Search results for: error estimates.
1023 Software Maintenance Severity Prediction for Object Oriented Systems
Authors: Parvinder S. Sandhu, Roma Jaswal, Sandeep Khimta, Shailendra Singh
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.Keywords: Neural Network, Software faults, Software Metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15831022 A Formulation of the Latent Class Vector Model for Pairwise Data
Authors: Tomoya Okubo, Kuninori Nakamura, Shin-ichi Mayekawa
Abstract:
In this research, a latent class vector model for pairwise data is formulated. As compared to the basic vector model, this model yields consistent estimates of the parameters since the number of parameters to be estimated does not increase with the number of subjects. The result of the analysis reveals that the model was stable and could classify each subject to the latent classes representing the typical scales used by these subjects.
Keywords: finite mixture models, latent class analysis, Thrustone's paired comparison method, vector model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12211021 Monitoring and Fault-Recovery Capacity with Waveguide Grating-based Optical Switch over WDM/OCDMA-PON
Authors: Yao-Tang Chang, Chuen-Ching Wang, Shu-Han Hu
Abstract:
In order to implement flexibility as well as survivable capacities over passive optical network (PON), a new automatic random fault-recovery mechanism with array-waveguide-grating based (AWG-based) optical switch (OSW) is presented. Firstly, wavelength-division-multiplexing and optical code-division multiple-access (WDM/OCDMA) scheme are configured to meet the various geographical locations requirement between optical network unit (ONU) and optical line terminal (OLT). The AWG-base optical switch is designed and viewed as central star-mesh topology to prohibit/decrease the duplicated redundant elements such as fiber and transceiver as well. Hence, by simple monitoring and routing switch algorithm, random fault-recovery capacity is achieved over bi-directional (up/downstream) WDM/OCDMA scheme. When error of distribution fiber (DF) takes place or bit-error-rate (BER) is higher than 10-9 requirement, the primary/slave AWG-based OSW are adjusted and controlled dynamically to restore the affected ONU groups via the other working DFs immediately.Keywords: Random fault recovery mechanism, Array-waveguide-grating based optical switch (AWG- based OSW), wavelength-division-multiplexing and optical code-divisionmultiple-access (WDM/ OCDMA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16481020 Affine Projection Algorithm with Variable Data-Reuse Factor
Authors: ChangWoo Lee, Young Kow Lee, Sung Jun Ban, SungHoo Choi, Sang Woo Kim
Abstract:
This paper suggests a new Affine Projection (AP) algorithm with variable data-reuse factor using the condition number as a decision factor. To reduce computational burden, we adopt a recently reported technique which estimates the condition number of an input data matrix. Several simulations show that the new algorithm has better performance than that of the conventional AP algorithm.
Keywords: Affine projection algorithm, variable data-reuse factor, condition number, convergence rate, misalignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15531019 Discrete Polyphase Matched Filtering-based Soft Timing Estimation for Mobile Wireless Systems
Authors: Thomas O. Olwal, Michael A. van Wyk, Barend J. van Wyk
Abstract:
In this paper we present a soft timing phase estimation (STPE) method for wireless mobile receivers operating in low signal to noise ratios (SNRs). Discrete Polyphase Matched (DPM) filters, a Log-maximum a posterior probability (MAP) and/or a Soft-output Viterbi algorithm (SOVA) are combined to derive a new timing recovery (TR) scheme. We apply this scheme to wireless cellular communication system model that comprises of a raised cosine filter (RCF), a bit-interleaved turbo-coded multi-level modulation (BITMM) scheme and the channel is assumed to be memory-less. Furthermore, no clock signals are transmitted to the receiver contrary to the classical data aided (DA) models. This new model ensures that both the bandwidth and power of the communication system is conserved. However, the computational complexity of ideal turbo synchronization is increased by 50%. Several simulation tests on bit error rate (BER) and block error rate (BLER) versus low SNR reveal that the proposed iterative soft timing recovery (ISTR) scheme outperforms the conventional schemes.
