Search results for: tabu search algorithm
3430 An Attribute-Centre Based Decision Tree Classification Algorithm
Authors: Gökhan Silahtaroğlu
Abstract:
Decision tree algorithms have very important place at classification model of data mining. In literature, algorithms use entropy concept or gini index to form the tree. The shape of the classes and their closeness to each other some of the factors that affect the performance of the algorithm. In this paper we introduce a new decision tree algorithm which employs data (attribute) folding method and variation of the class variables over the branches to be created. A comparative performance analysis has been held between the proposed algorithm and C4.5.Keywords: Classification, decision tree, split, pruning, entropy, gini.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13703429 Reduce the Complexity of Material Requirement Planning on Excel by an Algorithm
Authors: Sumitra Nuanmeesri, Kanate Ploydanai
Abstract:
Many companies have excel, it is economy and well perform to use in material requirement planning (MRP) on excel. For several products, it, however, is complex problem to link the relationship between the tables of products because the relationship depends on bill of material (BOM). This paper presents algorithm to create MRP on excel, and links relationship between tables. The study reveals MRP that is created by the algorithm which is easier and faster than MRP that created by human. By this technique, MRP on excel might be good ways to improve a productivity of companies.
Keywords: Material requirement planning, Algorithm, Spreadsheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32733428 Combination Scheme of Affine Projection Algorithm Filters with Complementary Order
Authors: Young-Seok Choi
Abstract:
This paper proposes a complementary combination scheme of affine projection algorithm (APA) filters with different order of input regressors. A convex combination provides an interesting way to keep the advantage of APA having different order of input regressors. Consequently, a novel APA which has the rapid convergence and the reduced steady-state error is derived. Experimental results show the good properties of the proposed algorithm.
Keywords: Adaptive filter, affine projection algorithm, convex combination, input order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16643427 Real-Coded Genetic Algorithm for Robust Power System Stabilizer Design
Authors: Sidhartha Panda, C. Ardil
Abstract:
Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, real-coded genetic algorithm (RCGA) optimization technique is applied to design robust power system stabilizer for both singlemachine infinite-bus (SMIB) and multi-machine power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.
Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20613426 Local Algorithm for Establishing a Virtual Backbone in 3D Ad Hoc Network
Authors: Alaa E. Abdallah, M. Bsoul, Emad E. Abdallah, Ahmad Al-Khasawneh, Muath Alzghool
Abstract:
Due to the limited lifetime of the nodes in ad hoc and sensor networks, energy efficiency needs to be an important design consideration in any routing algorithm. It is known that by employing a virtual backbone in a wireless network, the efficiency of any routing scheme for the network can be improved. One common design for routing protocols in mobile ad hoc networks is to use positioning information; we use the node-s geometric locations to introduce an algorithm that can construct the virtual backbone structure locally in 3D environment. The algorithm construction has a constant time.
Keywords: Virtual backbone, dominating set, UDG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16793425 Combined DWT-CT Blind Digital Image Watermarking Algorithm
Authors: Nidal F. Shilbayeh, Belal AbuHaija, Zainab N. Al-Qudsy
Abstract:
In this paper, we propose a new robust and secure system that is based on the combination between two different transforms Discrete wavelet Transform (DWT) and Contourlet Transform (CT). The combined transforms will compensate the drawback of using each transform separately. The proposed algorithm has been designed, implemented and tested successfully. The experimental results showed that selecting the best sub-band for embedding from both transforms will improve the imperceptibility and robustness of the new combined algorithm. The evaluated imperceptibility of the combined DWT-CT algorithm which gave a PSNR value 88.11 and the combination DWT-CT algorithm improves robustness since it produced better robust against Gaussian noise attack. In addition to that, the implemented system shored a successful extraction method to extract watermark efficiently.Keywords: DWT, CT, Digital Image Watermarking, Copyright Protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28503424 Relevance Feedback within CBIR Systems
Authors: Mawloud Mosbah, Bachir Boucheham
Abstract:
We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.
Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23423423 A Modified Inexact Uzawa Algorithm for Generalized Saddle Point Problems
Authors: Shu-Xin Miao
Abstract:
In this note, we discuss the convergence behavior of a modified inexact Uzawa algorithm for solving generalized saddle point problems, which is an extension of the result obtained in a recent paper [Z.H. Cao, Fast Uzawa algorithm for generalized saddle point problems, Appl. Numer. Math., 46 (2003) 157-171].
Keywords: Saddle point problem, inexact Uzawa algorithm, convergence behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14833422 Explicit Feedback Linearization of Magnetic Levitation System
Authors: Bhawna Tandon, Shiv Narayan, Jagdish Kumar
Abstract:
This study proposes the transformation of nonlinear Magnetic Levitation System into linear one, via state and feedback transformations using explicit algorithm. This algorithm allows computing explicitly the linearizing state coordinates and feedback for any nonlinear control system, which is feedback linearizable, without solving the Partial Differential Equations. The algorithm is performed using a maximum of N-1 steps where N being the dimension of the system.
Keywords: Explicit Algorithm, Feedback Linearization, Nonlinear control, Magnetic Levitation System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29753421 Similarity Measures and Weighted Fuzzy C-Mean Clustering Algorithm
Authors: Bainian Li, Kongsheng Zhang, Jian Xu
Abstract:
In this paper we study the fuzzy c-mean clustering algorithm combined with principal components method. Demonstratively analysis indicate that the new clustering method is well rather than some clustering algorithms. We also consider the validity of clustering method.
Keywords: FCM algorithm, Principal Components Analysis, Clustervalidity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17243420 Approximately Similarity Measurement of Web Sites Using Genetic Algorithms and Binary Trees
Authors: Doru Anastasiu Popescu, Dan Rădulescu
Abstract:
In this paper, we determine the similarity of two HTML web applications. We are going to use a genetic algorithm in order to determine the most significant web pages of each application (we are not going to use every web page of a site). Using these significant web pages, we will find the similarity value between the two applications. The algorithm is going to be efficient because we are going to use a reduced number of web pages for comparisons but it will return an approximate value of the similarity. The binary trees are used to keep the tags from the significant pages. The algorithm was implemented in Java language.
Keywords: Tag, HTML, web page, genetic algorithm, similarity value, binary tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13103419 On the EM Algorithm and Bootstrap Approach Combination for Improving Satellite Image Fusion
Authors: Tijani Delleji, Mourad Zribi, Ahmed Ben Hamida
Abstract:
This paper discusses EM algorithm and Bootstrap approach combination applied for the improvement of the satellite image fusion process. This novel satellite image fusion method based on estimation theory EM algorithm and reinforced by Bootstrap approach was successfully implemented and tested. The sensor images are firstly split by a Bayesian segmentation method to determine a joint region map for the fused image. Then, we use the EM algorithm in conjunction with the Bootstrap approach to develop the bootstrap EM fusion algorithm, hence producing the fused targeted image. We proposed in this research to estimate the statistical parameters from some iterative equations of the EM algorithm relying on a reference of representative Bootstrap samples of images. Sizes of those samples are determined from a new criterion called 'hybrid criterion'. Consequently, the obtained results of our work show that using the Bootstrap EM (BEM) in image fusion improve performances of estimated parameters which involve amelioration of the fused image quality; and reduce the computing time during the fusion process.Keywords: Satellite image fusion, Bayesian segmentation, Bootstrap approach, EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22603418 Identification of MIMO Systems Using Neuro-Fuzzy Models with a Shuffled Frog Leaping Algorithm
Authors: Sana Bouzaida, Anis Sakly, Faouzi M'Sahli
Abstract:
In this paper, a TSK-type Neuro-fuzzy Inference System that combines the features of fuzzy sets and neural networks has been applied for the identification of MIMO systems. The procedure of adapting parameters in TSK model employs a Shuffled Frog Leaping Algorithm (SFLA) which is inspired from the memetic evolution of a group of frogs when seeking for food. To demonstrate the accuracy and effectiveness of the proposed controller, two nonlinear systems have been considered as the MIMO plant, and results have been compared with other learning methods based on Particle Swarm Optimization algorithm (PSO) and Genetic Algorithm (GA).Keywords: Identification, Shuffled frog Leaping Algorithm (SFLA), TSK-type neuro-fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17733417 An Incomplete Factorization Preconditioner for LMS Adaptive Filter
Authors: Shazia Javed, Noor Atinah Ahmad
Abstract:
In this paper an efficient incomplete factorization preconditioner is proposed for the Least Mean Squares (LMS) adaptive filter. The proposed preconditioner is approximated from a priori knowledge of the factors of input correlation matrix with an incomplete strategy, motivated by the sparsity patter of the upper triangular factor in the QRD-RLS algorithm. The convergence properties of IPLMS algorithm are comparable with those of transform domain LMS(TDLMS) algorithm. Simulation results show efficiency and robustness of the proposed algorithm with reduced computational complexity.
