Search results for: Pattern Language
1303 Hand Gesture Recognition Based on Combined Features Extraction
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40321302 Melodic and Temporal Structure of Indonesian Sentences of Sitcom "International Class" Actors: Prosodic Study with Experimental Phonetics Approach
Authors: Tri Sulistyaningtyas, Yani Suryani, Dana Waskita, Linda Handayani Sukaemi, Ferry Fauzi Hermawan
Abstract:
The enthusiasm of foreigners studying the Indonesian language by Foreign Speakers (BIPA) was documented in a sitcom "International Class". Tone and stress when they speak the Indonesian language is unique and different from Indonesian pronunciation. By using the Praat program, this research aims to describe prosodic Indonesian language which is spoken by ‘International Class” actors consisting of Abbas from Nigeria, Lee from Korea, and Kotaro from Japan. Data for the research are taken from the video sitcom "International Class" that aired on Indonesian television. The results of this study revealed that pitch movement that arises when pronouncing Indonesian sentences was up and down gradually, there is also a rise and fall sharply. In terms of stress, respondents tend to contain a lot of stress when pronouncing Indonesian sentences. Meanwhile, in terms of temporal structure, the duration pronouncing Indonesian sentences tends to be longer than that of Indonesian speakers.Keywords: Melodic structure, temporal structure, prosody, experimental phonetics, international class.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9551301 A General Regression Test Selection Technique
Authors: Walid S. Abd El-hamid, Sherif S. El-etriby, Mohiy M. Hadhoud
Abstract:
This paper presents a new methodology to select test cases from regression test suites. The selection strategy is based on analyzing the dynamic behavior of the applications that written in any programming language. Methods based on dynamic analysis are more safe and efficient. We design a technique that combine the code based technique and model based technique, to allow comparing the object oriented of an application that written in any programming language. We have developed a prototype tool that detect changes and select test cases from test suite.Keywords: Regression testing, Model based testing, Dynamicbehavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19781300 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition
Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade
Abstract:
The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.
Keywords: Automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7801299 Modeling of Blood Flow Velocity into the Main Artery via Left Ventricle of Heart during Steady Condition
Authors: Mohd Azrul Hisham Mohd Adib, Nur Hazreen Mohd Hasni
Abstract:
A three-dimensional and pulsatile blood flow in the left ventricle of heart model has been studied numerically. The geometry was derived from a simple approximation of the left ventricle model and the numerical simulations were obtained using a formulation of the Navier-Stokes equations. In this study, simulation was used to investigate the pattern of flow velocity in 3D model of heart with consider the left ventricle based on critical parameter of blood under steady condition. Our results demonstrate that flow velocity focused from mitral valve channel and continuous linearly to left ventricle wall but this skewness progresses into outside wall in atrium through aortic valve with random distribution that is irregular due to force subtract from ventricle wall during cardiac cycle. The findings are the prediction of the behavior of the blood flow velocity pattern in steady flow condition which can assist the medical practitioners in their decision on the patients- treatments.
Keywords: Mitral Valve, Aortic Valve, Cardiac Cycle, Leaflet, Biomechanics, Left Ventricle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21351298 A Local Decisional Algorithm Using Agent- Based Management in Constrained Energy Environment
Authors: C. Adam, G. Henri, T. Levent, J-B Mauro, A-L Mayet
Abstract:
Energy Efficiency Management is the heart of a worldwide problem. The capability of a multi-agent system as a technology to manage the micro-grid operation has already been proved. This paper deals with the implementation of a decisional pattern applied to a multi-agent system which provides intelligence to a distributed local energy network considered at local consumer level. Development of multi-agent application involves agent specifications, analysis, design, and realization. Furthermore, it can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach for a decisional pattern involving a multi-agent system to control a distributed local energy network in a decentralized competitive system. The proposed solution is the result of a dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems and converges monotonically very fast to system attracting operation point.
Keywords: Energy Efficiency Management, Distributed Smart- Grid, Multi-Agent System, Decisional Decentralized Competitive System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14121297 Natural Language News Generation from Big Data
Authors: Bastian Haarmann, Lukas Sikorski
Abstract:
In this paper, we introduce an NLG application for the automatic creation of ready-to-publish texts from big data. The resulting fully automatic generated news stories have a high resemblance to the style in which the human writer would draw up such a story. Topics include soccer games, stock exchange market reports, and weather forecasts. Each generated text is unique. Readyto-publish stories written by a computer application can help humans to quickly grasp the outcomes of big data analyses, save timeconsuming pre-formulations for journalists and cater to rather small audiences by offering stories that would otherwise not exist.
