Search results for: mathematical data analysis.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14053

Search results for: mathematical data analysis.

13633 Design of the Mathematical Model of the Respiratory System Using Electro-acoustic Analogy

Authors: M. Rozanek, K. Roubik

Abstract:

The article deals with development, design and implementation of a mathematical model of the human respiratory system. The model is designed in order to simulate distribution of important intrapulmonary parameters along the bronchial tree such as pressure amplitude, tidal volume and effect of regional mechanical lung properties upon the efficiency of various ventilatory techniques. Therefore exact agreement of the model structure with the lung anatomical structure is required. The model is based on the lung morphology and electro-acoustic analogy is used to design the model.

Keywords: Model of the respiratory system, total lung impedance, intrapulmonary parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
13632 Analysis of Drying Kinetics of a Slurry Droplet in the Falling Rate Period of Spray Drying

Authors: Boris Golman, Wittaya Julklang

Abstract:

The heat and mass transfer was investigated during the falling rate period of spray drying of a slurry droplet. The effect of the porosity of crust layer formed from primary particles during liquid evaporation was studied numerically using the developed mathematical model which takes into account the heat and mass transfer in the core and crust regions, the movement of the evaporation interface, and the external heat and mass transfer between the drying air and the droplet surface. It was confirmed that the heat transfer through the crust layer was more intense in the case of the dense droplet than the loose one due to the enhanced thermal conduction resulting in the higher average droplet temperature. The mass transfer was facilitated in the crust layer of loose droplet owing to the large pore space available for diffusion of water vapor from the evaporation interface to the outer droplet surface. The longer drying time is required for the droplet of high porosity to reach the final moisture content than that for the dense one due to the larger amount of water to be evaporated during the falling rate.

Keywords: Spray Drying, Slurry Droplet, Heat and Mass Transfer, Crust Layer Porosity, Mathematical Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3623
13631 An Automatic Tool for Checking Consistency between Data Flow Diagrams (DFDs)

Authors: Rosziati Ibrahim, Siow Yen Yen

Abstract:

System development life cycle (SDLC) is a process uses during the development of any system. SDLC consists of four main phases: analysis, design, implement and testing. During analysis phase, context diagram and data flow diagrams are used to produce the process model of a system. A consistency of the context diagram to lower-level data flow diagrams is very important in smoothing up developing process of a system. However, manual consistency check from context diagram to lower-level data flow diagrams by using a checklist is time-consuming process. At the same time, the limitation of human ability to validate the errors is one of the factors that influence the correctness and balancing of the diagrams. This paper presents a tool that automates the consistency check between Data Flow Diagrams (DFDs) based on the rules of DFDs. The tool serves two purposes: as an editor to draw the diagrams and as a checker to check the correctness of the diagrams drawn. The consistency check from context diagram to lower-level data flow diagrams is embedded inside the tool to overcome the manual checking problem.

Keywords: Data Flow Diagram, Context Diagram, ConsistencyCheck, Syntax and Semantic Rules

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3439
13630 Mathematical Modelling and Numerical Simulation of Maisotsenko Cycle

Authors: Rasikh Tariq, Fatima Z. Benarab

Abstract:

Evaporative coolers has a minimum potential to reach the wet-bulb temperature of intake air which is not enough to handle a large cooling load; therefore, it is not a feasible option to overcome cooling requirement of a building. The invention of Maisotsenko (M) cycle has led evaporative cooling technology to reach the sub-wet-bulb temperature of the intake air; therefore, it brings an innovation in evaporative cooling techniques. In this work, we developed a mathematical model of the Maisotsenko based air cooler by applying energy and mass balance laws on different air channels. The governing ordinary differential equations are discretized and simulated on MATLAB. The temperature and the humidity plots are shown in the simulation results. A parametric study is conducted by varying working air inlet conditions (temperature and humidity), inlet air velocity, geometric parameters and water temperature. The influence of these aforementioned parameters on the cooling effectiveness of the HMX is reported.  Results have shown that the effectiveness of the M-Cycle is increased by increasing the ambient temperature and decreasing absolute humidity. An air velocity of 0.5 m/sec and a channel height of 6-8mm is recommended.

