Search results for: time and frequency signal analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14758

Search results for: time and frequency signal analysis

14338 A Low Complexity Frequency Offset Estimation for MB-OFDM based UWB Systems

Authors: Wang Xue, Liu Dan, Liu Ying, Wang Molin, Qian Zhihong

Abstract:

A low-complexity, high-accurate frequency offset estimation for multi-band orthogonal frequency division multiplexing (MB-OFDM) based ultra-wide band systems is presented regarding different carrier frequency offsets, different channel frequency responses, different preamble patterns in different bands. Utilizing a half-cycle Constant Amplitude Zero Auto Correlation (CAZAC) sequence as the preamble sequence, the estimator with a semi-cross contrast scheme between two successive OFDM symbols is proposed. The CRLB and complexity of the proposed algorithm are derived. Compared to the reference estimators, the proposed method achieves significantly less complexity (about 50%) for all preamble patterns of the MB-OFDM systems. The CRLBs turn out to be of well performance.

Keywords: CAZAC, Frequency Offset, Semi-cross Contrast, MB-OFDM, UWB

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
14337 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing

Authors: Carolina Gouveia, José Vieira, Pedro Pinho

Abstract:

The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.

Keywords: Bio-signals, DC Component, Doppler Effect, ellipse fitting, radar, SDR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
14336 On The Design of Robust Governors of Steam Power Systems Using Polynomial and State-Space Based H∞ Techniques: A Comparative Study

Authors: Rami A. Maher, Ibraheem K. Ibraheem

Abstract:

This work presents a comparison study between the state-space and polynomial methods for the design of the robust governor for load frequency control of steam turbine power systems. The robust governor is synthesized using the two approaches and the comparison is extended to include time and frequency domains performance, controller order, and uncertainty representation, weighting filters, optimality and sub-optimality. The obtained results are represented through tables and curves with reasons of similarities and dissimilarities.

Keywords: Robust control, load frequency control, steam turbine, H∞-norm, system uncertainty, load disturbance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
14335 A Numerical Study on Heat Transfer in Laminar Pulsed Slot Jets Impinging on a Surface

Authors: D. Kim

Abstract:

Numerical simulations are performed for laminar continuous and pulsed jets impinging on a surface in order to investigate the effects of pulsing frequency on the heat transfer characteristics. The time-averaged Nusselt number of pulsed jets is larger in the impinging jet region as compared to the continuous jet, while it is smaller in the outer wall jet region. At the stagnation point, the mean and RMS Nusselt numbers become larger and smaller, respectively, as the pulsing frequency increases. Unsteady behaviors of vortical fluid motions and temperature field are also investigated to understand the underlying mechanisms of heat transfer enhancement.

Keywords: Pulsed slot jet, impingement, pulsing frequency, heat transfer enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
14334 Ultrasound Therapy: Amplitude Modulation Technique for Tissue Ablation by Acoustic Cavitation

Authors: Fares A. Mayia, Mahmoud A. Yamany, Mushabbab A. Asiri

Abstract:

In recent years, non-invasive Focused Ultrasound (FU) has been utilized for generating bubbles (cavities) to ablate target tissue by mechanical fractionation. Intensities >10 kW/cm2 are required to generate the inertial cavities. The generation, rapid growth, and collapse of these inertial cavities cause tissue fractionation and the process is called Histotripsy. The ability to fractionate tissue from outside the body has many clinical applications including the destruction of the tumor mass. The process of tissue fractionation leaves a void at the treated site, where all the affected tissue is liquefied to particles at sub-micron size. The liquefied tissue will eventually be absorbed by the body. Histotripsy is a promising non-invasive treatment modality. This paper presents a technique for generating inertial cavities at lower intensities (< 1 kW/cm2). The technique (patent pending) is based on amplitude modulation (AM), whereby a low frequency signal modulates the amplitude of a higher frequency FU wave. Cavitation threshold is lower at low frequencies; the intensity required to generate cavitation in water at 10 kHz is two orders of magnitude lower than the intensity at 1 MHz. The Amplitude Modulation technique can operate in both continuous wave (CW) and pulse wave (PW) modes, and the percentage modulation (modulation index) can be varied from 0 % (thermal effect) to 100 % (cavitation effect), thus allowing a range of ablating effects from Hyperthermia to Histotripsy. Furthermore, changing the frequency of the modulating signal allows controlling the size of the generated cavities. Results from in vitro work demonstrate the efficacy of the new technique in fractionating soft tissue and solid calcium carbonate (Chalk) material. The technique, when combined with MR or Ultrasound imaging, will present a precise treatment modality for ablating diseased tissue without affecting the surrounding healthy tissue.

