approach chosen to conduct this anticipative study consists of collecting data about forecasts and using simulation models to work simultaneously on resource allocation and facility configuration of polling places in Fulton County, Georgia’s largest county. This article presents the results of the simulations of such places facing pre-identified potential risks. These results are oriented towards the efficiency of these places according to different criteria (health, trust, comfort). Then a dynamic framework is introduced to describe risks as physical forces perturbing the efficiency of the observed system. Finally, the main benefits and contributions resulting from this simulation campaign are presented.

Keywords: performance, decision support, simulation, artificial intelligence, risk management, election, pandemics, information system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
770 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.

Keywords: Integral differential equations, American options, jump–diffusion model, rational approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 561
769 Application of Exact String Matching Algorithms towards SMILES Representation of Chemical Structure

Authors: Ahmad Fadel Klaib, Zurinahni Zainol, Nurul Hashimah Ahamed, Rosma Ahmad, Wahidah Hussin

Abstract:

Bioinformatics and Cheminformatics use computer as disciplines providing tools for acquisition, storage, processing, analysis, integrate data and for the development of potential applications of biological and chemical data. A chemical database is one of the databases that exclusively designed to store chemical information. NMRShiftDB is one of the main databases that used to represent the chemical structures in 2D or 3D structures. SMILES format is one of many ways to write a chemical structure in a linear format. In this study we extracted Antimicrobial Structures in SMILES format from NMRShiftDB and stored it in our Local Data Warehouse with its corresponding information. Additionally, we developed a searching tool that would response to user-s query using the JME Editor tool that allows user to draw or edit molecules and converts the drawn structure into SMILES format. We applied Quick Search algorithm to search for Antimicrobial Structures in our Local Data Ware House.

Keywords: Exact String-matching Algorithms, NMRShiftDB, SMILES Format, Antimicrobial Structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
768 Large Amplitude Free Vibration of a Very Sag Marine Cable

Authors: O. Punjarat, S. Chucheepsakul, T. Phanyasahachart

Abstract:

This paper focuses on a variational formulation of large amplitude free vibration behavior of a very sag marine cable. In the static equilibrium state, the marine cable has a very large sag configuration. In the motion state, the marine cable is assumed to vibrate in in-plane motion with large amplitude from the static equilibrium position. The total virtual work-energy of the marine cable at the dynamic state is formulated which involves the virtual strain energy due to axial deformation, the virtual work done by effective weight, and the inertia forces. The equations of motion for the large amplitude free vibration of marine cable are obtained by taking into account the difference between the Euler’s equation in the static state and the displaced state. Based on the Galerkin finite element procedure, the linear and nonlinear stiffness matrices, and mass matrices of the marine cable are obtained and the eigenvalue problem is solved. The natural frequency spectrum and the large amplitude free vibration behavior of marine cable are presented.

Keywords: Axial deformation, free vibration, Galerkin Finite Element Method, large amplitude, variational method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
767 Designing a Football Team of Robots from Beginning to End

Authors: Maziar A. Sharbafi, Caro Lucas, Aida Mohammadinejad, Mostafa Yaghobi

Abstract:

The Combination of path planning and path following is the main purpose of this paper. This paper describes the developed practical approach to motion control of the MRL small size robots. An intelligent controller is applied to control omni-directional robots motion in simulation and real environment respectively. The Brain Emotional Learning Based Intelligent Controller (BELBIC), based on LQR control is adopted for the omni-directional robots. The contribution of BELBIC in improving the control system performance is shown as application of the emotional learning in a real world problem. Optimizing of the control effort can be achieved in this method too. Next the implicit communication method is used to determine the high level strategies and coordination of the robots. Some simple rules besides using the environment as a memory to improve the coordination between agents make the robots' decision making system. With this simple algorithm our team manifests a desirable cooperation.