Keywords: Renewable energy, indirect evaporative cooling, Maisotsenko cycle, HMX, mathematical model, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
13629 Generating a Functional Grammar for Architectural Design from Structural Hierarchy in Combination of Square and Equal Triangle

Authors: Sanaz Ahmadzadeh Siyahrood, Arghavan Ebrahimi, Mohammadjavad Mahdavinejad

Abstract:

Islamic culture was accountable for a plethora of development in astronomy and science in the medieval term, and in geometry likewise. Geometric patterns are reputable in a considerable number of cultures, but in the Islamic culture the patterns have specific features that connect the Islamic faith to mathematics. In Islamic art, three fundamental shapes are generated from the circle shape: triangle, square and hexagon. Originating from their quiddity, each of these geometric shapes has its own specific structure. Even though the geometric patterns were generated from such simple forms as the circle and the square, they can be combined, duplicated, interlaced, and arranged in intricate combinations. So in order to explain geometrical interaction principles between square and equal triangle, in the first definition step, all types of their linear forces individually and in the second step, between them, would be illustrated. In this analysis, some angles will be created from intersection of their directions. All angles are categorized to some groups and the mathematical expressions among them are analyzed. Since the most geometric patterns in Islamic art and architecture are based on the repetition of a single motif, the evaluation results which are obtained from a small portion, is attributable to a large-scale domain while the development of infinitely repeating patterns can represent the unchanging laws. Geometric ornamentation in Islamic art offers the possibility of infinite growth and can accommodate the incorporation of other types of architectural layout as well, so the logic and mathematical relationships which have been obtained from this analysis are applicable in designing some architecture layers and developing the plan design.

Keywords: Angle, architecture, design, equal triangle, generating, grammar, square and structural hierarchy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
13628 Computational Prediction of Complicated Atmospheric Motion for Spinning or non- Spinning Projectiles

Authors: Dimitrios N. Gkritzapis, Elias E. Panagiotopoulos, Dionissios P. Margaris, Dimitrios G. Papanikas

Abstract:

A full six degrees of freedom (6-DOF) flight dynamics model is proposed for the accurate prediction of short and long-range trajectories of high spin and fin-stabilized projectiles via atmospheric flight to final impact point. The projectiles is assumed to be both rigid (non-flexible), and rotationally symmetric about its spin axis launched at low and high pitch angles. The mathematical model is based on the full equations of motion set up in the no-roll body reference frame and is integrated numerically from given initial conditions at the firing site. The projectiles maneuvering motion depends on the most significant force and moment variations, in addition to wind and gravity. The computational flight analysis takes into consideration the Mach number and total angle of attack effects by means of the variable aerodynamic coefficients. For the purposes of the present work, linear interpolation has been applied from the tabulated database of McCoy-s book. The developed computational method gives satisfactory agreement with published data of verified experiments and computational codes on atmospheric projectile trajectory analysis for various initial firing flight conditions.

Keywords: Constant-Variable aerodynamic coefficients, low and high pitch angles, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
13627 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: Data mining, knowledge discovery, machine learning, similarity measurement, supervised classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
13626 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network

Authors: Jing Zhou, Steven Su, Aihuang Guo

Abstract:

COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.

Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3077
13625 The Robust Clustering with Reduction Dimension

Authors: Dyah E. Herwindiati

Abstract:

A clustering is process to identify a homogeneous groups of object called as cluster. Clustering is one interesting topic on data mining. A group or class behaves similarly characteristics. This paper discusses a robust clustering process for data images with two reduction dimension approaches; i.e. the two dimensional principal component analysis (2DPCA) and principal component analysis (PCA). A standard approach to overcome this problem is dimension reduction, which transforms a high-dimensional data into a lower-dimensional space with limited loss of information. One of the most common forms of dimensionality reduction is the principal components analysis (PCA). The 2DPCA is often called a variant of principal component (PCA), the image matrices were directly treated as 2D matrices; they do not need to be transformed into a vector so that the covariance matrix of image can be constructed directly using the original image matrices. The decomposed classical covariance matrix is very sensitive to outlying observations. The objective of paper is to compare the performance of robust minimizing vector variance (MVV) in the two dimensional projection PCA (2DPCA) and the PCA for clustering on an arbitrary data image when outliers are hiden in the data set. The simulation aspects of robustness and the illustration of clustering images are discussed in the end of paper

Keywords: Breakdown point, Consistency, 2DPCA, PCA, Outlier, Vector Variance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
13624 Operational Risk – Scenario Analysis

Authors: Milan Rippel, Petr Teply

Abstract:

This paper focuses on operational risk measurement techniques and on economic capital estimation methods. A data sample of operational losses provided by an anonymous Central European bank is analyzed using several approaches. Loss Distribution Approach and scenario analysis method are considered. Custom plausible loss events defined in a particular scenario are merged with the original data sample and their impact on capital estimates and on the financial institution is evaluated. Two main questions are assessed – What is the most appropriate statistical method to measure and model operational loss data distribution? and What is the impact of hypothetical plausible events on the financial institution? The g&h distribution was evaluated to be the most suitable one for operational risk modeling. The method based on the combination of historical loss events modeling and scenario analysis provides reasonable capital estimates and allows for the measurement of the impact of extreme events on banking operations.

Keywords: operational risk, scenario analysis, economic capital, loss distribution approach, extreme value theory, stress testing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429
13623 Benchmarking Cleaner Production Performance of Coal-fired Power Plants Using Two-stage Super-efficiency Data Envelopment Analysis

Authors: Shao-lun Zeng, Yu-long Ren

Abstract:

Benchmarking cleaner production performance is an effective way of pollution control and emission reduction in coal-fired power industry. A benchmarking method using two-stage super-efficiency data envelopment analysis for coal-fired power plants is proposed – firstly, to improve the cleaner production performance of DEA-inefficient or weakly DEA-efficient plants, then to select the benchmark from performance-improved power plants. An empirical study is carried out with the survey data of 24 coal-fired power plants. The result shows that in the first stage the performance of 16 plants is DEA-efficient and that of 8 plants is relatively inefficient. The target values for improving DEA-inefficient plants are acquired by projection analysis. The efficient performance of 24 power plants and the benchmarking plant is achieved in the second stage. The two-stage benchmarking method is practical to select the optimal benchmark in the cleaner production of coal-fired power industry and will continuously improve plants- cleaner production performance.

Keywords: benchmarking, cleaner production performance, coal-fired power plant, super-efficiency data envelopment analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432
13622 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential

Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag

Abstract:

Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.

Keywords: Climate, reanalysis, renewable energy, solar radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906
13621 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: Genetic data, Pinzgau cattle, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
13620 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: Mining Big Data, Big Data, Machine learning, Data Streams, Telecommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
13619 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications

Authors: W. Schellong

Abstract:

Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.

Keywords: Crossover technologies, data management, energy analysis, energy efficiency, process control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
13618 A Method for 3D Mesh Adaptation in FEA

Authors: S. Sfarni, E. Bellenger, J. Fortin, M. Guessasma

Abstract:

The use of the mechanical simulation (in particular the finite element analysis) requires the management of assumptions in order to analyse a real complex system. In finite element analysis (FEA), two modeling steps require assumptions to be able to carry out the computations and to obtain some results: the building of the physical model and the building of the simulation model. The simplification assumptions made on the analysed system in these two steps can generate two kinds of errors: the physical modeling errors (mathematical model, domain simplifications, materials properties, boundary conditions and loads) and the mesh discretization errors. This paper proposes a mesh adaptive method based on the use of an h-adaptive scheme in combination with an error estimator in order to choose the mesh of the simulation model. This method allows us to choose the mesh of the simulation model in order to control the cost and the quality of the finite element analysis.