Keywords: Focused ultrasound therapy, Histotripsy, generation of inertial cavitation, mechanical tissue ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
14333 Nearfield UWB Pulse Array Beamformer based on Multirate Filter Bank

Authors: Min Wang , Shuyuan Yang

Abstract:

The paper presents a method of designing ultrawide band (UWB) pulse array beamformer in the case of nearfield. Firstly the principle of space-time processing of UWB pulse array is discussed. The radical beampattern transform based on spherical coordinates is employed to solve the nearfield beamforming of UWB pulse array. The frequency invariant technology is considered for the frequency dependent beampattern of UWB pulse array. We use a multirate bank scheme of to implement the FI beamformer of UWB pulse array. By using multirate filters in each element channel, it can make the response of the UWB array to avoid distortion in the whole band. The simulation resultes are given to prove the efficiency and feasibility of this method.

Keywords: UWB pulse array, frequency invariant, multiratebank, nearfield beamformer, radical transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
14332 Semi-Automatic Artifact Rejection Procedure Based on Kurtosis, Renyi's Entropy and Independent Component Scalp Maps

Authors: Antonino Greco, Nadia Mammone, Francesco Carlo Morabito, Mario Versaci

Abstract:

Artifact rejection plays a key role in many signal processing applications. The artifacts are disturbance that can occur during the signal acquisition and that can alter the analysis of the signals themselves. Our aim is to automatically remove the artifacts, in particular from the Electroencephalographic (EEG) recordings. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we try to enhance this technique proposing a new method based on the Renyi-s entropy. The performance of our method was tested and compared to the performance of the method in literature and the former proved to outperform the latter.

Keywords: Artifact, EEG, Renyi's entropy, kurtosis, independent component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
14331 ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate

Authors: Ho-Jun Jo, Wook-Won Kim, Yong-Sung Kim, Jin-O Kim

Abstract:

The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB.

Keywords: Micro grid, energy storage systems, ramp rate, control strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
14330 A Robust Frequency Offset Estimator for Orthogonal Frequency Division Multiplexing

Authors: Keunhong Chae, Seokho Yoon

Abstract:

We address the integer frequency offset (IFO) estimation under the influence of the timing offset (TO) in orthogonal frequency division multiplexing (OFDM) systems. Incorporating the IFO and TO into the symbol set used to represent the received OFDM symbol, we investigate the influence of the TO on the IFO, and then, propose a combining method between two consecutive OFDM correlations, reducing the influence. The proposed scheme has almost the same complexity as that of the conventional schemes, whereas it does not need the TO knowledge contrary to the conventional schemes. From numerical results it is confirmed that the proposed scheme is insensitive to the TO, consequently, yielding an improvement of the IFO estimation performance over the conventional schemes when the TO exists.

Keywords: Estimation, integer frequency offset, OFDM, timing offset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
14329 Motor Imagery Signal Classification for a Four State Brain Machine Interface

Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan

Abstract:

Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification

Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435
14328 Design of Ka-Band Satellite Links in Indonesia

Authors: Zulfajri Basri Hasanuddin

Abstract:

There is an increasing demand for broadband services in Indonesia. Therefore, the answer is the use of Ka-Band which has some advantages such as wider bandwidth, the higher transmission speeds, and smaller size of antenna in the ground. However, rain attenuation is the primary factor in the degradation of signal at the Kaband. In this paper, the author will determine whether the Ka-band frequency can be implemented in Indonesia which has high intensity of rainfall.