Keywords: multi-agent systems (MAS), Emotional learning, MIMO system, BELBIC, LQR, Communication via environment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
766 Cooperative Energy Efficient Routing for Wireless Sensor Networks in Smart Grid Communications

Authors: Ghazi AL-Sukkar, Iyad Jafar, Khalid Darabkh, Raed Al-Zubi, Mohammed Hawa

Abstract:

Smart Grids employ wireless sensor networks for their control and monitoring. Sensors are characterized by limitations in the processing power, energy supply and memory spaces, which require a particular attention on the design of routing and data management algorithms. Since most routing algorithms for sensor networks, focus on finding energy efficient paths to prolong the lifetime of sensor networks, the power of sensors on efficient paths depletes quickly, and consequently sensor networks become incapable of monitoring events from some parts of their target areas. In consequence, the design of routing protocols should consider not only energy efficiency paths, but also energy efficient algorithms in general. In this paper we propose an energy efficient routing protocol for wireless sensor networks without the support of any location information system. The reliability and the efficiency of this protocol have been demonstrated by simulation studies where we compare them to the legacy protocols. Our simulation results show that these algorithms scale well with network size and density.

Keywords: Data-centric storage, Dynamic Address Allocation, Sensor networks, Smart Grid Communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
765 Study on Carbon Nanostructures Influence on Changes in Static Friction Forces

Authors: Rafał Urbaniak, Robert Kłosowiak, Michał Ciałkowski, Jarosław Bartoszewicz

Abstract:

The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics.

Keywords: Carbon nanotubes, static friction, dynamic friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
764 Automated Thickness Measurement of Retinal Blood Vessels for Implementation of Clinical Decision Support Systems in Diagnostic Diabetic Retinopathy

Authors: S.Jerald Jeba Kumar, M.Madheswaran

Abstract:

The structure of retinal vessels is a prominent feature, that reveals information on the state of disease that are reflected in the form of measurable abnormalities in thickness and colour. Vascular structures of retina, for implementation of clinical diabetic retinopathy decision making system is presented in this paper. Retinal Vascular structure is with thin blood vessel, whose accuracy is highly dependent upon the vessel segmentation. In this paper the blood vessel thickness is automatically detected using preprocessing techniques and vessel segmentation algorithm. First the capture image is binarized to get the blood vessel structure clearly, then it is skeletonised to get the overall structure of all the terminal and branching nodes of the blood vessels. By identifying the terminal node and the branching points automatically, the main and branching blood vessel thickness is estimated. Results are presented and compared with those provided by clinical classification on 50 vessels collected from Bejan Singh Eye hospital..

Keywords: Diabetic retinopathy, Binarization, SegmentationClinical Decision Support Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
763 Spectral Entropy Employment in Speech Enhancement based on Wavelet Packet

Authors: Talbi Mourad, Salhi Lotfi, Chérif Adnen

Abstract:

In this work, we are interested in developing a speech denoising tool by using a discrete wavelet packet transform (DWPT). This speech denoising tool will be employed for applications of recognition, coding and synthesis. For noise reduction, instead of applying the classical thresholding technique, some wavelet packet nodes are set to zero and the others are thresholded. To estimate the non stationary noise level, we employ the spectral entropy. A comparison of our proposed technique to classical denoising methods based on thresholding and spectral subtraction is made in order to evaluate our approach. The experimental implementation uses speech signals corrupted by two sorts of noise, white and Volvo noises. The obtained results from listening tests show that our proposed technique is better than spectral subtraction. The obtained results from SNR computation show the superiority of our technique when compared to the classical thresholding method using the modified hard thresholding function based on u-law algorithm.

Keywords: Enhancement, spectral subtraction, SNR, discrete wavelet packet transform, spectral entropy Histogram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
762 Cost-Effective Private Grid Using Object-based Grid Architecture

Authors: M. Victor Jose, V. Seenivasagam

Abstract:

This paper proposes a cost-effective private grid using Object-based Grid Architecture (OGA). In OGA, the data process privacy and inter communication are increased through an object- oriented concept. The limitation of the existing grid is that the user can enter or leave the grid at any time without schedule and dedicated resource. To overcome these limitations, cost-effective private grid and appropriate algorithms are proposed. In this, each system contains two platforms such as grid and local platforms. The grid manager service running in local personal computer can act as grid resource. When the system is on, it is intimated to the Monitoring and Information System (MIS) and details are maintained in Resource Object Table (ROT). The MIS is responsible to select the resource where the file or the replica should be stored. The resource storage is done within virtual single private grid nodes using random object addressing to prevent stolen attack. If any grid resource goes down, then the resource ID will be removed from the ROT, and resource recovery is efficiently managed by the replicas. This random addressing technique makes the grid storage a single storage and the user views the entire grid network as a single system.

