

Abstract—Natural language processing systems pose a unique

challenge for software architectural design as system complexity has
increased continually and systems cannot be easily constructed from
loosely coupled modules. Lexical, syntactic, semantic, and pragmatic
aspects of linguistic information are tightly coupled in a manner that
requires separation of concerns in a special way in design,
implementation and maintenance. An aspect oriented software
architecture is proposed in this paper after critically reviewing
relevant architectural issues. For the purpose of this paper, the
syntactic aspect is characterized by an augmented context-free
grammar. The semantic aspect is composed of multiple perspectives
including denotational, operational, axiomatic and case frame
approaches. Case frame semantics matured in India from deep
thematic analysis. It is argued that lexical, syntactic, semantic and
pragmatic aspects work together in a mutually dependent way and
their synergy is best represented in the aspect oriented approach. The
software architecture is presented with an augmented Unified
Modeling Language.

Keywords—Language engineering, parsing, software design, user
experience.

I. INTRODUCTION

NTIL recently, Object Oriented Design (OOD) was
considered as one of the best approaches for designing

complex software systems [1]-[4]. Recent investigations into
separation of concerns have led to the considerations of some
new approaches including Aspect Oriented Design (AOD) [5]-
[8]. This paper examines important software design issues and
presents justifications for AOD with a case study from natural
language processing. Architectural design, detailed design and
design reviews provide the most important steps in a cost
effective software development process. Software engineering
activities are goal directed in order to produce working
software in a timely manner within some cost constraints. For
any complex computer based system, software architecture
plays a very important role in its success or failure. According
to Pressman [1: page 223] “One goal of software design is to
derive an architectural rendering of a system”. Multiple
representations of software architecture are recommended for
providing different views of a complex system in order to
clarify the structure of the system, which comprises software
components and the externally visible properties of those
components. Software architecture is “ the overall structure of
the software and the ways in which that structure provides
conceptual integrity for a system” [3]. It is also known as high
level design since conceptual integrity is clarified at a high
level of abstraction.

Pradip Peter Dey, Ronald F. Gonzales, Gordon W. Romney, Mohammad

Amin and Bhaskar Raj Sinha are with National University, 3678 Aero Court,
San Diego, CA 92123, USA. They are now with the School of Engineering,
Technology and Media (phone: 858-309-3412; fax: 858-309-3420; e-mail:
pdey@nu.edu; rgonzales@nu.edu; gromney@nu.edu; mamin@nu.edu;
bsinha@nu.edu)

According to Braude and Bernstein [4: page 438], "A

software architecture describes the overall components of an
application and how they relate to each other." The emphasis
on components were considered very productive in OOD,
although this is recently questioned for systems with
crosscutting aspects. Security aspects are often considered to
be spread over multiple components in a complex manner that
defies most variants of OOD approaches. The best
architectural practices are rarely published and often inferred
from excellent products [9]. In practice, software architectural
design is immensely challenging, vastly multifaceted,
strikingly domain based, perpetually changing, rarely cost-
effective, and deceptively ambiguous. Multiple
representations and intuitive explanations are often provided in
order to lessen the difficulty of interpretations of software
architecture.

II. BACKGROUND

Practitioners and theoreticians have been debating about
software development approaches for a long time. Opposing
views are often presented with effective metaphors. Donald
Knuth initially [11] suggested that software writing is an art.
David Gries [12] argued it to be a science. Watts Humphrey
[13] viewed it as a process. In recent years, practitioners have
come to realize that software is engineered [1]-[2], [4], [14]-
[17]. The scientific foundation of software engineering is not
fully understood. That is, we do not understand it the way we
understand chemistry as the scientific foundation of chemical
engineering. Software architectural design is based partly on
computer science and partly on behavioral sciences and
intuitive judgments although there were some minor attempts
to establish “software science” [2] as the primary basis for
software architecture.

It is often suggested that software architectural design is
creatively built from requirements analysis in an iterative
process [1], [4], [13]-[19]. In this process, after some initial
requirements analysis a software architectural representation is
developed and then the requirements analysis is augmented on
the basis of a combination of software architecture, new or
changed requirements or some other factors which in turn
leads to a revised software architecture. The architectural
representation developed in this manner traditionally consisted
of components and their relationships with the primary
assumption that the software is composed of these
components. The components were obtained mainly by
separating and grouping concerns or related computational
elements. Recent studies suggest that certain concerns cannot
be easily localized and specified with individual architectural
units such as components [5]-[8]. These crosscutting concerns
are best represented as architectural aspects in an architectural
design. In order to highlight architectural aspects of AOD, we
will consider an interesting case presented below.