Keywords: discrete polyphase matched filters, maximum likelihood estimators, soft timing phase estimation, wireless mobile systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17021018 Learning the Dynamics of Articulated Tracked Vehicles
Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri
Abstract:
In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.Keywords: Dirichlet processes, Gaussian processes, robot control learning, tracked vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17951017 Parametric Approach for Reserve Liability Estimate in Mortgage Insurance
Authors: Rajinder Singh, Ram Valluru
Abstract:
Chain Ladder (CL) method, Expected Loss Ratio (ELR) method and Bornhuetter-Ferguson (BF) method, in addition to more complex transition-rate modeling, are commonly used actuarial reserving methods in general insurance. There is limited published research about their relative performance in the context of Mortgage Insurance (MI). In our experience, these traditional techniques pose unique challenges and do not provide stable claim estimates for medium to longer term liabilities. The relative strengths and weaknesses among various alternative approaches revolve around: stability in the recent loss development pattern, sufficiency and reliability of loss development data, and agreement/disagreement between reported losses to date and ultimate loss estimate. CL method results in volatile reserve estimates, especially for accident periods with little development experience. The ELR method breaks down especially when ultimate loss ratios are not stable and predictable. While the BF method provides a good tradeoff between the loss development approach (CL) and ELR, the approach generates claim development and ultimate reserves that are disconnected from the ever-to-date (ETD) development experience for some accident years that have more development experience. Further, BF is based on subjective a priori assumption. The fundamental shortcoming of these methods is their inability to model exogenous factors, like the economy, which impact various cohorts at the same chronological time but at staggered points along their life-time development. This paper proposes an alternative approach of parametrizing the loss development curve and using logistic regression to generate the ultimate loss estimate for each homogeneous group (accident year or delinquency period). The methodology was tested on an actual MI claim development dataset where various cohorts followed a sigmoidal trend, but levels varied substantially depending upon the economic and operational conditions during the development period spanning over many years. The proposed approach provides the ability to indirectly incorporate such exogenous factors and produce more stable loss forecasts for reserving purposes as compared to the traditional CL and BF methods.
Keywords: Actuarial loss reserving techniques, logistic regression, parametric function, volatility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4261016 In Cognitive Radio the Analysis of Bit-Error- Rate (BER) by using PSO Algorithm
Authors: Shrikrishan Yadav, Akhilesh Saini, Krishna Chandra Roy
Abstract:
The electromagnetic spectrum is a natural resource and hence well-organized usage of the limited natural resources is the necessities for better communication. The present static frequency allocation schemes cannot accommodate demands of the rapidly increasing number of higher data rate services. Therefore, dynamic usage of the spectrum must be distinguished from the static usage to increase the availability of frequency spectrum. Cognitive radio is not a single piece of apparatus but it is a technology that can incorporate components spread across a network. It offers great promise for improving system efficiency, spectrum utilization, more effective applications, reduction in interference and reduced complexity of usage for users. Cognitive radio is aware of its environmental, internal state, and location, and autonomously adjusts its operations to achieve designed objectives. It first senses its spectral environment over a wide frequency band, and then adapts the parameters to maximize spectrum efficiency with high performance. This paper only focuses on the analysis of Bit-Error-Rate in cognitive radio by using Particle Swarm Optimization Algorithm. It is theoretically as well as practically analyzed and interpreted in the sense of advantages and drawbacks and how BER affects the efficiency and performance of the communication system.Keywords: BER, Cognitive Radio, Environmental Parameters, PSO, Radio spectrum, Transmission Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21631015 Modeling of a UAV Longitudinal Dynamics through System Identification Technique
Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad
Abstract:
System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc. This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.
Keywords: Black box modeling, fixed wing aircraft, least square error, longitudinal dynamics, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11531014 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model
Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy
Abstract:
A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17371013 Pressure Capacity Reduction of X52 Pipeline Steel Damaged by a Semi-Elliptical Pitting Corrosion
Authors: S. M. Kazerouni Sangi, Y. Gholipour
Abstract:
Steel made pipelines with different diameters are used for transmitting oil and gas which in many cases are buried in soil under the sea bed or immersed in sea water. External corrosion of pipes is an important form of deterioration due to the aggressive environment of sea water. Corrosion normally results in pits. Hence, using the finite element method, namely ABAQUS software, this paper estimates the amount of pressure capacity reduction of a pipecontaining a semi-elliptical pitting corrosion and the rate of corrosion during the pipeline life of 25 years.Keywords: Petroleum Transmission, Pipeline, PressureCapacity, Semi-Elliptical Pitting Corrosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25441012 Intelligent Temperature Controller for Water-Bath System
Authors: Om Prakash Verma, Rajesh Singla, Rajesh Kumar
Abstract:
Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temperature tracking capability, else the process is disturbed.
To overcome above difficulties intelligent controllers, Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference System (ANFIS), are proposed in this paper. The Fuzzy controller is designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. To design ANFIS, Fuzzy-Inference-System is combined with learning capability of Neural-Network.