Keywords: Ka-Band, Link Budget, Link Availability, BER, Eb/No, C/N.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3663
14327 Analysis of Meteorological Drought in the Ruhr Basin by Using the Standardized Precipitation Index

Authors: Mosaad Khadr, Gerd Morgenschweis, Andreas Schlenkhoff

Abstract:

Drought is one of the most damaging climate-related hazards, it is generally considered as a prolonged absence of precipitation. This normal and recurring climate phenomenon had plagued civilization throughout history because of the negative impacts on economical, environmental and social sectors. Drought characteristics are thus recognized as important factors in water resources planning and management. The purpose of this study is to detect the changes in drought frequency, persistence and severity in the Ruhr river basin. The frequency of drought events was calculated using the Standardized Precipitation Index (SPI). Used data are daily precipitation records from seven meteorological stations covering the period 1961-2007. The main benefit of the application of this index is its versatility, only rainfall data is required to deliver five major dimensions of a drought : duration, intensity, severity, magnitude, and frequency. Furthermore, drought can be calculated in different time steps. In this study SPI was calculated for 1, 3, 6, 9, 12, and 24 months. Several drought events were detected in the covered period, these events contain mild, moderate and severe droughts. Also positive and negative trends in the SPI values were observed.

Keywords: Drought, Germany, Precipitation, Ruhr River, Standardized Precipitation Index (SPI), Trend Test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
14326 Processing the Medical Sensors Signals Using Fuzzy Inference System

Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi

Abstract:

Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.

Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
14325 A Grid Synchronization Method Based on Adaptive Notch Filter for SPV System with Modified MPPT

Authors: Priyanka Chaudhary, M. Rizwan

Abstract:

This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.

Keywords: Solar photovoltaic systems, MPPT, voltage source converter, grid synchronization technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
14324 Analysis of Temperature Change under Global Warming Impact using Empirical Mode Decomposition

Authors: Md. Khademul Islam Molla, Akimasa Sumi, M. Sayedur Rahman

Abstract:

The empirical mode decomposition (EMD) represents any time series into a finite set of basis functions. The bases are termed as intrinsic mode functions (IMFs) which are mutually orthogonal containing minimum amount of cross-information. The EMD successively extracts the IMFs with the highest local frequencies in a recursive way, which yields effectively a set low-pass filters based entirely on the properties exhibited by the data. In this paper, EMD is applied to explore the properties of the multi-year air temperature and to observe its effects on climate change under global warming. This method decomposes the original time-series into intrinsic time scale. It is capable of analyzing nonlinear, non-stationary climatic time series that cause problems to many linear statistical methods and their users. The analysis results show that the mode of EMD presents seasonal variability. The most of the IMFs have normal distribution and the energy density distribution of the IMFs satisfies Chi-square distribution. The IMFs are more effective in isolating physical processes of various time-scales and also statistically significant. The analysis results also show that the EMD method provides a good job to find many characteristics on inter annual climate. The results suggest that climate fluctuations of every single element such as temperature are the results of variations in the global atmospheric circulation.

Keywords: Empirical mode decomposition, instantaneous frequency, Hilbert spectrum, Chi-square distribution, anthropogenic impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
14323 End Point Detection for Wavelet Based Speech Compression

Authors: Jalal Karam

Abstract:

In real-field applications, the correct determination of voice segments highly improves the overall system accuracy and minimises the total computation time. This paper presents reliable measures of speech compression by detcting the end points of the speech signals prior to compressing them. The two different compession schemes used are the Global threshold and the Level- Dependent threshold techniques. The performance of the proposed method is tested wirh the Signal to Noise Ratios, Peak Signal to Noise Ratios and Normalized Root Mean Square Error parameter measures.