Keywords: Big data, natural language generation, publishing, robotic journalism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16861296 The Different Ways to Describe Regular Languages by Using Finite Automata and the Changing Algorithm Implementation
Authors: Abdulmajid Mukhtar Afat
Abstract:
This paper aims at introducing finite automata theory, the different ways to describe regular languages and create a program to implement the subset construction algorithms to convert nondeterministic finite automata (NFA) to deterministic finite automata (DFA). This program is written in c++ programming language. The program reads FA 5tuples from text file and then classifies it into either DFA or NFA. For DFA, the program will read the string w and decide whether it is acceptable or not. If accepted, the program will save the tracking path and point it out. On the other hand, when the automation is NFA, the program will change the Automation to DFA so that it is easy to track and it can decide whether the w exists in the regular language or not.
Keywords: Finite Automata, subset construction DFA, NFA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19851295 Investigating the Influence of L2 Motivational Self-System on Willingness to Communicate in English: A Study of Chinese Non-English Major Students in EFL Classrooms
Authors: Wanghongshu Zhou
Abstract:
This study aims to explore the relationship between the second language motivational self-system (L2MSS) and the willingness to communicate (WTC) among Chinese non-English major students in order to provide pedagogical implications for English as a Foreign Language (EFL) classrooms in Chinese universities. By employing a mixed methods approach, we involved 103 Chinese non-English major students from a typical university in China, conducted questionnaire survey to measure their levels of L2WTC and L2MSS level, and then analyzed the correlation between the two above mentioned variables. Semi-structured interviews were conducted with eight participants to provide a deeper understanding and explanation of the questionnaire data. Findings show that 1) Chinese non-English major students’ ideal L2 self and L2 learning experience could positively predict their L2 WTC in EFL class; 2) Chinese non-English major students’ ought-to L2 self might have no significant impact on their L2 WTC in EFL class; and 3) self-confidence might be another main factor that will influence Chinese non-English major students’ L2 WTC in EFL class. These findings might shed light on the second language acquisition field and provide pedagogical recommendations for pre-service as well as in-service EFL teachers.
Keywords: Chinese non-English major students, L2 Motivation, L2 willingness to communicate, self-confidence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631294 Proposing an Efficient Method for Frequent Pattern Mining
Authors: Vaibhav Kant Singh, Vijay Shah, Yogendra Kumar Jain, Anupam Shukla, A.S. Thoke, Vinay KumarSingh, Chhaya Dule, Vivek Parganiha
Abstract:
Data mining, which is the exploration of knowledge from the large set of data, generated as a result of the various data processing activities. Frequent Pattern Mining is a very important task in data mining. The previous approaches applied to generate frequent set generally adopt candidate generation and pruning techniques for the satisfaction of the desired objective. This paper shows how the different approaches achieve the objective of frequent mining along with the complexities required to perform the job. This paper will also look for hardware approach of cache coherence to improve efficiency of the above process. The process of data mining is helpful in generation of support systems that can help in Management, Bioinformatics, Biotechnology, Medical Science, Statistics, Mathematics, Banking, Networking and other Computer related applications. This paper proposes the use of both upward and downward closure property for the extraction of frequent item sets which reduces the total number of scans required for the generation of Candidate Sets.Keywords: Data Mining, Candidate Sets, Frequent Item set, Pruning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16811293 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation
Authors: C. Bunsanit
Abstract:
This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.
Keywords: Fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10771292 Metaphor in Terminology: Visualization as a Way to Term Perception
Authors: Jeļena Tretjakova
Abstract:
Metaphor has recently gained extensive interest most probably due to developments in cognitive sciences and the study of language as the reflection of humans- world perception. Metaphor is no longer reckoned as solely literary expressive means. Nowadays it is studied in a whole number of discourses, such as politics, law, medicine, sports, etc. with the purpose of the analysis and determining its role. The scientific language is not an exception. It might seem that metaphor cannot suit it; we would dare to draw a hypothesis that metaphor has indeed found its stable place in terminology. In comprehension of metaphorically represented terms the stage of visualization plays a significant role. We proceeded on the assumption that this stage is the main in provision of better term comprehension and would try to exemplify it with metaphoricallyoriented terms.