It is analyzed that ANFIS is best suitable for adaptive temperature control of above system. As compared to PID and FLC, ANFIS produces a stable control signal. It has much better temperature tracking capability with almost zero overshoot and minimum absolute error.
Keywords: PID Controller, FLC, ANFIS, Non-Linear Control System, Water-Bath System, MATLAB-7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55641011 Optimizing of Fuzzy C-Means Clustering Algorithm Using GA
Authors: Mohanad Alata, Mohammad Molhim, Abdullah Ramini
Abstract:
Fuzzy C-means Clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It has the advantage of giving good modeling results in many cases, although, it is not capable of specifying the number of clusters by itself. In FCM algorithm most researchers fix weighting exponent (m) to a conventional value of 2 which might not be the appropriate for all applications. Consequently, the main objective of this paper is to use the subtractive clustering algorithm to provide the optimal number of clusters needed by FCM algorithm by optimizing the parameters of the subtractive clustering algorithm by an iterative search approach and then to find an optimal weighting exponent (m) for the FCM algorithm. In order to get an optimal number of clusters, the iterative search approach is used to find the optimal single-output Sugenotype Fuzzy Inference System (FIS) model by optimizing the parameters of the subtractive clustering algorithm that give minimum least square error between the actual data and the Sugeno fuzzy model. Once the number of clusters is optimized, then two approaches are proposed to optimize the weighting exponent (m) in the FCM algorithm, namely, the iterative search approach and the genetic algorithms. The above mentioned approach is tested on the generated data from the original function and optimal fuzzy models are obtained with minimum error between the real data and the obtained fuzzy models.Keywords: Fuzzy clustering, Fuzzy C-Means, Genetic Algorithm, Sugeno fuzzy systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32701010 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications
Authors: Assem M. F. Sallam, Ah. El-S. Makled
Abstract:
This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.
Keywords: Launch vehicle modeling, launch vehicle trajectory, mathematical modeling, MATLAB-Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33161009 On Optimum Stratification
Authors: M. G. M. Khan, V. D. Prasad, D. K. Rao
Abstract:
In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique.
Keywords: Auxiliary variable, Dynamic programming technique, Nonlinear programming problem, Optimum stratification, Uniform distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21241008 Numerical Solution of Manning's Equation in Rectangular Channels
Authors: Abdulrahman Abdulrahman
Abstract:
When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.Keywords: Channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23111007 A Robust Approach to the Load Frequency Control Problem with Speed Regulation Uncertainty
Authors: S. Z. Sayed Hassen
Abstract:
The load frequency control problem of power systems has attracted a lot of attention from engineers and researchers over the years. Increasing and quickly changing load demand, coupled with the inclusion of more generators with high variability (solar and wind power generators) on the network are making power systems more difficult to regulate. Frequency changes are unavoidable but regulatory authorities require that these changes remain within a certain bound. Engineers are required to perform the tricky task of adjusting the control system to maintain the frequency within tolerated bounds. It is well known that to minimize frequency variations, a large proportional feedback gain (speed regulation constant) is desirable. However, this improvement in performance using proportional feedback comes about at the expense of a reduced stability margin and also allows some steady-state error. A conventional PI controller is then included as a secondary control loop to drive the steadystate error to zero. In this paper, we propose a robust controller to replace the conventional PI controller which guarantees performance and stability of the power system over the range of variation of the speed regulation constant. Simulation results are shown to validate the superiority of the proposed approach on a simple single-area power system model.
