Search results for: reinforcementlearning; Actor-Critic learning; adaptive PID control; RBF network.
7650 Comparative Analysis of Different Control Strategies for Electro-hydraulic Servo Systems
Authors: Ismail Algelli Sassi Ehtiwesh, Željko Đurović
Abstract:
The main goal of the study is to analyze all relevant properties of the electro hydraulic systems and based on that to make a proper choice of the control strategy that may be used for the control of the servomechanism system. A combination of electronic and hydraulic systems is widely used since it combines the advantages of both. Hydraulic systems are widely spread because of their properties as accuracy, flexibility, high horsepower-to-weight ratio, fast starting, stopping and reversal with smoothness and precision, and simplicity of operations. On the other hand, the modern control of hydraulic systems is based on control of the circuit fed to the inductive solenoid that controls the position of the hydraulic valve. Since this circuit may be easily handled by PWM (Pulse Width Modulation) signal with a proper frequency, the combination of electrical and hydraulic systems became very fruitful and usable in specific areas as airplane and military industry. The study shows and discusses the experimental results obtained by the control strategy (classical feedback (PID) & neural network) using MATLAB and SIMULINK [1]. Finally, the special attention was paid to the possibility of neuro-controller design and its application to control of electro-hydraulic systems and to make comparative with classical control.Keywords: Electro-hydraulic systems, PID, Neural network controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18397649 New Curriculum Approach in Teaching Network Security Subjects for ICT Courses in Malaysia
Authors: Mohd Fairuz Iskandar Othman, Nazrulazhar Bahaman, Zulkiflee Muslim, Faizal Abdollah
Abstract:
This paper discusses a curriculum approach that will give emphasis on practical portions of teaching network security subjects in information and communication technology courses. As we are well aware, the need to use a practice and application oriented approach in education is paramount. Research on active learning and cooperative groups have shown that students grasps more and have more tendency towards obtaining and realizing soft skills like leadership, communication and team work as opposed to the more traditional theory and exam based teaching and learning. While this teaching and learning paradigm is relatively new in Malaysia, it has been practiced widely in the West. This paper examines a certain approach whereby students learning wireless security are divided into and work in small and manageable groups where there will be 2 teams which consist of black hat and white hat teams. The former will try to find and expose vulnerabilities in a wireless network while the latter will try their best to prevent such attacks on their wireless networks using hardware, software, design and enforcement of security policy and etc. This paper will try to show that the approach taken plus the use of relevant and up to date software and hardware and with suitable environment setting will hopefully expose students to a more fruitful outcome in terms of understanding of concepts, theories and their motivation to learn.Keywords: Curriculum approach, wireless networks, wirelesssecurity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17017648 NSBS: Design of a Network Storage Backup System
Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan
Abstract:
The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and the snapshot and hierarchical index are used in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.
Keywords: Agent, network backup system, three architecture model, NSBS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22317647 Performance Analysis of Traffic Classification with Machine Learning
Authors: Htay Htay Yi, Zin May Aye
Abstract:
Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.Keywords: False negative rate, intrusion detection system, machine learning methods, performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10707646 Dynamic Performance Analysis of Distribution/ Sub-Transmission Networks with High Penetration of PV Generation
Authors: Cristian F.T. Montenegro, Luís F. N. Lourenço, Maurício B. C. Salles, Renato M. Monaro
Abstract:
More PV systems have been connected to the electrical network each year. As the number of PV systems increases, some issues affecting grid operations have been identified. This paper studied the impacts related to changes in solar irradiance on a distribution/sub-transmission network, considering variations due to moving clouds and daily cycles. Using MATLAB/Simulink software, a solar farm of 30 MWp was built and then implemented to a test network. From simulations, it has been determined that irradiance changes can have a significant impact on the grid by causing voltage fluctuations outside the allowable thresholds. This work discussed some local control strategies and grid reinforcements to mitigate the negative effects of the irradiance changes on the grid.
Keywords: Utility-scale PV systems, reactive power control, solar irradiance, voltage fluctuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12537645 An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots
Authors: Baoshan Wei, Shuai Han, Xing Zhang
Abstract:
Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms.Keywords: Adaptive control, dynamic window approach, environment aware, local obstacle avoidance, mobile robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12947644 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact
Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed
Abstract:
Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).