Keywords: Comprehension, metaphor, terminology, visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18711291 Part of Speech Tagging Using Statistical Approach for Nepali Text
Authors: Archit Yajnik
Abstract:
Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed.Keywords: Hidden Markov model, Viterbi algorithm, POS tagging, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17061290 Research on Self-Perceptions of Pre-Service Turkish Language Teachers in Turkey with Regard to Problem Solving Skills
Authors: Canan Aslan
Abstract:
The aim of this research is to determine how preservice Turkish teachers perceive themselves in terms of problem solving skills. Students attending Department of Turkish Language Teaching of Gazi University Education Faculty in 2005-2006 academic year constitute the study group (n= 270) of this research in which survey model was utilized. Data were obtained by Problem Solving Inventory developed by Heppner & Peterson and Personal Information Form. Within the settings of this research, Cronbach Alpha reliability coefficient of the scale was found as .87. Besides, reliability coefficient obtained by split-half technique which splits odd and even numbered items of the scale was found as r=.81 (Split- Half Reliability). The findings of the research revealed that preservice Turkish teachers were sufficiently qualified on the subject of problem solving skills and statistical significance was found in favor of male candidates in terms of “gender" variable. According to the “grade" variable, statistical significance was found in favor of 4th graders.
Keywords: Problem Solving, problem solving skills, PreserviceTurkish Language Teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13571289 Segmentation Free Nastalique Urdu OCR
Authors: Sobia T. Javed, Sarmad Hussain, Ameera Maqbool, Samia Asloob, Sehrish Jamil, Huma Moin
Abstract:
The electronically available Urdu data is in image form which is very difficult to process. Printed Urdu data is the root cause of problem. So for the rapid progress of Urdu language we need an OCR systems, which can help us to make Urdu data available for the common person. Research has been carried out for years to automata Arabic and Urdu script. But the biggest hurdle in the development of Urdu OCR is the challenge to recognize Nastalique Script which is taken as standard for writing Urdu language. Nastalique script is written diagonally with no fixed baseline which makes the script somewhat complex. Overlap is present not only in characters but in the ligatures as well. This paper proposes a method which allows successful recognition of Nastalique Script.Keywords: HMM, Image processing, Optical CharacterRecognition, Urdu OCR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21571288 Swarmed Discriminant Analysis for Multifunction Prosthesis Control
Authors: Rami N. Khushaba, Ahmed Al-Ani, Adel Al-Jumaily
Abstract:
One of the approaches enabling people with amputated limbs to establish some sort of interface with the real world includes the utilization of the myoelectric signal (MES) from the remaining muscles of those limbs. The MES can be used as a control input to a multifunction prosthetic device. In this control scheme, known as the myoelectric control, a pattern recognition approach is usually utilized to discriminate between the MES signals that belong to different classes of the forearm movements. Since the MES is recorded using multiple channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative yet moderate size feature set. This paper proposes a new fuzzy version of the well known Fisher-s Linear Discriminant Analysis (LDA) feature projection technique. Furthermore, based on the fact that certain muscles might contribute more to the discrimination process, a novel feature weighting scheme is also presented by employing Particle Swarm Optimization (PSO) for estimating the weight of each feature. The new method, called PSOFLDA, is tested on real MES datasets and compared with other techniques to prove its superiority.Keywords: Discriminant Analysis, Pattern Recognition, SignalProcessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15551287 The Use of Project to Enhance Writing Skill
Authors: Duangkamol Thitivesa, Abigail Melad Essien
Abstract:
This paper explores the use of project work in a content-based instruction in a Rajabhat University, a teacher college, where student teachers are instructed to perform teaching roles mainly in basic education level. Its aim is to link theory to practice, and to help language teachers maximize the full potential of project work for genuine communication and give real meaning to writing activity. Two research questions are formulated to guide this study: a) What is the academic achievement of the students- writing skill against the 70% attainment target after the use of project to enhance the skill? and b) To what degree is the development of the students- writing skills during the course of project to enhance the skill? The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of achievement test, student writing works, and project diary. The scores in the summative achievement test were analyzed by mean score, standard deviation, and t-test. Project diary serves as students- record of the language acquired during the project. List of structures and vocabulary noted in the diary has shown students- ability to attend to, recognize, and focus on meaningful patterns of language forms.Keywords: EFL classroom, Project-Based Learning, project work, writing skill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33241286 Detecting Fake News: A Natural Language Processing, Reinforcement Learning, and Blockchain Approach