Keywords: Robust control, power system, integral action, minimax LQG control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19271006 Fuzzy Logic System for Tractive Performance Prediction of an Intelligent Air-Cushion Track Vehicle
Authors: Altab Hossain, Ataur Rahman, A. K. M. Mohiuddin, Yulfian Aminanda
Abstract:
Fuzzy logic system (FLS) is used in this study to predict the tractive performance in terms of traction force, and motion resistance for an intelligent air cushion track vehicle while it operates in the swamp peat. The system is effective to control the intelligent air –cushion system with measuring the vehicle traction force (TF), motion resistance (MR), cushion clearance height (CH) and cushion pressure (CP). Ultrasonic displacement sensor, pull-in solenoid electromagnetic switch, pressure control sensor, micro controller, and battery pH sensor are incorporated with the Fuzzy logic system to investigate experimentally the TF, MR, CH, and CP. In this study, a comparison for tractive performance of an intelligent air cushion track vehicle has been performed with the results obtained from the predicted values of FLS and experimental actual values. The mean relative error of actual and predicted values from the FLS model on traction force, and total motion resistance are found as 5.58 %, and 6.78 % respectively. For all parameters, the relative error of predicted values are found to be less than the acceptable limits. The goodness of fit of the prediction values from the FLS model on TF, and MR are found as 0.90, and 0.98 respectively.Keywords: Cushion pressure, Fuzzy logic, Motion resistance, Traction force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14991005 Effect of Transmission Codes on Hybrid SC/MRC Diversity Reception MQAM system over Rayleigh Fading Channels
Authors: J.S. Ubhi, M.S. Patterh, T.S. Kamal
Abstract:
In this paper, the effect of transmission codes on the performance of coherent square M-ary quadrature amplitude modulation (CSMQAM) under hybrid selection/maximal-ratio combining (H-S/MRC) diversity is analysed. The fading channels are modeled as frequency non-selective slow independent and identically distributed Rayleigh fading channels corrupted by additive white Gaussian noise (AWGN). The results for coded MQAM are computed numerically for the case of (24,12) extended Golay code and compared with uncoded MQAM under H-S/MRC diversity by plotting error probabilities versus average signal to noise ratio (SNR) for various values L and N in order to examine the improvement in the performance of the digital communications system as the number of selected diversity branches is increased. The results for no diversity, conventional SC and Lth order MRC schemes are also plotted for comparison. Closed form analytical results derived in this paper are sufficiently simple and therefore can be computed numerically without any approximations. The analytical results presented in this paper are expected to provide useful information needed for design and analysis of digital communication systems over wireless fading channels.Keywords: Error probability, diversity reception, Rayleigh fading channels, wireless digital communications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17501004 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.
Keywords: Electric propulsion, mass gauging, propellant, PVT, xenon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22001003 Content and Resources based Mobile and Wireless Video Transcoding
Authors: Ashraf M. A. Ahmad
Abstract:
Delivering streaming video over wireless is an important component of many interactive multimedia applications running on personal wireless handset devices. Such personal devices have to be inexpensive, compact, and lightweight. But wireless channels have a high channel bit error rate and limited bandwidth. Delay variation of packets due to network congestion and the high bit error rate greatly degrades the quality of video at the handheld device. Therefore, mobile access to multimedia contents requires video transcoding functionality at the edge of the mobile network for interworking with heterogeneous networks and services. Therefore, to guarantee quality of service (QoS) delivered to the mobile user, a robust and efficient transcoding scheme should be deployed in mobile multimedia transporting network. Hence, this paper examines the challenges and limitations that the video transcoding schemes in mobile multimedia transporting network face. Then handheld resources, network conditions and content based mobile and wireless video transcoding is proposed to provide high QoS applications. Exceptional performance is demonstrated in the experiment results. These experiments were designed to verify and prove the robustness of the proposed approach. Extensive experiments have been conducted, and the results of various video clips with different bit rate and frame rate have been provided.Keywords: Content, Object detection, Transcoding, Texture, Temporal, Video.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13561002 Tractive Performance Prediction for Intelligent Air-Cushion Track Vehicle: Fuzzy Logic Approach
Authors: Altab Hossain, Ataur Rahman, A. K. M. Mohiuddin, Yulfian Aminanda
Abstract:
Fuzzy logic approach is used in this study to predict the tractive performance in terms of traction force, and motion resistance for an intelligent air cushion track vehicle while it operates in the swamp peat. The system is effective to control the intelligent air –cushion system with measuring the vehicle traction force (TF), motion resistance (MR), cushion clearance height (CH) and cushion pressure (CP). Sinkage measuring sensor, magnetic switch, pressure sensor, micro controller, control valves and battery are incorporated with the Fuzzy logic system (FLS) to investigate experimentally the TF, MR, CH, and CP. In this study, a comparison for tractive performance of an intelligent air cushion track vehicle has been performed with the results obtained from the predicted values of FLS and experimental actual values. The mean relative error of actual and predicted values from the FLS model on traction force, and total motion resistance are found as 5.58 %, and 6.78 % respectively. For all parameters, the relative error of predicted values are found to be less than the acceptable limits. The goodness of fit of the prediction values from the FLS model on TF, and MR are found as 0.90, and 0.98 respectively.Keywords: Cushion pressure, Fuzzy logic, Motion resistance, Traction force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15071001 Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems
Authors: S. Panda, J. S. Yadav, N. P. Patidar, C. Ardil
Abstract:
Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. In this paper both PSO and GA optimization are employed for finding stable reduced order models of single-input- single-output large-scale linear systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example from literature and the results are compared with recently published conventional model reduction technique.