Keywords: Object Grid Architecture, Grid Manager Service, Resource Object table, Random object addressing, Object storage, Dynamic Object Update.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031
761 Tape-Shaped Multiscale Fiducial Marker: A Design Prototype for Indoor Localization

Authors: Marcell S. A. Martins, Benedito S. R. Neto, Gerson L. Serejo, Carlos G. R. Santos

Abstract:

Indoor positioning systems use sensors such as Bluetooth, ZigBee, and Wi-Fi, as well as cameras for image capture, which can be fixed or mobile. These computer vision-based positioning approaches are low-cost to implement, mainly when it uses a mobile camera. The present study aims to create a design of a fiducial marker for a low-cost indoor localization system. The marker is tape-shaped to perform a continuous reading employing two detection algorithms, one for greater distances and another for smaller distances. Therefore, the location service is always operational, even with variations in capture distance. A minimal localization and reading algorithm was implemented for the proposed marker design, aiming to validate it. The accuracy tests consider readings varying the capture distance between [0.5, 10] meters, comparing the proposed marker with others. The tests showed that the proposed marker has a broader capture range than the ArUco and QRCode, maintaining the same size. Therefore, reducing the visual pollution and maximizing the tracking since the ambient can be covered entirely.

Keywords: Multiscale recognition, indoor localization, tape-shaped marker, Fiducial Marker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178
760 Deformation and Crystallization in a 7075-T651 Friction Stir Weld

Authors: C. S. Paglia

Abstract:

The deformation and the crystallization in a 7075-T651 friction stir weld, in particular for regions directly in contact with the mechanical action of the rotating probe, have been investigated by means of optical microscopy. The investigation enabled to identify regions of the weld differently affected by the deformation caused by the welding process. The highly deformed grains in the horizontal direction close to the plate margin were indicative of shear movements along the horizontal plane, while highly deformed grains along the plate margin in the vertical direction were indicative of vertical shear movements of opposite directions, which superimposed the shear movement along the horizontal plane. The vertical shear movements were not homogeneous through the plate thickness. The microstructure indicated that after the probe passes, the grain growth may take place under static conditions. The small grains microstructure of the nugget region, formed after the main dynamic recrystallization process, develops to an equiaxed microstructure. A material transport influenced by the rotating shoulder was also observed from the trailing to the advancing side of the weld.

Keywords: AA7075-T651, friction stir welding, deformation, crystallization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
759 Predicting Bankruptcy using Tabu Search in the Mauritian Context

Authors: J. Cheeneebash, K. B. Lallmamode, A. Gopaul

Abstract:

Throughout this paper, a relatively new technique, the Tabu search variable selection model, is elaborated showing how it can be efficiently applied within the financial world whenever researchers come across the selection of a subset of variables from a whole set of descriptive variables under analysis. In the field of financial prediction, researchers often have to select a subset of variables from a larger set to solve different type of problems such as corporate bankruptcy prediction, personal bankruptcy prediction, mortgage, credit scoring and the Arbitrage Pricing Model (APM). Consequently, to demonstrate how the method operates and to illustrate its usefulness as well as its superiority compared to other commonly used methods, the Tabu search algorithm for variable selection is compared to two main alternative search procedures namely, the stepwise regression and the maximum R 2 improvement method. The Tabu search is then implemented in finance; where it attempts to predict corporate bankruptcy by selecting the most appropriate financial ratios and thus creating its own prediction score equation. In comparison to other methods, mostly the Altman Z-Score model, the Tabu search model produces a higher success rate in predicting correctly the failure of firms or the continuous running of existing entities.