Aspect Oriented Software Architecture

U

Pradip Peter Dey, Ronald F. Gonzales, Gordon W. Romney, Mohammad Amin, Bhaskar Raj Sinha

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:7, 2012

880International Scholarly and Scientific Research & Innovation 6(7) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

7,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

54
58

.p
df

III. LANGUAGE PROCESSING

Aspects of natural language processing are stimulating for
many reasons, especially for the intricate relationship among
lexical, syntactic, semantic and pragmatic facets. “We speak
informally of the sound and meaning of a word, the way it is
pronounced, and what it means” [20: p170]. It is generally
accepted among experts that the meaning of a sentence is
composed from the meaning of its words. An analysis of
language for producing a meaningful interpretation is the most
crucial part of a of natural language processing system.
However, such an analysis is one of the most challenging
problems in computer science [21]-[28]. Understanding the
nature of challenge requires a thorough study of all major
aspects of natural language and their proper relationships.
Although substantial progress has been made in lexical
processing, controversies on syntactic, semantic and pragmatic
aspects remain unresolved. Each of the processing aspects
mentioned above is easy to understand, but difficult to
formalize for efficient processing. Structure and interpretation
of natural language have been among the most elusive
problems in formal modeling. Given an input sentence such as
“The frog jumped”, computational problems can be explained
as follows. Lexical processing of the sentence is performed by
searching the English lexicon for each of the words and
recognizing the word “The” as a determiner, “frog” as a noun
and “jumped” as a verb [23]-[24]. Syntactic processing is
carried out by finding relationships among the words in the
sentence, building constituents and providing a structural
description [22]-[24], called a parse tree or sentence diagram,
such as the one shown in Figure 1. It is usually assumed that
lexical analysis precedes syntactic processing, although their
interdependent nature is also recognized.

Fig. 1 A Parse Tree for “The frog jumped”

The semantic aspects are processed by analyzing the
sentence into an interpretation that can be utilized for
reasoning, knowledge representation, database updates,
information retrieval or other uses. One of the ways to
represent meaning is through first order logic or first order
predicate calculus, although semantic networks, case-frames,
modal logic and other forms are also popular [23], [25], [28].
In first order logic, the meaning of “The frog jumped” can be
represented as: (x) [Frog(x) ^ Jump-Past(x)]. Other
representations of meaning will be discussed in section-3 of
this paper.

Language use in linguistic and extra linguistic contexts is
the focus of the pragmatic analysis where commonsense
reasoning plays an important role [26], [28]. This paper
addresses some of the central problems in these areas and
presents a new software architecture in order to provide
alternative analyses in semantics crucial for language
understanding. Semantic processing is usually performed
compositionally, that is, the meaning of larger linguistic units
is usually derived by combining the meanings of smaller ones.
However, the rules of composition and the nature of semantic
representation are not yet fully understood posing a major
challenge for the development of a fully functional
computational linguistic system with incomplete knowledge.
Currently, several alternative approaches seem to be
promising, especially in the semantic area where progress has
been limited. A software architecture that accommodates all
major semantic approaches including denotational,
operational, axiomatic and case frame methods is presented in
this paper with justifications.

The software architecture presented in this paper follows the
current practices in identifying the major components and their
relationships. A significant aspect of the research is that
components of a language processing system need to be best
organized for computationally efficient and linguistically
adequate language engineering. According to the general
guidelines and best practices in software engineering [11-13],
loosely coupled components are preferred over tightly coupled
components in a software system.

The architectural design of a natural language processing
system is one of the most difficult problems in computer
science. It is immensely complicated, highly multifaceted,
extravagantly contextual, deceptively ambiguous, and
strikingly controversial. The underlying computation is
proven to be an NP-Complete problem [14-15]. One of the
challenges is the interaction among lexical, syntactic, semantic
and pragmatic processing in the presence of ambiguity. In
addition to computational complexity, there are additional
problems of arrangements and relationships among the
components where the aspects of processing take place.
Experts often try to solve these problems in a principled way
using a pipeline architecture where the output of lexical
processing is input to the syntax analyzer, whose output is
input to the semantic analyzer and so on. This architecture is
schematically shown in Figure 2. This architecture is similar
to the one used successfully in compilers [16-17]. An
advantage of this architecture is that it intuitively resembles an
assembly line and it separates concerns in different loosely
coupled components. The elegant features of this architecture
are made very clear by may practitioners [4, 16, 17].
However, natural languages are not fully specified formally
and do not lend themselves to compiler techniques adequately.
In the pipeline architecture, the interactions among the
components are not flexible enough to handle some of the
complex natural language problems such as syntax-semantics
interactions.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:7, 2012