Keywords: Genetic Algorithm, Particle Swarm Optimization, Order Reduction, Stability, Transfer Function, Integral Squared Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27341000 Expert Witness Testimony in the Battered Woman Syndrome
Authors: Ana Pauna
Abstract:
The Expert Witness Testimony in the Battered Woman Syndrome Expert witness testimony (EWT) is a kind of information given by an expert specialized in the field (here in BWS) to the jury in order to help the court better understand the case. EWT does not always work in favor of the battered women. Two main decision-making models are discussed in the paper: the Mathematical model and the Explanation model. In the first model, the jurors calculate ″the importance and strength of each piece of evidence″ whereas in the second model they try to integrate the EWT with the evidence and create a coherent story that would describe the crime. The jury often misunderstands and misjudges battered women for their action (or in this case inaction). They assume that these women are masochists and accept being mistreated for if a man abuses a woman constantly, she should and could divorce him or simply leave at any time. The research in the domain found that indeed, expert witness testimony has a powerful influence on juror’s decisions thus its quality needs to be further explored. One of the important factors that need further studies is a bias called the dispositionist worldview (a belief that what happens to people is of their own doing). This kind of attributional bias represents a tendency to think that a person’s behavior is due to his or her disposition, even when the behavior is clearly attributed to the situation. Hypothesis The hypothesis of this paper is that if a juror has a dispositionist worldview then he or she will blame the rape victim for triggering the assault. The juror would therefore commit the fundamental attribution error and believe that the victim’s disposition caused the rape and not the situation she was in. Methods The subjects in the study were 500 randomly sampled undergraduate students from McGill, Concordia, Université de Montréal and UQAM. Dispositional Worldview was scored on the Dispositionist Worldview Questionnaire. After reading the Rape Scenarios, each student was asked to play the role of a juror and answer a questionnaire consisting of 7 questions about the responsibility, causality and fault of the victim. Results The results confirm the hypothesis which states that if a juror has a dispositionist worldview then he or she will blame the rape victim for triggering the assault. By doing so, the juror commits the fundamental attribution error because he will believe that the victim’s disposition, and not the constraints or opportunities of the situation, caused the rape scenario.Keywords: bias, expert/witness testimony, attribution error, jury, rape myth
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190999 Effects of Various Wavelet Transforms in Dynamic Analysis of Structures
Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar
Abstract:
Time history dynamic analysis of structures is considered as an exact method while being computationally intensive. Filtration of earthquake strong ground motions applying wavelet transform is an approach towards reduction of computational efforts, particularly in optimization of structures against seismic effects. Wavelet transforms are categorized into continuum and discrete transforms. Since earthquake strong ground motion is a discrete function, the discrete wavelet transform is applied in the present paper. Wavelet transform reduces analysis time by filtration of non-effective frequencies of strong ground motion. Filtration process may be repeated several times while the approximation induces more errors. In this paper, strong ground motion of earthquake has been filtered once applying each wavelet. Strong ground motion of Northridge earthquake is filtered applying various wavelets and dynamic analysis of sampled shear and moment frames is implemented. The error, regarding application of each wavelet, is computed based on comparison of dynamic response of sampled structures with exact responses. Exact responses are computed by dynamic analysis of structures applying non-filtered strong ground motion.
Keywords: Wavelet transform, computational error, computational duration, strong ground motion data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382998 Proposal of Optimality Evaluation for Quantum Secure Communication Protocols by Taking the Average of the Main Protocol Parameters: Efficiency, Security and Practicality
Authors: Georgi Bebrov, Rozalina Dimova
Abstract:
In the field of quantum secure communication, there is no evaluation that characterizes quantum secure communication (QSC) protocols in a complete, general manner. The current paper addresses the problem concerning the lack of such an evaluation for QSC protocols by introducing an optimality evaluation, which is expressed as the average over the three main parameters of QSC protocols: efficiency, security, and practicality. For the efficiency evaluation, the common expression of this parameter is used, which incorporates all the classical and quantum resources (bits and qubits) utilized for transferring a certain amount of information (bits) in a secure manner. By using criteria approach whether or not certain criteria are met, an expression for the practicality evaluation is presented, which accounts for the complexity of the QSC practical realization. Based on the error rates that the common quantum attacks (Measurement and resend, Intercept and resend, probe attack, and entanglement swapping attack) induce, the security evaluation for a QSC protocol is proposed as the minimum function taken over the error rates of the mentioned quantum attacks. For the sake of clarity, an example is presented in order to show how the optimality is calculated.Keywords: Quantum cryptography, quantum secure communcation, quantum secure direct communcation security, quantum secure direct communcation efficiency, quantum secure direct communcation practicality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987997 Exponential Stability of Linear Systems under a Class of Unbounded Perturbations
Authors: Safae El Alaoui, Mohamed Ouzahra
Abstract:
In this work, we investigate the exponential stability of a linear system described by x˙ (t) = Ax(t) − ρBx(t). Here, A generates a semigroup S(t) on a Hilbert space, the operator B is supposed to be of Desch-Schappacher type, which makes the investigation more interesting in many applications. The case of Miyadera-Voigt perturbations is also considered. Sufficient conditions are formulated in terms of admissibility and observability inequalities and the approach is based on some energy estimates. Finally, the obtained results are applied to prove the uniform exponential stabilization of bilinear partial differential equations.