Keywords: Autocorrelation matrix, Cholesky's factor, eigenvalue spread, Markov input.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17933416 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space
Authors: Vahid Anari, Mina Bakhshi
Abstract:
Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.
Keywords: Positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6943415 Hybrid Algorithm for Hammerstein System Identification Using Genetic Algorithm and Particle Swarm Optimization
Authors: Tomohiro Hachino, Kenji Shimoda, Hitoshi Takata
Abstract:
This paper presents a method of model selection and identification of Hammerstein systems by hybridization of the genetic algorithm (GA) and particle swarm optimization (PSO). An unknown nonlinear static part to be estimated is approximately represented by an automatic choosing function (ACF) model. The weighting parameters of the ACF and the system parameters of the linear dynamic part are estimated by the linear least-squares method. On the other hand, the adjusting parameters of the ACF model structure are properly selected by the hybrid algorithm of the GA and PSO, where the Akaike information criterion is utilized as the evaluation value function. Simulation results are shown to demonstrate the effectiveness of the proposed hybrid algorithm.Keywords: Hammerstein system, identification, automatic choosing function model, genetic algorithm, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15013414 Adaptive Non-linear Filtering Technique for Image Restoration
Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, S. K. Nayak, C. Ardil
Abstract:
Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.
Keywords: Filtering, Decision Based Algorithm, noise, imagerestoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21583413 Fingerprint Compression Using Contourlet Transform and Multistage Vector Quantization
Authors: S. Esakkirajan, T. Veerakumar, V. Senthil Murugan, R. Sudhakar
Abstract:
This paper presents a new fingerprint coding technique based on contourlet transform and multistage vector quantization. Wavelets have shown their ability in representing natural images that contain smooth areas separated with edges. However, wavelets cannot efficiently take advantage of the fact that the edges usually found in fingerprints are smooth curves. This issue is addressed by directional transforms, known as contourlets, which have the property of preserving edges. The contourlet transform is a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks. The computation and storage requirements are the major difficulty in implementing a vector quantizer. In the full-search algorithm, the computation and storage complexity is an exponential function of the number of bits used in quantizing each frame of spectral information. The storage requirement in multistage vector quantization is less when compared to full search vector quantization. The coefficients of contourlet transform are quantized by multistage vector quantization. The quantized coefficients are encoded by Huffman coding. The results obtained are tabulated and compared with the existing wavelet based ones.Keywords: Contourlet Transform, Directional Filter bank, Laplacian Pyramid, Multistage Vector Quantization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20143412 Computational Algorithm for Obtaining Abelian Subalgebras in Lie Algebras
Authors: Manuel Ceballos, Juan Nunez, Angel F. Tenorio
Abstract:
The set of all abelian subalgebras is computationally obtained for any given finite-dimensional Lie algebra, starting from the nonzero brackets in its law. More concretely, an algorithm is described and implemented to compute a basis for each nontrivial abelian subalgebra with the help of the symbolic computation package MAPLE. Finally, it is also shown a brief computational study for this implementation, considering both the computing time and the used memory.Keywords: Solvable Lie algebra, maximal abelian dimension, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12833411 Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm
Authors: T. Vigneswari, M. A. Maluk Mohamed
Abstract:
Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Heterogeneous Earliest First Min- Min Artificial Bee Colony (CHMM-ABC), to optimally schedule jobs for the available resources. The proposed model utilizes a novel Heterogeneous Earliest Finish Time (HEFT) Heuristic Algorithm along with Min-Min algorithm to identify the initial food source. Simulation results show the performance improvement of the proposed algorithm over other swarm intelligence techniques.