Keywords: Finite element, discretization errors, adaptivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
13617 Simulation of a Process Design Model for Anaerobic Digestion of Municipal Solid Wastes

Authors: Asok Adak, Debabrata Mazumder, Pratip Bandyopadhyay

Abstract:

Anaerobic Digestion has become a promising technology for biological transformation of organic fraction of the municipal solid wastes (MSW). In order to represent the kinetic behavior of such biological process and thereby to design a reactor system, development of a mathematical model is essential. Addressing this issue, a simplistic mathematical model has been developed for anaerobic digestion of MSW in a continuous flow reactor unit under homogeneous steady state condition. Upon simulated hydrolysis, the kinetics of biomass growth and substrate utilization rate are assumed to follow first order reaction kinetics. Simulation of this model has been conducted by studying sensitivity of various process variables. The model was simulated using typical kinetic data of anaerobic digestion MSW and typical MSW characteristics of Kolkata. The hydraulic retention time (HRT) and solid retention time (SRT) time were mainly estimated by varying different model parameters like efficiency of reactor, influent substrate concentration and biomass concentration. Consequently, design table and charts have also been prepared for ready use in the actual plant operation.

Keywords: Anaerobic digestion, municipal solid waste (MSW), process design model, simulation study, hydraulic retention time(HRT), solid retention time (SRT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
13616 Acute Coronary Syndrome Prediction Using Data Mining Techniques- An Application

Authors: Tahseen A. Jilani, Huda Yasin, Madiha Yasin, C. Ardil

Abstract:

In this paper we use data mining techniques to investigate factors that contribute significantly to enhancing the risk of acute coronary syndrome. We assume that the dependent variable is diagnosis – with dichotomous values showing presence or  absence of disease. We have applied binary regression to the factors affecting the dependent variable. The data set has been taken from two different cardiac hospitals of Karachi, Pakistan. We have total sixteen variables out of which one is assumed dependent and other 15 are independent variables. For better performance of the regression model in predicting acute coronary syndrome, data reduction techniques like principle component analysis is applied. Based on results of data reduction, we have considered only 14 out of sixteen factors.

Keywords: Acute coronary syndrome (ACS), binary logistic regression analyses, myocardial ischemia (MI), principle component analysis, unstable angina (U.A.).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
13615 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013

Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran

Abstract:

Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.

Keywords: ALOS/AVNIR-2, Dengue, Space-time clustering analysis, Sri Lanka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
13614 Study on Applying Fuzzy AHP and GRA in Selection of Agent Construction Enterprise

Authors: Shirong Li, Huan Yan

Abstract:

To help the client to select a competent agent construction enterprise (ACE), this study aims to investigate the selection standards by using the Fuzzy Analytic Hierarchy Process (FAHP) and build an evaluation mathematical model with Grey Relational Analysis (GRA). According to the outputs of literature review, four orderly levels are established within the model, taking the consideration of various agent construction models in practice. Then, the process of applying FAHP and GRA is discussed in detailed. Finally, through a case study, this paper illustrates how to apply these methods in getting the weights of each standard and the final assessment result.

Keywords: agent construction enterprise, agent constructionmodel, fuzzy analytic hierarchy process, grey relational analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
13613 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models

Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales

Abstract:

The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.

Keywords: Concrete bridges, deterioration, Markov chains, probability matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
13612 Design of Thermal Control Subsystem for TUSAT Telecommunication Satellite

Authors: N. Sozbir, M. Bulut, M.F.Oktem, A.Kahriman, A. Chaix

Abstract:

TUSAT is a prospective Turkish Communication Satellite designed for providing mainly data communication and broadcasting services through Ku-Band and C-Band channels. Thermal control is a vital issue in satellite design process. Therefore, all satellite subsystems and equipments should be maintained in the desired temperature range from launch to end of maneuvering life. The main function of the thermal control is to keep the equipments and the satellite structures in a given temperature range for various phases and operating modes of spacecraft during its lifetime. This paper describes the thermal control design which uses passive and active thermal control concepts. The active thermal control is based on heaters regulated by software via thermistors. Alternatively passive thermal control composes of heat pipes, multilayer insulation (MLI) blankets, radiators, paints and surface finishes maintaining temperature level of the overall carrier components within an acceptable value. Thermal control design is supported by thermal analysis using thermal mathematical models (TMM).