Keywords: Classification, Bayesian network; structure learning, K2 algorithm, expert knowledge, surface water analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5127643 SMCC: Self-Managing Congestion Control Algorithm
Authors: Sh. Jamali, A. Eftekhari
Abstract:
Transmission control protocol (TCP) Vegas detects network congestion in the early stage and successfully prevents periodic packet loss that usually occurs in TCP Reno. It has been demonstrated that TCP Vegas outperforms TCP Reno in many aspects. However, TCP Vegas suffers several problems that affect its congestion avoidance mechanism. One of the most important weaknesses in TCP Vegas is that alpha and beta depend on a good expected throughput estimate, which as we have seen, depends on a good minimum RTT estimate. In order to make the system more robust alpha and beta must be made responsive to network conditions (they are currently chosen statically). This paper proposes a modified Vegas algorithm, which can be adjusted to present good performance compared to other transmission control protocols (TCPs). In order to do this, we use PSO algorithm to tune alpha and beta. The simulation results validate the advantages of the proposed algorithm in term of performance.Keywords: Self-managing, Congestion control, TCP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14667642 Tipover Stability Enhancement of Wheeled Mobile Manipulators Using an Adaptive Neuro- Fuzzy Inference Controller System
Authors: A. Ghaffari, A. Meghdari, D. Naderi, S. Eslami
Abstract:
In this paper an algorithm based on the adaptive neuro-fuzzy controller is provided to enhance the tipover stability of mobile manipulators when they are subjected to predefined trajectories for the end-effector and the vehicle. The controller creates proper configurations for the manipulator to prevent the robot from being overturned. The optimal configuration and thus the most favorable control are obtained through soft computing approaches including a combination of genetic algorithm, neural networks, and fuzzy logic. The proposed algorithm, in this paper, is that a look-up table is designed by employing the obtained values from the genetic algorithm in order to minimize the performance index and by using this data base, rule bases are designed for the ANFIS controller and will be exerted on the actuators to enhance the tipover stability of the mobile manipulator. A numerical example is presented to demonstrate the effectiveness of the proposed algorithm.Keywords: Mobile Manipulator, Tipover Stability Enhancement, Adaptive Neuro-Fuzzy Inference Controller System, Soft Computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19637641 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas
Authors: Ahmet Kayabasi, Ali Akdagli
Abstract:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.Keywords: A-shaped compact microstrip antenna, Artificial Neural Network (ANN), adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22157640 Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering
Authors: Dewan Md. Farid, Nouria Harbi, Suman Ahmmed, Md. Zahidur Rahman, Chowdhury Mofizur Rahman
Abstract:
Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.Keywords: Clustering, detection rate, false positive, naïveBayesian classifier, network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55367639 Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process
Authors: P. Georgieva, S. Feyo de Azevedo
Abstract:
This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.Keywords: artificial neural networks, nonlinear model control, process identification, crystallization process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18387638 Information Security in E-Learning through Identification of Humans
Authors: Hassan Haleh, Zohreh Nasiri, Parisa Farahpour
Abstract:
During recent years, the traditional learning approaches have undergone fundamental changes due to the emergence of new technologies such as multimedia, hypermedia and telecommunication. E-learning is a modern world phenomenon that has come into existence in the information age and in a knowledgebased society. E-learning has developed significantly within a short period of time. Thus it is of a great significant to secure information, allow a confident access and prevent unauthorized accesses. Making use of individuals- physiologic or behavioral (biometric) properties is a confident method to make the information secure. Among the biometrics, fingerprint is more acceptable and most countries use it as an efficient methods of identification. This article provides a new method to compare the fingerprint comparison by pattern recognition and image processing techniques. To verify fingerprint, the shortest distance method is used together with perceptronic multilayer neural network functioning based on minutiae. This method is highly accurate in the extraction of minutiae and it accelerates comparisons due to elimination of false minutiae and is more reliable compared with methods that merely use directional images.Keywords: Fingerprint, minutiae, extraction of properties, multilayer neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16497637 Adaptive Filtering of Heart Rate Signals for an Improved Measure of Cardiac Autonomic Control
Authors: Desmond B. Keenan, Paul Grossman
Abstract:
In order to provide accurate heart rate variability indices of sympathetic and parasympathetic activity, the low frequency and high frequency components of an RR heart rate signal must be adequately separated. This is not always possible by just applying spectral analysis, as power from the high and low frequency components often leak into their adjacent bands. Furthermore, without the respiratory spectra it is not obvious that the low frequency component is not another respiratory component, which can appear in the lower band. This paper describes an adaptive filter, which aids the separation of the low frequency sympathetic and high frequency parasympathetic components from an ECG R-R interval signal, enabling the attainment of more accurate heart rate variability measures. The algorithm is applied to simulated signals and heart rate and respiratory signals acquired from an ambulatory monitor incorporating single lead ECG and inductive plethysmography sensors embedded in a garment. The results show an improvement over standard heart rate variability spectral measurements.Keywords: Heart rate variability, vagal tone, sympathetic, parasympathetic, spectral analysis, adaptive filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17547636 Distributed Relay Selection and Channel Choice in Cognitive Radio Network
Authors: Hao He, Shaoqian Li
Abstract:
In this paper, we study the cooperative communications where multiple cognitive radio (CR) transmit-receive pairs competitive maximize their own throughputs. In CR networks, the influences of primary users and the spectrum availability are usually different among CR users. Due to the existence of multiple relay nodes and the different spectrum availability, each CR transmit-receive pair should not only select the relay node but also choose the appropriate channel. For this distributed problem, we propose a game theoretic framework to formulate this problem and we apply a regret-matching learning algorithm which is leading to correlated equilibrium. We further formulate a modified regret-matching learning algorithm which is fully distributed and only use the local information of each CR transmit-receive pair. This modified algorithm is more practical and suitable for the cooperative communications in CR network. Simulation results show the algorithm convergence and the modified learning algorithm can achieve comparable performance to the original regretmatching learning algorithm.
Keywords: cognitive radio, cooperative communication, relay selection, channel choice, regret-matching learning, correlated equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16767635 Hopfield Network as Associative Memory with Multiple Reference Points
Authors: Domingo López-Rodríguez, Enrique Mérida-Casermeiro, Juan M. Ortiz-de-Lazcano-Lobato
Abstract:
Hopfield model of associative memory is studied in this work. In particular, two main problems that it possesses: the apparition of spurious patterns in the learning phase, implying the well-known effect of storing the opposite pattern, and the problem of its reduced capacity, meaning that it is not possible to store a great amount of patterns without increasing the error probability in the retrieving phase. In this paper, a method to avoid spurious patterns is presented and studied, and an explanation of the previously mentioned effect is given. Another technique to increase the capacity of a network is proposed here, based on the idea of using several reference points when storing patterns. It is studied in depth, and an explicit formula for the capacity of the network with this technique is provided.
Keywords: Associative memory, Hopfield network, network capacity, spurious patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11087634 Explanatory of Relationship between Learning Motivation and Learning Performance
Authors: Chih Chin Yang
Abstract:
In this paper, the relationship between learning motivation and learning performance is explored by using exchange theory. The relationship is concluded that external performance can raise learning motivation and then increase learning performance. The internal performance should be not completely neglected and the external performance should be not attached important excessively. The parents need self-study and must be also reeducated. The existing education must be improved in raise of internal performance. The incorrect learning thinking will mislead the students, parents, and educators of next generation, when the students obtain good learning performance in the learning environment with excess stimulants. Over operation of external performance will result abnormal learning thinking and violating learning goal. Learning is not only to obtain performance. Learning quality and learning performance will be limited as without learning motivation. The best learning motivation is, the best learning performance is. The learning for reward is not good for learning performance. Strategies of promoting life-long learning are including the encouraging for learner, establishment of good interaction learning environment, and the advertisement of the merit and the importance of life-long learning, which can let the learner with the correct learning motivation.Keywords: exchange theory, learning motivation, learning performance, learning quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16207633 High Impedance Fault Detection using LVQ Neural Networks
Authors: Abhishek Bansal, G. N. Pillai
Abstract:
This paper presents a new method to detect high impedance faults in radial distribution systems. Magnitudes of third and fifth harmonic components of voltages and currents are used as a feature vector for fault discrimination. The proposed methodology uses a learning vector quantization (LVQ) neural network as a classifier for identifying high impedance arc-type faults. The network learns from the data obtained from simulation of a simple radial system under different fault and system conditions. Compared to a feed-forward neural network, a properly tuned LVQ network gives quicker response.Keywords: Fault identification, distribution networks, high impedance arc-faults, feature vector, LVQ networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22147632 Designing a Football Team of Robots from Beginning to End
Authors: Maziar A. Sharbafi, Caro Lucas, Aida Mohammadinejad, Mostafa Yaghobi
Abstract:
The Combination of path planning and path following is the main purpose of this paper. This paper describes the developed practical approach to motion control of the MRL small size robots. An intelligent controller is applied to control omni-directional robots motion in simulation and real environment respectively. The Brain Emotional Learning Based Intelligent Controller (BELBIC), based on LQR control is adopted for the omni-directional robots. The contribution of BELBIC in improving the control system performance is shown as application of the emotional learning in a real world problem. Optimizing of the control effort can be achieved in this method too. Next the implicit communication method is used to determine the high level strategies and coordination of the robots. Some simple rules besides using the environment as a memory to improve the coordination between agents make the robots' decision making system. With this simple algorithm our team manifests a desirable cooperation.
Keywords: multi-agent systems (MAS), Emotional learning, MIMO system, BELBIC, LQR, Communication via environment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18537631 Gain Tuning Fuzzy Controller for an Optical Disk Drive
Authors: Shiuh-Jer Huang, Ming-Tien Su
Abstract:
Since the driving speed and control accuracy of commercial optical disk are increasing significantly, it needs an efficient controller to monitor the track seeking and following operations of the servo system for achieving the desired data extracting response. The nonlinear behaviors of the actuator and servo system of the optical disk drive will influence the laser spot positioning. Here, the model-free fuzzy control scheme is employed to design the track seeking servo controller for a d.c. motor driving optical disk drive system. In addition, the sliding model control strategy is introduced into the fuzzy control structure to construct a 1-D adaptive fuzzy rule intelligent controller for simplifying the implementation problem and improving the control performance. The experimental results show that the steady state error of the track seeking by using this fuzzy controller can maintain within the track width (1.6 μm ). It can be used in the track seeking and track following servo control operations.Keywords: Fuzzy control, gain tuning and optical disk drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15877630 An Adaptive Fuzzy Clustering Approach for the Network Management
Authors: Amal Elmzabi, Mostafa Bellafkih, Mohammed Ramdani
Abstract:
The Chiu-s method which generates a Takagi-Sugeno Fuzzy Inference System (FIS) is a method of fuzzy rules extraction. The rules output is a linear function of inputs. In addition, these rules are not explicit for the expert. In this paper, we develop a method which generates Mamdani FIS, where the rules output is fuzzy. The method proceeds in two steps: first, it uses the subtractive clustering principle to estimate both the number of clusters and the initial locations of a cluster centers. Each obtained cluster corresponds to a Mamdani fuzzy rule. Then, it optimizes the fuzzy model parameters by applying a genetic algorithm. This method is illustrated on a traffic network management application. We suggest also a Mamdani fuzzy rules generation method, where the expert wants to classify the output variables in some fuzzy predefined classes.
Keywords: Fuzzy entropy, fuzzy inference systems, genetic algorithms, network management, subtractive clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18837629 An Innovational Intermittent Algorithm in Networks-On-Chip (NOC)
Authors: Ahmad M. Shafiee, Mehrdad Montazeri, Mahdi Nikdast
Abstract:
Every day human life experiences new equipments more automatic and with more abilities. So the need for faster processors doesn-t seem to finish. Despite new architectures and higher frequencies, a single processor is not adequate for many applications. Parallel processing and networks are previous solutions for this problem. The new solution to put a network of resources on a chip is called NOC (network on a chip). The more usual topology for NOC is mesh topology. There are several routing algorithms suitable for this topology such as XY, fully adaptive, etc. In this paper we have suggested a new algorithm named Intermittent X, Y (IX/Y). We have developed the new algorithm in simulation environment to compare delay and power consumption with elders' algorithms.Keywords: Computer architecture, parallel computing, NOC, routing algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16787628 Flight Control of Vectored Thrust Aerial Vehicle by Neural Network Predictive Controller for Enhanced Situational Awareness
Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a flight control procedure to address the dynamics variation and performance requirement difference of flight trajectory for an unmanned helicopter model with vectored thrust configuration. This control strategy for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.