Keywords: Predicting Bankruptcy, Tabu Search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
758 Physical and Rheological Properties of Asphalt Modified with Cellulose Date Palm Fibers

Authors: Howaidi M. Al-Otaibi, Abdulrahman S. Al-Suhaibani, Hamad A. Alsoliman

Abstract:

Fibers are extensively used in civil engineering applications for many years. In this study, empty fruit bunch of date palm trees were used to produce cellulose fiber that were used as additives in the asphalt binder. Two sizes (coarse and fine) of cellulose fibers were pre-blended in PG64-22 binder with various contents of 1.5%, 3%, 4.5%, 6%, and 7.5% by weight of asphalt binder. The physical and rheological properties of fiber modified asphalt binders were tested by using conventional tests such as penetration, softening point and viscosity; and SHRP test such as dynamic shear rheometer. The results indicated that the fiber modified asphalt binders were higher in softening point, viscosity, and complex shear modulus, and lower in penetration compared to pure asphalt. The fiber modified binders showed an improvement in rheological properties since it was possible to raise the control binder (pure asphalt) PG from 64 to 70 by adding 6% (by weight) of either fine or coarse fibers. Such improvement in stiffness of fiber modified binder is expected to improve pavement resistance to rutting.

Keywords: Cellulose date palm fiber, fiber modified asphalt, physical properties, rheological properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
757 Key Frame Based Video Summarization via Dependency Optimization

Authors: Janya Sainui

Abstract:

As a rapid growth of digital videos and data communications, video summarization that provides a shorter version of the video for fast video browsing and retrieval is necessary. Key frame extraction is one of the mechanisms to generate video summary. In general, the extracted key frames should both represent the entire video content and contain minimum redundancy. However, most of the existing approaches heuristically select key frames; hence, the selected key frames may not be the most different frames and/or not cover the entire content of a video. In this paper, we propose a method of video summarization which provides the reasonable objective functions for selecting key frames. In particular, we apply a statistical dependency measure called quadratic mutual informaion as our objective functions for maximizing the coverage of the entire video content as well as minimizing the redundancy among selected key frames. The proposed key frame extraction algorithm finds key frames as an optimization problem. Through experiments, we demonstrate the success of the proposed video summarization approach that produces video summary with better coverage of the entire video content while less redundancy among key frames comparing to the state-of-the-art approaches.

Keywords: Video summarization, key frame extraction, dependency measure, quadratic mutual information, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
756 Automated Vehicle Traffic Control Tower: A Solution to Support the Next Level Automation

Authors: Xiaoyun Zhao, Rami Darwish, Anna Pernestål

Abstract:

Automated vehicles (AVs) have the potential to enhance road capacity, improving road safety and traffic efficiency. Research and development on AVs have been going on for many years. However, when the complicated traffic rules and real situations interacted, AVs fail to make decisions on contradicting situations, and are not able to have control in all conditions due to highly dynamic driving scenarios. This limits AVs’ usage and restricts the full potential benefits that they can bring. Furthermore, regulations, infrastructure development, and public acceptance cannot keep up at the same pace as technology breakthroughs. Facing these challenges, this paper proposes automated vehicle traffic control tower (AVTCT) acting as a safe, efficient and integrated solution for AV control. It introduces a concept of AVTCT for control, management, decision-making, communication and interaction with various aspects in transportation. With the prototype demonstrations and simulations, AVTCT has the potential to overcome the control challenges with AVs and can facilitate AV reaching their full potential. Possible functionalities, benefits as well as challenges of AVTCT are discussed, which set the foundation for the conceptual model, simulation and real application of AVTCT.