881International Scholarly and Scientific Research & Innovation 6(7) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

7,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

54
58

.p
df

Fig. 2 A Pipeline Architecture for Natural Language Processing

The design and implementation of natural language require

careful consideration of interactions among all components.
After initial requirements analysis the software was designed
using the Model-View-Controller architecture [18-19] and an
initial prototype was developed following the iterative
development process. After several iterations, it was realized
that the separation between the View and Controller
components did not have any advantages because the
Controller needed to work closely with the view and access the
View elements repeatedly. The View and Controller elements
can be combined into a single component called User
Interface. The Model is responsible for processing the domain
information; it includes the lexical, syntactic, semantic and
pragmatic components which seem to work together with
aspects. This architecture is presented in Figure 3 which
allows more robust interactions among its components. All
major components are shown in Figure 3 using the Unified
Modeling Language (UML) notations augmented with
architectural aspects shown in shaded diamonds. In the
augmented UML, the components are presented with required
interfaces and provided interfaces. A required interface is
shown with a small semicircle attached to a component. A
provided interface is shown with a small circle attached to a
component. The semantic processing needs to compose
meaning of a sentence from its parts. The rules of composition
are derived from syntax because the constituent structures of
syntax are properly guided by these rules. In addition, the
aspects of semantic analysis may include denotational,
operational, axiomatic and case-frame semantics, because
these approaches complement each other in order to provide a
comprehensive treatment of meaning. The architecture in
Figure 3 is, therefore, composed of UML based components
augmented with Aspects Oriented (AO) features [7-8], [29]. A
detailed justification of the architecture, presented in the next
section may help in making a strong case for the architectural
design.

Fig. 3 An Aspect Oriented Software Architecture for Natural

Language Processing

IV. JUSTIFICATIONS

The justifications for software architecture come from
different sources. One of the significant assumptions behind
the AOD architecture is that the semantic and syntactic
components need to work together. This assumption is
supported by the fact that all major semantic approaches are
compositional, but the rules of composition are provided by
syntax [22]-[25]. Some studies also demonstrate that semantic
information is required for syntactic decisions [30-31]. A verb
like “pretend” is neither transitive nor intransitive but takes a
sentential complement as shown in (1). From the
unacceptability of (2) and (3) and similar examples, Green
[30, p 10] concludes that semantic information is required in
making syntactic predictions. That is, syntactic sub-
categorization of verbs and imposition of selectional
restrictions are not sufficient to solve these problems [30]-
[33]. It is to be noted that unacceptability of strings is
indicated by a preceding star, * .

(1) John pretended that he was in Paris.
(2) * John pretended.
(3) * John pretended Paris.

It is not easy to decide how to combine syntactic and
semantic information. To justify the AO software architecture
for natural language processing, four interesting problems that
require synergistic relationship among various components are
considered below.

A. Ambiguity

A grammar is ambiguous if and only if it assigns two or
more syntactic structures to at least one input string.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:7, 2012

882International Scholarly and Scientific Research & Innovation 6(7) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

7,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

54
58

.p
df

Loosely coupled modules of syntax and semantics do not
adequately support ambiguity treatment without cross-cutting
aspects. For example, a sentence like “Old men and women
danced” admits two distinct semantic interpretations, each of
which corresponds to a syntactic structure. The syntactic
structure given in Figure 4, according to most grammars,
including tree adjoining grammars [22], [33], supports the
interpretation that the adjective “Old” modifies the entire
conjoined noun phrase “men and women” meaning both men
and women are old. On the other hand, the syntactic structure
given in Figure 5 supports the interpretation that “Old”
modifies “men” only, because “Old men” form a noun
phrase constituent [Noun Phrase (Adjective Old) (Noun men)]
whereas the noun “women” is not modified by “Old”.

Fig. 4 A Parse Tree where an adjective modifies a conjoined Noun

Phrase

Fig. 6 A Parse Tree where an adjective modifies a Noun

Syntax and semantics together interpret this type of
ambiguity better than semantics alone. The proposed AO
architecture allows robust interactions among various
components, including syntax and semantics. Often, lexical
ambiguity gives rise to syntactic and semantic ambiguity. In
the statement “Rice flies like sand” the word “flies” could be a
noun or verb [23]. If “flies” is a noun and “like” is a verb then
the interpretation would be “Rice flies are fond of sand”. On
the other hand, if “flies” is a verb and “like” is a preposition
then the interpretation would be “Rice moves as sand moves”.