Authors: Ashly Joseph, Jithu Paulose
Abstract:
In an era where misleading information may quickly circulate on digital news channels, it is crucial to have efficient and trustworthy methods to detect and reduce the impact of misinformation. This research proposes an innovative framework that combines Natural Language Processing (NLP), Reinforcement Learning (RL), and Blockchain technologies to precisely detect and minimize the spread of false information in news articles on social media. The framework starts by gathering a variety of news items from different social media sites and performing preprocessing on the data to ensure its quality and uniformity. NLP methods are utilized to extract complete linguistic and semantic characteristics, effectively capturing the subtleties and contextual aspects of the language used. These features are utilized as input for a RL model. This model acquires the most effective tactics for detecting and mitigating the impact of false material by modeling the intricate dynamics of user engagements and incentives on social media platforms. The integration of blockchain technology establishes a decentralized and transparent method for storing and verifying the accuracy of information. The Blockchain component guarantees the unchangeability and safety of verified news records, while encouraging user engagement for detecting and fighting false information through an incentive system based on tokens. The suggested framework seeks to provide a thorough and resilient solution to the problems presented by misinformation in social media articles.
Keywords: Natural Language Processing, Reinforcement Learning, Blockchain, fake news mitigation, misinformation detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831285 Aspect Oriented Software Architecture
Authors: Pradip Peter Dey, Ronald F. Gonzales, Gordon W. Romney, Mohammad Amin, Bhaskar Raj Sinha
Abstract:
Natural language processing systems pose a unique challenge for software architectural design as system complexity has increased continually and systems cannot be easily constructed from loosely coupled modules. Lexical, syntactic, semantic, and pragmatic aspects of linguistic information are tightly coupled in a manner that requires separation of concerns in a special way in design, implementation and maintenance. An aspect oriented software architecture is proposed in this paper after critically reviewing relevant architectural issues. For the purpose of this paper, the syntactic aspect is characterized by an augmented context-free grammar. The semantic aspect is composed of multiple perspectives including denotational, operational, axiomatic and case frame approaches. Case frame semantics matured in India from deep thematic analysis. It is argued that lexical, syntactic, semantic and pragmatic aspects work together in a mutually dependent way and their synergy is best represented in the aspect oriented approach. The software architecture is presented with an augmented Unified Modeling Language.Keywords: Language engineering, parsing, software design, user experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17421284 Effects of Road Disturbance on Plant Biodiversity
Authors: Sheng-Lan Zeng, Ting-Ting Zhang, Yu Gao, Zu-Tao Ouyang, Jia-Kuan Chen, Bo Li, Bin Zhao
Abstract:
Urbanization and related anthropogenic modifications cause extent of habitat fragmentation and directly lead to decline of local biodiversity. Conservation biologists advocate corridor creation as one approach to rescue biodiversity. Here we examine the utility of roads as corridors in preserving plant diversity by investigating roadside vegetation in Yellow River Delta (YRD), China. We examined the spatio-temporal distribution pattern of plant species richness, diversity and composition along roadside. The results suggest that roads, as dispersal conduits, increase occurrence probability of new settlers to a new area, meanwhile, roads accumulate the greater propagule pressure and favourable survival condition during operation phase. As a result, more species, including native and alien plants, non- halophyte and halophyte species, threatened and cosmopolitic species, were found prosperous at roadside. Roadside may be a refuge for more species, and the pattern of vegetation distribution is affected by road age and the distance from road verge.Keywords: Native and alien species, Plant diversity conservation, Road construction, Road disturbance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35371283 Object-Oriented Programming for Modeling and Simulation of Systems in Physiology
Authors: J. Fernandez de Canete
Abstract:
Object-oriented modeling is spreading in current simulation of physiological systems through the use of the individual components of the model and its interconnections to define the underlying dynamic equations. In this paper we describe the use of both the SIMSCAPE and MODELICA simulation environments in the object-oriented modeling of the closed loop cardiovascular system. The performance of the controlled system was analyzed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data. The described approach represents a valuable tool in the teaching of physiology for graduate medical students.