Keywords: Wavelets, End-points Detection, Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
14322 Computer Software Applicable in Rehabilitation, Cardiology and Molecular Biology

Authors: P. Kowalska, P. Gabka, K. Kamieniarz, M. Kamieniarz, W. Stryla, P. Guzik, T. Krauze

Abstract:

We have developed a computer program consisting of 6 subtests assessing the children hand dexterity applicable in the rehabilitation medicine. We have carried out a normative study on a representative sample of 285 children aged from 7 to 15 (mean age 11.3) and we have proposed clinical standards for three age groups (7-9, 9-11, 12-15 years). We have shown statistical significance of differences among the corresponding mean values of the task time completion. We have also found a strong correlation between the task time completion and the age of the subjects, as well as we have performed the test-retest reliability checks in the sample of 84 children, giving the high values of the Pearson coefficients for the dominant and non-dominant hand in the range 0.740.97 and 0.620.93, respectively. A new MATLAB-based programming tool aiming at analysis of cardiologic RR intervals and blood pressure descriptors, is worked out, too. For each set of data, ten different parameters are extracted: 2 in time domain, 4 in frequency domain and 4 in Poincaré plot analysis. In addition twelve different parameters of baroreflex sensitivity are calculated. All these data sets can be visualized in time domain together with their power spectra and Poincaré plots. If available, the respiratory oscillation curves can be also plotted for comparison. Another application processes biological data obtained from BLAST analysis.

Keywords: Biomedical data base processing, Computer software, Hand dexterity, Heart rate and blood pressure variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
14321 A 3.125Gb/s Clock and Data Recovery Circuit Using 1/4-Rate Technique

Authors: Il-Do Jeong, Hang-Geun Jeong

Abstract:

This paper describes the design and fabrication of a clock and data recovery circuit (CDR). We propose a new clock and data recovery which is based on a 1/4-rate frequency detector (QRFD). The proposed frequency detector helps reduce the VCO frequency and is thus advantageous for high speed application. The proposed frequency detector can achieve low jitter operation and extend the pull-in range without using the reference clock. The proposed CDR was implemented using a 1/4-rate bang-bang type phase detector (PD) and a ring voltage controlled oscillator (VCO). The CDR circuit has been fabricated in a standard 0.18 CMOS technology. It occupies an active area of 1 x 1 and consumes 90 mW from a single 1.8V supply.

Keywords: Clock and data recovery, 1/4-rate frequency detector, 1/4-rate phase detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2903
14320 Depressing Turbine-Generator Supersynchronous Torsional Torques by Using Virtual Inertia

Authors: Jong-Ian Tsai, Chi-Chuan Chen, Tung-Sheng Zhan, Rong-Ching Wu

Abstract:

Single-pole switching scheme is widely used in the Extra High Voltage system. However, the substantial negativesequence current injected to the turbine-generators imposes the electromagnetic (E/M) torque of double system- frequency components during the dead time (between single-pole clearing and line reclosing). This would induce supersynchronous resonance (SPSR) torque amplifications on low pressure turbine generator blades and even lead to fatigue damage. This paper proposes the design of a mechanical filter (MF) with natural frequency close to double-system frequency. From the simulation results, it is found that such a filter not only successfully damps the resonant effect, but also has the characteristics of feasibility and compact.

Keywords: Single-pole, Supersynchronous, Blade, Unbalance, filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
14319 Design of SiC Capacitive Pressure Sensor with LC-Based Oscillator Readout Circuit

Authors: Azza M. Anis, M. M. Abutaleb, Hani F. Ragai, M. I. Eladawy

Abstract:

This paper presents the characterization and design of a capacitive pressure sensor with LC-based 0.35 µm CMOS readout circuit. SPICE is employed to evaluate the characteristics of the readout circuit and COMSOL multiphysics structural analysis is used to simulate the behavior of the pressure sensor. The readout circuit converts the capacitance variation of the pressure sensor into the frequency output. Simulation results show that the proposed pressure sensor has output frequency from 2.50 to 2.28 GHz in a pressure range from 0.1 to 2 MPa almost linearly. The sensitivity of the frequency shift with respect to the applied pressure load is 0.11 GHz/MPa.