Keywords: Automated vehicle, connectivity and automation, intelligent transport system, traffic control, traffic safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073
755 The Effects of Consumer Inertia and Emotions on New Technology Acceptance

Authors: Chyi Jaw

Abstract:

Prior literature on innovation diffusion or acceptance has almost exclusively concentrated on consumers’ positive attitudes and behaviors for new products/services. Consumers’ negative attitudes or behaviors to innovations have received relatively little marketing attention, but it happens frequently in practice. This study discusses consumer psychological factors when they try to learn or use new technologies. According to recent research, technological innovation acceptance has been considered as a dynamic or mediated process. This research argues that consumers can experience inertia and emotions in the initial use of new technologies. However, given such consumer psychology, the argument can be made as to whether the inclusion of consumer inertia (routine seeking and cognitive rigidity) and emotions increases the predictive power of new technology acceptance model. As data from the empirical study find, the process is potentially consumer emotion changing (independent of performance benefits) because of technology complexity and consumer inertia, and impact innovative technology use significantly. Finally, the study presents the superior predictability of the hypothesized model, which let managers can better predict and influence the successful diffusion of complex technological innovations.

Keywords: Cognitive rigidity, consumer emotions, new technology acceptance, routine seeking, technology complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
754 Syntactic Recognition of Distorted Patterns

Authors: Marek Skomorowski

Abstract:

In syntactic pattern recognition a pattern can be represented by a graph. Given an unknown pattern represented by a graph g, the problem of recognition is to determine if the graph g belongs to a language L(G) generated by a graph grammar G. The so-called IE graphs have been defined in [1] for a description of patterns. The IE graphs are generated by so-called ETPL(k) graph grammars defined in [1]. An efficient, parsing algorithm for ETPL(k) graph grammars for syntactic recognition of patterns represented by IE graphs has been presented in [1]. In practice, structural descriptions may contain pattern distortions, so that the assignment of a graph g, representing an unknown pattern, to a graph language L(G) generated by an ETPL(k) graph grammar G is rejected by the ETPL(k) type parsing. Therefore, there is a need for constructing effective parsing algorithms for recognition of distorted patterns. The purpose of this paper is to present a new approach to syntactic recognition of distorted patterns. To take into account all variations of a distorted pattern under study, a probabilistic description of the pattern is needed. A random IE graph approach is proposed here for such a description ([2]).

Keywords: Syntactic pattern recognition, Distorted patterns, Random graphs, Graph grammars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
753 Studying Implication of Globalization on Engineering Education

Authors: S. Sharafi, G. Bassak Harouni, S. Torfi, H. Makenalizadeh, A. Sayahi

Abstract:

The primary purpose of this article is an attempt to find the implication of globalization on education. Globalization has an important role as a process in the economical, political, cultural and technological dimensions in the life of the contemporary human being and has been affected by it. Education has its effects in this procedure and while influencing it through educating global citizens having universal human features and characteristics, has been influenced by this phenomenon too. Nowadays, the role of education is not just to develop in the students the knowledge and skills necessary for the new kinds of jobs. If education wants to help students be prepared of the new global society, it has to make them engaged productive and critical citizens for the global era, so that they can reflect about their roles as key actors in a dynamic often uneven, matrix of economic and cultural exchanges. If education wants to reinforce and raise the national identity, the value system and the children and teenagers, it should make them ready for living in the global era of this century. The used method in this research is documentary and analyzing the documents. Studies in this field show globalization has influences on the processes of the production, distribution and consuming of knowledge. The happening of this event in the information era has not only provide the necessary opportunities for the exchanges of education worldwide but also has privileges for the developing countries which enables them to strengthen educational bases of their society and have an important step toward their future.

Keywords: Globalization, Education, global erea

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
752 Virtual Routing Function Allocation Method for Minimizing Total Network Power Consumption

Authors: Kenichiro Hida, Shin-Ichi Kuribayashi

Abstract:

In a conventional network, most network devices, such as routers, are dedicated devices that do not have much variation in capacity. In recent years, a new concept of network functions virtualisation (NFV) has come into use. The intention is to implement a variety of network functions with software on general-purpose servers and this allows the network operator to select their capacities and locations without any constraints. This paper focuses on the allocation of NFV-based routing functions which are one of critical network functions, and presents the virtual routing function allocation algorithm that minimizes the total power consumption. In addition, this study presents the useful allocation policy of virtual routing functions, based on an evaluation with a ladder-shaped network model. This policy takes the ratio of the power consumption of a routing function to that of a circuit and traffic distribution between areas into consideration. Furthermore, the present paper shows that there are cases where the use of NFV-based routing functions makes it possible to reduce the total power consumption dramatically, in comparison to a conventional network, in which it is not economically viable to distribute small-capacity routing functions.