Keywords: Spacecraft thermal control, design of thermal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3700
13611 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: Building archetypes, data analysis, energy benchmarks, GHG emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024
13610 The Comparison of Anchor and Star Schema from a Query Performance Perspective

Authors: Radek Němec

Abstract:

Today's business environment requires that companies have access to highly relevant information in a matter of seconds. Modern Business Intelligence tools rely on data structured mostly in traditional dimensional database schemas, typically represented by star schemas. Dimensional modeling is already recognized as a leading industry standard in the field of data warehousing although several drawbacks and pitfalls were reported. This paper focuses on the analysis of another data warehouse modeling technique - the anchor modeling, and its characteristics in context with the standardized dimensional modeling technique from a query performance perspective. The results of the analysis show information about performance of queries executed on database schemas structured according to principles of each database modeling technique.

Keywords: Data warehousing, anchor modeling, star schema, anchor schema, query performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3319
13609 Generic Data Warehousing for Consumer Electronics Retail Industry

Authors: S. Habte, K. Ouazzane, P. Patel, S. Patel

Abstract:

The dynamic and highly competitive nature of the consumer electronics retail industry means that businesses in this industry are experiencing different decision making challenges in relation to pricing, inventory control, consumer satisfaction and product offerings. To overcome the challenges facing retailers and create opportunities, we propose a generic data warehousing solution which can be applied to a wide range of consumer electronics retailers with a minimum configuration. The solution includes a dimensional data model, a template SQL script, a high level architectural descriptions, ETL tool developed using C#, a set of APIs, and data access tools. It has been successfully applied by ASK Outlets Ltd UK resulting in improved productivity and enhanced sales growth.

Keywords: Consumer electronics retail, dimensional data model, data analysis, generic data warehousing, reporting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
13608 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map

Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo

Abstract:

Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.

Keywords: RDM, multi-source data, big data, U-City.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
13607 Effect of Delay on Supply Side on Market Behavior: A System Dynamic Approach

Authors: M. Khoshab, M. J. Sedigh

Abstract:

Dynamic systems, which in mathematical point of view are those governed by differential equations, are much more difficult to study and to predict their behavior in comparison with static systems which are governed by algebraic equations. Economical systems such as market are among complicated dynamic systems. This paper tries to adopt a very simple mathematical model for market and to study effect of supply and demand function on behavior of the market while the supply side experiences a lag due to production restrictions.

Keywords: Dynamic System, Lag on Supply Demand, Market Stability, Supply Demand Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
13606 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, unmanned aerial vehicle, UAV, random, Kriging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
13605 K-Means for Spherical Clusters with Large Variance in Sizes

Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan

Abstract:

Data clustering is an important data exploration technique with many applications in data mining. The k-means algorithm is well known for its efficiency in clustering large data sets. However, this algorithm is suitable for spherical shaped clusters of similar sizes and densities. The quality of the resulting clusters decreases when the data set contains spherical shaped with large variance in sizes. In this paper, we introduce a competent procedure to overcome this problem. The proposed method is based on shifting the center of the large cluster toward the small cluster, and recomputing the membership of small cluster points, the experimental results reveal that the proposed algorithm produces satisfactory results.

Keywords: K-Means, Data Clustering, Cluster Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3281
13604 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector

Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy

Abstract:

Energy is required in almost every aspect of human activities and development of any nation in the world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches which taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and MATLAB SIMULINK of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on both thermal and electrical efficiency.

Keywords: Renewable energy, Hybrid PV/T system, Sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3894