Keywords: CMOS LC-based oscillator, micro pressure sensor, silicon carbide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
14318 Self-tuned LMS Algorithm for Sinusoidal Time Delay Tracking

Authors: Jonah Gamba

Abstract:

In this paper the problem of estimating the time delay between two spatially separated noisy sinusoidal signals by system identification modeling is addressed. The system is assumed to be perturbed by both input and output additive white Gaussian noise. The presence of input noise introduces bias in the time delay estimates. Normally the solution requires a priori knowledge of the input-output noise variance ratio. We utilize the cascade of a self-tuned filter with the time delay estimator, thus making the delay estimates robust to input noise. Simulation results are presented to confirm the superiority of the proposed approach at low input signal-to-noise ratios.

Keywords: LMS algorithm, Self-tuned filter, Systemidentification, Time delay estimation, .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
14317 Delay-Dependent H∞ Performance Analysis for Markovian Jump Systems with Time-Varying Delays

Authors: Yucai Ding, Hong Zhu, Shouming Zhong, Yuping Zhang

Abstract:

This paper considers ­H∞ performance for Markovian jump systems with Time-varying delays. The systems under consideration involve disturbance signal, Markovian switching and timevarying delays. By using a new Lyapunov-Krasovskii functional and a convex optimization approach, a delay-dependent stability condition in terms of linear matrix inequality (LMI) is addressed, which guarantee asymptotical stability in mean square and a prescribed ­H∞ performance index for the considered systems. Two numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed main results. All these results are expected to be of use in the study of stochastic systems with time-varying delays.

Keywords: ­H∞ performance, Markovian switching, Delaydependent stability, Linear matrix inequality (LMI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
14316 An Online Evaluation of Operating Reserve for System Security

Authors: Le-Ren Chang-Chien, Yin-Juin Lin, Chin-Chung Wu

Abstract:

Utilities use operating reserve for frequency regulation.To ensure that the operating frequency and system security are well maintained, the operating grid codes always specify that the reserve quantity and response rate should meet some prescribed levels. This paper proposes a methodology to evaluate system's contingency reserve for an isolated power network. With the presented algorithm to estimate system's frequency response characteristic, an online allocation of contingency reserve would be feasible to meet the grid codes for contingency operation. Test results from the simulated conditions, and from the actual operating data verify the merits of the proposed methodology to system's frequency control, and security.

Keywords: Contingency, frequency control, operating reserve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
14315 New Iterative Algorithm for Improving Depth Resolution in Ionic Analysis: Effect of Iterations Number

Authors: N. Dahraoui, M. Boulakroune, D. Benatia

Abstract:

In this paper, the improvement by deconvolution of the depth resolution in Secondary Ion Mass Spectrometry (SIMS) analysis is considered. Indeed, we have developed a new Tikhonov- Miller deconvolution algorithm where a priori model of the solution is included. This is a denoisy and pre-deconvoluted signal obtained from: firstly, by the application of wavelet shrinkage algorithm, secondly by the introduction of the obtained denoisy signal in an iterative deconvolution algorithm. In particular, we have focused the light on the effect of the iterations number on the evolution of the deconvoluted signals. The SIMS profiles are multilayers of Boron in Silicon matrix.

Keywords: DRF, in-depth resolution, multiresolution deconvolution, SIMS, wavelet shrinkage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
14314 Pre-Deflection Routing with Control Packet Signal Scheme in Optical Burst Switch Networks

Authors: Jaipal Bisht, Aditya Goel

Abstract:

Optical Burst Switching (OBS) is a promising technology for the future generation Internet. Control architecture and Contention resolution are the main issues faced by the Optical Burst Switching networks. In this paper we are only taking care of the Contention problem and to overcome this issue we propose Pre-Deflection Routing with Control Packet Signal Scheme for Contention Resolution in Optical Burst Switch Networks. In this paper Pre-deflection routing approach has been proposed in which routing is carried out in two ways, Shortest Path First (SPF) and Least Hop First (LHF) Routing to forward the clusters and canoes respectively. Hereafter Burst Offset Time Control Algorithm has been proposed where a forward control packet (FCP) collects the congestion price and contention price along its paths. Thereafter a reverse-direction control packet (RCP) sent by destination node which delivers the information of FCP to the source node, and source node uses this information to revise its offset time and burst length.