Keywords: Object-Oriented Modeling, SIMSCAPE Simulation Language, MODELICA Simulation Language, Cardiovascular System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28611282 Thai Prosody Problems with First Year Students
Authors: Jiraporn Adchariyaprasit
Abstract:
Thai language is difficult in all four language skills, especially reading. The first year students may have different abilities in reading, so a teacher is required to find out a student’s reading level so that the teacher can help and support them till they can develop and resolve each problem themselves. This research is aimed to study the prosody problem among Thai students and will be focused on first year Thai students in the second semester. A total of 58 students were involved in this study. Four obstacles were found: 1. Interpretation from what they read and write 2. Incorrectness Pronunciation of Prosody 3. Incorrectness in Rhythm of the Poem 4. Incorrectness of the Thai Poem Pronunciation
Keywords: Interpretation, Pronunciation, Prosody, Reading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16441281 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory
Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock
Abstract:
Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.
Keywords: Subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8291280 Morpho-Phonological Modelling in Natural Language Processing
Authors: Eleni Galiotou, Angela Ralli
Abstract:
In this paper we propose a computational model for the representation and processing of morpho-phonological phenomena in a natural language, like Modern Greek. We aim at a unified treatment of inflection, compounding, and word-internal phonological changes, in a model that is used for both analysis and generation. After discussing certain difficulties cuase by well-known finitestate approaches, such as Koskenniemi-s two-level model [7] when applied to a computational treatment of compounding, we argue that a morphology-based model provides a more adequate account of word-internal phenomena. Contrary to the finite state approaches that cannot handle hierarchical word constituency in a satisfactory way, we propose a unification-based word grammar, as the nucleus of our strategy, which takes into consideration word representations that are based on affixation and [stem stem] or [stem word] compounds. In our formalism, feature-passing operations are formulated with the use of the unification device, and phonological rules modeling the correspondence between lexical and surface forms apply at morpheme boundaries. In the paper, examples from Modern Greek illustrate our approach. Morpheme structures, stress, and morphologically conditioned phoneme changes are analyzed and generated in a principled way.
Keywords: Morpho-Phonology, Natural Language Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21281279 A Visual Control Flow Language and Its Termination Properties
Authors: László Lengyel, Tihamér Levendovszky, Hassan Charaf
Abstract:
This paper presents the visual control flow support of Visual Modeling and Transformation System (VMTS), which facilitates composing complex model transformations out of simple transformation steps and executing them. The VMTS Visual Control Flow Language (VCFL) uses stereotyped activity diagrams to specify control flow structures and OCL constraints to choose between different control flow branches. This work discusses the termination properties of VCFL and provides an algorithm to support the termination analysis of VCFL transformations.
Keywords: Control Flow, Metamodel-Based Visual Model Transformation, OCL, Termination Properties, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20651278 Peer Corrective Feedback on Written Errors in Computer-Mediated Communication
Authors: S. H. J. Liu
Abstract:
This paper aims to explore the role of peer Corrective Feedback (CF) in improving written productions by English-as-a- foreign-language (EFL) learners who work together via Wikispaces. It attempted to determine the effect of peer CF on form accuracy in English, such as grammar and lexis. Thirty-four EFL learners at the tertiary level were randomly assigned into the experimental (with peer feedback) or the control (without peer feedback) group; each group was subdivided into small groups of two or three. This resulted in six and seven small groups in the experimental and control groups, respectively. In the experimental group, each learner played a role as an assessor (providing feedback to others), as well as an assessee (receiving feedback from others). Each participant was asked to compose his/her written work and revise it based on the feedback. In the control group, on the other hand, learners neither provided nor received feedback but composed and revised their written work on their own. Data collected from learners’ compositions and post-task interviews were analyzed and reported in this study. Following the completeness of three writing tasks, 10 participants were selected and interviewed individually regarding their perception of collaborative learning in the Computer-Mediated Communication (CMC) environment. Language aspects to be analyzed included lexis (e.g., appropriate use of words), verb tenses (e.g., present and past simple), prepositions (e.g., in, on, and between), nouns, and articles (e.g., a/an). Feedback types consisted of CF, affective, suggestive, and didactic. Frequencies of feedback types and the accuracy of the language aspects were calculated. The results first suggested that accurate items were found more in the experimental group than in the control group. Such results entail that those who worked collaboratively outperformed those who worked non-collaboratively on the accuracy of linguistic aspects. Furthermore, the first type of CF (e.g., corrections directly related to linguistic errors) was found to be the most frequently employed type, whereas affective and didactic were the least used by the experimental group. The results further indicated that most participants perceived that peer CF was helpful in improving the language accuracy, and they demonstrated a favorable attitude toward working with others in the CMC environment. Moreover, some participants stated that when they provided feedback to their peers, they tended to pay attention to linguistic errors in their peers’ work but overlook their own errors (e.g., past simple tense) when writing. Finally, L2 or FL teachers or practitioners are encouraged to employ CMC technologies to train their students to give each other feedback in writing to improve the accuracy of the language and to motivate them to attend to the language system.