B. Semantic Approaches

Semantics is one of the most challenging fields in language
analysis and there is no clear winner among various competing
semantic approaches. Therefore, it is reasonable to use all
foremost semantic approaches for accommodating all key
perspectives. The major approaches are explained as follows:
(a) Denotational Semantics: This approach suggests that the

meaning of a linguistic unit, such as a noun, is the entity it
denotes. For example, in “Ernest killed himself” the person
who got killed and the killer is denoted by the same individual.
That is, “Earnest” and “himself” denote the same person. The
statements “He killed herself” and “She killed themselves” are
unacceptable because the subject and the object denotations
are not identical and violate reflexive constructions. (b)
Operational Semantics: This approach is also known as
behavioral semantics and advocates that the meaning is best
shown in the actions of a model, world, or virtual machine.
Thus the meaning of the request “Please open the door” is best
demonstrated by opening the door. The meaning of “delete” in
a computer environment is the set of actions taken by the
computer after the command is given. For every linguistic unit
in a language, a Turing Machine can be built and executed on
a universal Turing Machine [34] defining the operational
semantics of that linguistic unit. (c) Axiomatic Semantics:
According to this approach, the meaning of a linguistic unit is
the set of consequences derivable from the linguistic unit in
combination with a set of axioms. This is a proof theoretic
approach utilizing mathematical logic, such as first order
predicate calculus. Thus, the meaning of “Ernest killed
himself” includes the consequences that “Ernest is not alive
anymore,” “Earnest is not drinking anymore,” and so on. (d)
Case Frame Semantics: Case frame semantics is popular with
a number of practitioners including Fillmore [35-37]. Case
frame semantics was originally developed in ancient India and
was based on deep thematic relations among constituent parts
of the sentence. Fillmore [35] pointed out that the noun phrase
“the door” is the logical object of the verb “open” in all three
sentences given in (4-6), but it is the syntactic subject in (4).
Similarly the noun phrase “the key” is logically an instrument
in both (5) and (6) but a syntactic subject in (5).

(4) The door opened.
(5) The key opened the door.
(6) The janitor opened the door with the key.

 According to case-frame semantics, the underlying logical
or thematic relations that need to be discovered and specified
in semantic representation can be processed with deeper
language analysis with robust interactions of all the
components. Every instrument case that appears as a
prepositional phrase (with-phrase) cannot be used as a subject
of the same verb, resulting in (8) and (10) being unacceptable.

(7) The janitor ate spaghetti with the fork.
(8) * The fork ate spaghetti.
(9) The janitor ate spaghetti with eggs.
(10) * Eggs ate spaghetti.

A. Conjunctions and Disjunctions

Conjunctions and disjunctions are easy to understand
intuitively. However, their meanings are difficult to specify
without robust interactions of lexical, syntactic, semantic and
pragmatic components. Logically, the order of conjuncts
should not be a problem for meaning. However, the string in
(12) is unacceptable for interpretation.

(11) She took poison and died.
(12) * She died and took poison.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:7, 2012

883International Scholarly and Scientific Research & Innovation 6(7) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

7,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

54
58

.p
df

In above examples, each conjunct is true separately.
However, (11) is acceptable because the second conjunct is
taken to be a consequence of the first conjunct. Similarly, a
disjunction like “Don’t move or I will shoot” requires special
treatments. These types of conjunctions and disjunctions
cannot be easily processed without the common sense
reasoning of the pragmatic component, in addition to lexical,
syntactic and semantic components, working together.
Pragmatic information about speakers, hearers and audience is
often needed for understanding consequences of natural
language strings. Hearers of different cultural backgrounds
have different interpretations when they are told that an
immortal would die for his wife. These differences can be
accounted for in a properly defined AO architecture.

V. CONCLUSION

The traditional view of loosely coupled independent
components is not productive for designing natural language
processing systems. The high level design for a natural
language processing system with an AO architecture presented
in this paper supports the synergistic relationship among
lexical, syntactic, semantic and pragmatic components of the
system. Without the architectural properties presented here, a
language processing system is unlikely to process linguistic
information adequately. The significance of this architecture is
the synergistic relationship among lexical, syntactic, semantic
and pragmatic components of the system. Future studies
include a comprehensive language processing system
implementation using this AO architecture along with a tree
adjoining grammar and detailed low level design specifications
in an iterative development process. In addition, evaluation of
AO software along line suggested in [38]-[39] would be of
general interest in this area.