Keywords: Virtual routing function, NFV, resource allocation, minimum power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
751 An Efficient Algorithm for Motion Detection Based Facial Expression Recognition using Optical Flow

Authors: Ahmad R. Naghsh-Nilchi, Mohammad Roshanzamir

Abstract:

One of the popular methods for recognition of facial expressions such as happiness, sadness and surprise is based on deformation of facial features. Motion vectors which show these deformations can be specified by the optical flow. In this method, for detecting emotions, the resulted set of motion vectors are compared with standard deformation template that caused by facial expressions. In this paper, a new method is introduced to compute the quantity of likeness in order to make decision based on the importance of obtained vectors from an optical flow approach. For finding the vectors, one of the efficient optical flow method developed by Gautama and VanHulle[17] is used. The suggested method has been examined over Cohn-Kanade AU-Coded Facial Expression Database, one of the most comprehensive collections of test images available. The experimental results show that our method could correctly recognize the facial expressions in 94% of case studies. The results also show that only a few number of image frames (three frames) are sufficient to detect facial expressions with rate of success of about 83.3%. This is a significant improvement over the available methods.

Keywords: Facial expression, Facial features, Optical flow, Motion vectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
750 Simulation Model for Optimizing Energy in Supply Chain Management

Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari

Abstract:

In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.

Keywords: Supply chain management, green supply chain management, system dynamics, energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
749 Maximizer of the Posterior Marginal Estimate for Noise Reduction of JPEG-compressed Image

Authors: Yohei Saika, Yuji Haraguchi

Abstract:

We constructed a method of noise reduction for JPEG-compressed image based on Bayesian inference using the maximizer of the posterior marginal (MPM) estimate. In this method, we tried the MPM estimate using two kinds of likelihood, both of which enhance grayscale images converted into the JPEG-compressed image through the lossy JPEG image compression. One is the deterministic model of the likelihood and the other is the probabilistic one expressed by the Gaussian distribution. Then, using the Monte Carlo simulation for grayscale images, such as the 256-grayscale standard image “Lena" with 256 × 256 pixels, we examined the performance of the MPM estimate based on the performance measure using the mean square error. We clarified that the MPM estimate via the Gaussian probabilistic model of the likelihood is effective for reducing noises, such as the blocking artifacts and the mosquito noise, if we set parameters appropriately. On the other hand, we found that the MPM estimate via the deterministic model of the likelihood is not effective for noise reduction due to the low acceptance ratio of the Metropolis algorithm.

Keywords: Noise reduction, JPEG-compressed image, Bayesian inference, the maximizer of the posterior marginal estimate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
748 Anomaly Detection using Neuro Fuzzy system

Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani

Abstract:

As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectively

Keywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
747 Ontology-based Concept Weighting for Text Documents

Authors: Hmway Hmway Tar, Thi Thi Soe Nyaunt

Abstract:

Documents clustering become an essential technology with the popularity of the Internet. That also means that fast and high-quality document clustering technique play core topics. Text clustering or shortly clustering is about discovering semantically related groups in an unstructured collection of documents. Clustering has been very popular for a long time because it provides unique ways of digesting and generalizing large amounts of information. One of the issues of clustering is to extract proper feature (concept) of a problem domain. The existing clustering technology mainly focuses on term weight calculation. To achieve more accurate document clustering, more informative features including concept weight are important. Feature Selection is important for clustering process because some of the irrelevant or redundant feature may misguide the clustering results. To counteract this issue, the proposed system presents the concept weight for text clustering system developed based on a k-means algorithm in accordance with the principles of ontology so that the important of words of a cluster can be identified by the weight values. To a certain extent, it has resolved the semantic problem in specific areas.

Keywords: Clustering, Concept Weight, Document clustering, Feature Selection, Ontology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406