Keywords: Grid Computing, Grid Scheduling, Heterogeneous Earliest Finish Time (HEFT), Artificial Bee colony (ABC) Algorithm, Resource Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31043410 Near Perfect Reconstruction Quadrature Mirror Filter
Authors: A. Kumar, G. K. Singh, R. S. Anand
Abstract:
In this paper, various algorithms for designing quadrature mirror filter are reviewed and a new algorithm is presented for the design of near perfect reconstruction quadrature mirror filter bank. In the proposed algorithm, objective function is formulated using the perfect reconstruction condition or magnitude response condition of prototype filter at frequency (ω = 0.5π) in ideal condition. The cutoff frequency is iteratively changed to adjust the filters coefficients using optimization algorithm. The performances of the proposed algorithm are evaluated in term of computation time, reconstruction error and number of iterations. The design examples illustrate that the proposed algorithm is superior in term of peak reconstruction error, computation time, and number of iterations. The proposed algorithm is simple, easy to implement, and linear in nature.
Keywords: Aliasing cancellations filter bank, Filter banks, quadrature mirror filter (QMF), subband coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25313409 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm
Authors: Mohammadhosein Hasanbeig, Lacra Pavel
Abstract:
In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.Keywords: Distributed control, game theory, multi-agent learning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9733408 Enhancing K-Means Algorithm with Initial Cluster Centers Derived from Data Partitioning along the Data Axis with the Highest Variance
Authors: S. Deelers, S. Auwatanamongkol
Abstract:
In this paper, we propose an algorithm to compute initial cluster centers for K-means clustering. Data in a cell is partitioned using a cutting plane that divides cell in two smaller cells. The plane is perpendicular to the data axis with the highest variance and is designed to reduce the sum squared errors of the two cells as much as possible, while at the same time keep the two cells far apart as possible. Cells are partitioned one at a time until the number of cells equals to the predefined number of clusters, K. The centers of the K cells become the initial cluster centers for K-means. The experimental results suggest that the proposed algorithm is effective, converge to better clustering results than those of the random initialization method. The research also indicated the proposed algorithm would greatly improve the likelihood of every cluster containing some data in it.Keywords: Clustering algorithm, K-means algorithm, Datapartitioning, Initial cluster centers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28663407 A PSO-based End-Member Selection Method for Spectral Unmixing of Multispectral Satellite Images
Authors: Mahamed G.H. Omran, Andries P Engelbrecht, Ayed Salman
Abstract:
An end-member selection method for spectral unmixing that is based on Particle Swarm Optimization (PSO) is developed in this paper. The algorithm uses the K-means clustering algorithm and a method of dynamic selection of end-members subsets to find the appropriate set of end-members for a given set of multispectral images. The proposed algorithm has been successfully applied to test image sets from various platforms such as LANDSAT 5 MSS and NOAA's AVHRR. The experimental results of the proposed algorithm are encouraging. The influence of different values of the algorithm control parameters on performance is studied. Furthermore, the performance of different versions of PSO is also investigated.