Keywords: Neural network predictive controller, situational awareness, vectored thrust aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15027627 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks
Authors: T. Sattarpour, D. Nazarpour
Abstract:
This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.
Keywords: Active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17707626 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction
Authors: Talal Alsulaiman, Khaldoun Khashanah
Abstract:
In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent’s attributes. Also, the influence of social networks in the developing of agents interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.Keywords: Artificial stock markets, agent based simulation, bounded rationality, behavioral finance, artificial neural network, interaction, scale-free networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25287625 A New Load Frequency Controller based on Parallel Fuzzy PI with Conventional PD (FPI-PD)
Authors: Aqeel S. Jaber, Abu Zaharin Ahmad, Ahmed N. Abdalla
Abstract:
The artificial intelligent controller in power system plays as most important rule for many applications such as system operation and its control specially Load Frequency Controller (LFC). The main objective of LFC is to keep the frequency and tie-line power close to their decidable bounds in case of disturbance. In this paper, parallel fuzzy PI adaptive with conventional PD technique for Load Frequency Control system was proposed. PSO optimization method used to optimize both of scale fuzzy PI and tuning of PD. Two equal interconnected power system areas were used as a test system. Simulation results show the effectiveness of the proposed controller compared with different PID and classical fuzzy PI controllers in terms of speed response and damping frequency.Keywords: Load frequency control, PSO, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20277624 An Approach to Adaptive Load Balancing for RFID Middlewares
Authors: Heung Seok Chae, Jaegeol Park
Abstract:
Recently, there have been an increasing interest in RFID system and RFID systems have been applied to various applications. Load balancing is a fundamental technique for providing scalability of systems by moving workload from overloaded nodes to under-loaded nodes. This paper presents an approach to adaptive load balancing for RFID middlewares. Workloads of RFID middlewares can have a considerable variation according to the location of the connected RFID readers and can abruptly change at a particular instance. The proposed approach considers those characteristics of RFID middle- wares to provide an efficient load balancing.
Keywords: RFID middleware, Adaptive load balancing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15647623 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.
Keywords: Visual search, deep learning, convolutional neural network, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8257622 Knowledge Discovery from Production Databases for Hierarchical Process Control
Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata
Abstract:
The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system thus the proposed solution has been verified. The paper documents how is possible to apply the new discovery knowledge to use in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.
Keywords: Hierarchical process control, knowledge discovery from databases, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17757621 A Control Model for Improving Safety and Efficiency of Navigation System Based on Reinforcement Learning
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Artificial Intelligence (AI), specifically Reinforcement Learning (RL), has proven helpful in many control path planning technologies by maximizing and enhancing their performance, such as navigation systems. Since it learns from experience by interacting with the environment to determine the optimal policy, the optimal policy takes the best action in a particular state, accounting for the long-term rewards. Most navigation systems focus primarily on "arriving faster," overlooking safety and efficiency while estimating the optimum path, as safety and efficiency are essential factors when planning for a long-distance journey. This paper represents an RL control model that proposes a control mechanism for improving navigation systems. Also, the model could be applied to other control path planning applications because it is adjustable and can accept different properties and parameters. However, the navigation system application has been taken as a case and evaluation study for the proposed model. The model utilized a Q-learning algorithm for training and updating the policy. It allows the agent to analyze the quality of an action made in the environment to maximize rewards. The model gives the ability to update rewards regularly based on safety and efficiency assessments, allowing the policy to consider the desired safety and efficiency benefits while making decisions, which improves the quality of the decisions taken for path planning compared to the conventional RL approaches.
Keywords: Artificial intelligence, control system, navigation systems, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201