Keywords: Contention Resolution, FCP, OBS, Offset Time, PST, RCP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
14313 Detection and Correction of Ectopic Beats for HRV Analysis Applying Discrete Wavelet Transforms

Authors: Desmond B. Keenan

Abstract:

The clinical usefulness of heart rate variability is limited to the range of Holter monitoring software available. These software algorithms require a normal sinus rhythm to accurately acquire heart rate variability (HRV) measures in the frequency domain. Premature ventricular contractions (PVC) or more commonly referred to as ectopic beats, frequent in heart failure, hinder this analysis and introduce ambiguity. This investigation demonstrates an algorithm to automatically detect ectopic beats by analyzing discrete wavelet transform coefficients. Two techniques for filtering and replacing the ectopic beats from the RR signal are compared. One technique applies wavelet hard thresholding techniques and another applies linear interpolation to replace ectopic cycles. The results demonstrate through simulation, and signals acquired from a 24hr ambulatory recorder, that these techniques can accurately detect PVC-s and remove the noise and leakage effects produced by ectopic cycles retaining smooth spectra with the minimum of error.

Keywords: Heart rate variability, vagal tone, sympathetic, parasympathetic, wavelets, ectopic beats, spectral analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
14312 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflectarray antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180MHz to 200MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10GHz resonant frequency with a patch volume of 2.71mm3 as compared to 3.47mm3 required for rectangular patch without slot.

Keywords: Liquid crystal, Tunable reflectarray, Frequency tunability, Dynamic phase range.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2414
14311 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflectarray antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180MHz to 200MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10GHz resonant frequency with a patch volume of 2.71mm3 as compared to 3.47mm3 required for rectangular patch without slot.

Keywords: Liquid crystal, Tunable reflectarray, Frequency tunability, Dynamic phase range.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
14310 Efficiency of Different GLR Test-statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

In this work the characteristics of spatial signal detec¬tion from an antenna array in various sample cases are investigated. Cases for a various number of available prior information about the received signal and the background noise are considered. The spatial difference between a signal and noise is only used. The performance characteristics and detecting curves are presented. All test-statistics are obtained on the basis of the generalized likelihood ratio (GLR). The received results are correct for a short and long sample.

Keywords: GLR test-statistic, detection task, generalized likelihood ratio, antenna array, detection curves, performance characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
14309 Time-Domain Stator Current Condition Monitoring: Analyzing Point Failures Detection by Kolmogorov-Smirnov (K-S) Test

Authors: Najmeh Bolbolamiri, Maryam Setayesh Sanai, Ahmad Mirabadi

Abstract:

This paper deals with condition monitoring of electric switch machine for railway points. Point machine, as a complex electro-mechanical device, switch the track between two alternative routes. There has been an increasing interest in railway safety and the optimal management of railway equipments maintenance, e.g. point machine, in order to enhance railway service quality and reduce system failure. This paper explores the development of Kolmogorov- Smirnov (K-S) test to detect some point failures (external to the machine, slide chairs, fixing, stretchers, etc), while the point machine (inside the machine) is in its proper condition. Time-domain stator Current signatures of normal (healthy) and faulty points are taken by 3 Hall Effect sensors and are analyzed by K-S test. The test is simulated by creating three types of such failures, namely putting a hard stone and a soft stone between stock rail and switch blades as obstacles and also slide chairs- friction. The test has been applied for those three faults which the results show that K-S test can effectively be developed for the aim of other point failures detection, which their current signatures deviate parametrically from the healthy current signature. K-S test as an analysis technique, assuming that any defect has a specific probability distribution. Empirical cumulative distribution functions (ECDF) are used to differentiate these probability distributions. This test works based on the null hypothesis that ECDF of target distribution is statistically similar to ECDF of reference distribution. Therefore by comparing a given current signature (as target signal) from unknown switch state to a number of template signatures (as reference signal) from known switch states, it is possible to identify which is the most likely state of the point machine under analysis.

Keywords: stator currents monitoring, railway points, point failures, fault detection and diagnosis, Kolmogorov-Smirnov test, time-domain analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802