Keywords: End-members selection, multispectral satellite imagery, particle swarm optimization, spectral unmixing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20993406 Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm
Authors: S.C.Swain, A.K.Balirsingh, S. Mahapatra, S. Panda
Abstract:
This paper presents a systematic approach for designing Static Synchronous Series Compensator (SSSC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.Keywords: Low frequency Oscillations, Phase CompensationTechnique, Real Coded Genetic Algorithm, Single-machine InfiniteBus Power System, Static Synchronous Series Compensator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25023405 Optimal Algorithm for Constructing the Delaunay Triangulation in Ed
Authors: V. Tereshchenko, D. Taran
Abstract:
In this paper we propose a new approach to constructing the Delaunay Triangulation and the optimum algorithm for the case of multidimensional spaces (d ≥ 2). Analysing the modern state, it is possible to draw a conclusion, that the ideas for the existing effective algorithms developed for the case of d ≥ 2 are not simple to generalize on a multidimensional case, without the loss of efficiency. We offer for the solving this problem an effective algorithm that satisfies all the given requirements. But theoretical complexity of the problem it is impossible to improve as the Worst - Case Optimality for algorithms of solving such a problem is proved.
Keywords: Delaunay triangulation, multidimensional space, Voronoi Diagram, optimal algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19813404 Optimal Planning of Dispatchable Distributed Generators for Power Loss Reduction in Unbalanced Distribution Networks
Authors: Mahmoud M. Othman, Y. G. Hegazy, A. Y. Abdelaziz
Abstract:
This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.
Keywords: Distributed generation, heuristic approach, Optimization, planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18083403 A Robust Audio Fingerprinting Algorithm in MP3 Compressed Domain
Authors: Ruili Zhou, Yuesheng Zhu
Abstract:
In this paper, a new robust audio fingerprinting algorithm in MP3 compressed domain is proposed with high robustness to time scale modification (TSM). Instead of simply employing short-term information of the MP3 stream, the new algorithm extracts the long-term features in MP3 compressed domain by using the modulation frequency analysis. Our experiment has demonstrated that the proposed method can achieve a hit rate of above 95% in audio retrieval and resist the attack of 20% TSM. It has lower bit error rate (BER) performance compared to the other algorithms. The proposed algorithm can also be used in other compressed domains, such as AAC.Keywords: Audio Fingerprinting, MP3, Modulation Frequency, TSM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21963402 A Characterized and Optimized Approach for End-to-End Delay Constrained QoS Routing
Authors: P.S.Prakash, S.Selvan
Abstract:
QoS Routing aims to find paths between senders and receivers satisfying the QoS requirements of the application which efficiently using the network resources and underlying routing algorithm to be able to find low-cost paths that satisfy given QoS constraints. The problem of finding least-cost routing is known to be NP hard or complete and some algorithms have been proposed to find a near optimal solution. But these heuristics or algorithms either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we analyzed two algorithms namely Characterized Delay Constrained Routing (CDCR) and Optimized Delay Constrained Routing (ODCR). The CDCR algorithm dealt an approach for delay constrained routing that captures the trade-off between cost minimization and risk level regarding the delay constraint. The ODCR which uses an adaptive path weight function together with an additional constraint imposed on the path cost, to restrict search space and hence ODCR finds near optimal solution in much quicker time.Keywords: QoS, Delay, Routing, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12743401 A Valley Detection for Path Planning
Authors: In-Geun Lim, Jin-Soo Kim, Chirl-Hwa Lee
Abstract:
This paper presents a constrained valley detection algorithm. The intent is to find valleys in the map for the path planning that enables a robot or a vehicle to move safely. The constraint to the valley is a desired width and a desired depth to ensure the space for movement when a vehicle passes through the valley. We propose an algorithm to find valleys satisfying these 2 dimensional constraints. The merit of our algorithm is that the pre-processing and the post-processing are not necessary to eliminate undesired small valleys. The algorithm is validated through simulation using digitized elevation data.Keywords: valley, width, depth, path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444