Keywords: Peer corrective feedback, computer-mediated communication, second or foreign language learning, Wikispaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14481277 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing
Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek
Abstract:
The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.
Keywords: Semiconductor, wafer bin map (WBM), feature extraction, spatial point patterns, contour map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24991276 Automatic Recognition of Emotionally Coloured Speech
Authors: Theologos Athanaselis, Stelios Bakamidis, Ioannis Dologlou
Abstract:
Emotion in speech is an issue that has been attracting the interest of the speech community for many years, both in the context of speech synthesis as well as in automatic speech recognition (ASR). In spite of the remarkable recent progress in Large Vocabulary Recognition (LVR), it is still far behind the ultimate goal of recognising free conversational speech uttered by any speaker in any environment. Current experimental tests prove that using state of the art large vocabulary recognition systems the error rate increases substantially when applied to spontaneous/emotional speech. This paper shows that recognition rate for emotionally coloured speech can be improved by using a language model based on increased representation of emotional utterances.Keywords: Statistical language model, N-grams, emotionallycoloured speech
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16161275 The Development and Future of Hong Kong Typography
Authors: Amic G. Ho
Abstract:
Language usage and typography in Hong Kong are unique, as can be seen clearly on the streets of the city. In contrast to many other parts of the world, where there is only one language, in Hong Kong many signs and billboards display two languages: Chinese and English. The language usage on signage, fonts and types used, and the designs in magazines and advertisements all demonstrate the unique features of Hong Kong typographic design, which reflect the multicultural nature of Hong Kong society. This study is the first step in investigating the nature and development of Hong Kong typography. The preliminary research explored how the historical development of Hong Kong is reflected in its unique typography. Following a review of historical development, a quantitative study was designed: Local Hong Kong participants were invited to provide input on what makes the Hong Kong typographic style unique. Their input was collected and analyzed. This provided us with information about the characteristic criteria and features of Hong Kong typography, as recognized by the local people. The most significant typographic designs in Hong Kong were then investigated and the influence of Chinese and other cultures on Hong Kong typography was assessed. The research results provide an indication to local designers on how they can strengthen local design outcomes and promote the values and culture of their mother town.
Keywords: Typography, Hong Kong, historical developments, multiple cultures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15781274 Tibyan Automated Arabic Correction Using Machine-Learning in Detecting Syntactical Mistakes
Authors: Ashwag O. Maghraby, Nida N. Khan, Hosnia A. Ahmed, Ghufran N. Brohi, Hind F. Assouli, Jawaher S. Melibari
Abstract:
The Arabic language is one of the most important languages. Learning it is so important for many people around the world because of its religious and economic importance and the real challenge lies in practicing it without grammatical or syntactical mistakes. This research focused on detecting and correcting the syntactic mistakes of Arabic syntax according to their position in the sentence and focused on two of the main syntactical rules in Arabic: Dual and Plural. It analyzes each sentence in the text, using Stanford CoreNLP morphological analyzer and machine-learning approach in order to detect the syntactical mistakes and then correct it. A prototype of the proposed system was implemented and evaluated. It uses support vector machine (SVM) algorithm to detect Arabic grammatical errors and correct them using the rule-based approach. The prototype system has a far accuracy 81%. In general, it shows a set of useful grammatical suggestions that the user may forget about while writing due to lack of familiarity with grammar or as a result of the speed of writing such as alerting the user when using a plural term to indicate one person.
Keywords: Arabic Language acquisition and learning, natural language processing, morphological analyzer, part-of-speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043