Keywords: Exponential stabilization, unbounded operator, Desch-Schappacher, Miyadera-Voigt operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 388996 Suppression of Narrowband Interference in Impulse Radio Based High Data Rate UWB WPAN Communication System Using NLOS Channel Model
Authors: Bikramaditya Das, Susmita Das
Abstract:
Study on suppression of interference in time domain equalizers is attempted for high data rate impulse radio (IR) ultra wideband communication system. The narrow band systems may cause interference with UWB devices as it is having very low transmission power and the large bandwidth. SRAKE receiver improves system performance by equalizing signals from different paths. This enables the use of SRAKE receiver techniques in IRUWB systems. But Rake receiver alone fails to suppress narrowband interference (NBI). A hybrid SRake-MMSE time domain equalizer is proposed to overcome this by taking into account both the effect of the number of rake fingers and equalizer taps. It also combats intersymbol interference. A semi analytical approach and Monte-Carlo simulation are used to investigate the BER performance of SRAKEMMSE receiver on IEEE 802.15.3a UWB channel models. Study on non-line of sight indoor channel models (both CM3 and CM4) illustrates that bit error rate performance of SRake-MMSE receiver with NBI performs better than that of Rake receiver without NBI. We show that for a MMSE equalizer operating at high SNR-s the number of equalizer taps plays a more significant role in suppressing interference.
Keywords: IR-UWB, UWB, IEEE 802.15.3a, NBI, data rate, bit error rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700995 Pectoral Muscles Suppression in Digital Mammograms Using Hybridization of Soft Computing Methods
Authors: I. Laurence Aroquiaraj, K. Thangavel
Abstract:
Breast region segmentation is an essential prerequisite in computerized analysis of mammograms. It aims at separating the breast tissue from the background of the mammogram and it includes two independent segmentations. The first segments the background region which usually contains annotations, labels and frames from the whole breast region, while the second removes the pectoral muscle portion (present in Medio Lateral Oblique (MLO) views) from the rest of the breast tissue. In this paper we propose hybridization of Connected Component Labeling (CCL), Fuzzy, and Straight line methods. Our proposed methods worked good for separating pectoral region. After removal pectoral muscle from the mammogram, further processing is confined to the breast region alone. To demonstrate the validity of our segmentation algorithm, it is extensively tested using over 322 mammographic images from the Mammographic Image Analysis Society (MIAS) database. The segmentation results were evaluated using a Mean Absolute Error (MAE), Hausdroff Distance (HD), Probabilistic Rand Index (PRI), Local Consistency Error (LCE) and Tanimoto Coefficient (TC). The hybridization of fuzzy with straight line method is given more than 96% of the curve segmentations to be adequate or better. In addition a comparison with similar approaches from the state of the art has been given, obtaining slightly improved results. Experimental results demonstrate the effectiveness of the proposed approach.
Keywords: X-ray Mammography, CCL, Fuzzy, Straight line.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763994 The Effects of Software Size on Development Effort and Software Quality
Authors: Zhizhong Jiang, Peter Naudé, Binghua Jiang
Abstract:
Effective evaluation of software development effort is an important issue during project plan. This study provides a model to predict development effort based on the software size estimated with function points. We generalize the average amount of effort spent on each phase of the development, and give the estimates for the effort used in software building, testing, and implementation. Finally, this paper finds a strong correlation between software defects and software size. As the size of software constantly increases, the quality remains to be a matter which requires major concern.
Keywords: Development effort, function points, software quality, software size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291