ACKNOWLEDGMENT

The authors gratefully acknowledge the help and/or
encouragements received from John Cicero, Hassan
Badkoobehi, Byunggu Yu, Arun Datta, Jodi Reeves and many
others during the preparation of this paper.

REFERENCES

[1] R. S. Pressman, Software Engineering: A Practitioner’s Approach. (7th
ed.), McGraw-Hill, 2010.

[2] Y. Wang, Software Engineering Foundations: A Software Science
Perspective, Auerbach Publications, 2008.

[3] M. Shaw, and D. Garlan, “Formulations and Formalisms in Software
Architectures”, Computer Science Today: Recent Trends and
Developments, Springer-Verlag LNCS, 1000, 307-323, 1995.

[4] E. Braude, and M. Bernstein, Software Engineering: Modern
Approaches, (2nd Edition), John Wiley & Sons, 2011.

[5] C. Chavez, A. Garcia, U. Kulesza, C. Sant’Anna, C. Lucena. Taming
Heterogeneous Aspects with Crosscutting Interfaces. Journal of the
Brazilian Computer Society, 2006.

[6] E. Baniassad, P. Clements, J. Araujo, A. Moreira, A. Rashid, and B.
Tekinerdogan, Discovering Early Aspects, IEEE Software, 2006.

[7] I. Krechetov, B. Tekinerdogan, and A. Garcia. Towards an integrated
aspect-oriented modeling approach for software architecture design. In .
In 8th Aspect-Oriented Modeling Workshop, Aspect-Oriented Software
Development (AOSD) 2006.

[8] A. Navasa , M. A. Pérez , J. M. Murillo , J. Hernández. Aspect Oriented
Software Architecture: A Structural Perspective, Proceedings of the
Aspect-Oriented Software Development (AOSD), 2002.

[9] J. Hong, “Why is Great Design so Hard?”, Communications of the
ACM, July 2010.

[10] J. L. Azevedo, B. Cunha, and L. Almeida, “Hierarchical Distributed
Architectures for Autonomous Mobile Robots: A case study”, in
Proceedings of the IEEE Conference on Emerging Technologies and
Factory Automation, 2007.

[11] D. E. Knuth, Seminumerical Algorithms: The Art of Computer
Programming 2. Addison-Wesley, Reading, Mass., 1969

[12] D. Gries, The Science of Programming. Springer, 1981.
[13] W. Humphrey, Managing the Software Process, Reading, MA.

Addison-Wesley.
[14] I. Sommerville, Software Engineering, 9th Edition, Addison Wesley,

2010.
[15] S. Pfleeger, and J. Atlee, Software Engineering, Prentice-Hall, 2010.
[16] B. Agarwal, S. Tayal and M. Gupta, Software Engineering and Testing,

Jones and Bartlet, 2010.
[17] F. Tsui, and O. Karam, Essentials of Software Engineering, 2nd Ed.,

Jones and Bartlet, 2011.
[18] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice, 2nd Edition Addison-Wesley, 2003.
[19] J. Miller, and J. Mujerki, Editors, MDA Guide, Version 1, OMG

Technical Report. Document OMG/200-05-01,
http://www.omg.com/mda, 2003.

[20] N. Chomsky, New Horizons in the Study of Language and Mind,
Cambridge University Press., 2000.

[21] R. Hausser, Foundations of Computational Linguistics: Human-
computer Communication in Natural Language. (2nd ed.), Springer,
New York, 2001.

[22] A. Abeille, and O. Rambow, Tree Adjoining Grammars. Univ. of
Chicago Press., 2001.

[23] J. Allen, Natural Language Understanding. 2nd ed. Addison-Wesley,
New York, 1995.

[24] P. Culicover, Natural Language Syntax, Oxford University Press., 2008.
[25] H. Alshawi, The Core Language Engine. MA: MIT Press., 1992.
[26] L. Iwanska, and S. Shapiro, (Eds.), Natural Language Processing and

Knowledge Representation: Language for Knowledge and Knowledge
for Language. AAAI Press. 2000.

[27] D. Jurafsky, Speech and Language Processing: An Introduction to
Natural Language Processing, computational linguistics and speech
recognition. Prentice Hall., 2000.

[28] A. Cruse, Meaning in Language: An introduction to Semantics and
Pragmatics. (2nd ed.). Oxford Univ. Press., 2004.

[29] R. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. (2nd Edition), Addison Wesley, 2005.

[30] G.M. Green, Semantics and Syntactic regularity. Fitzhenry & Whiteside
Limited, Don Mills, Ontario, 1974.

[31] P. P. Dey, Y. Hayashi, and E. Battistella, (1989). A combination of
strategies for parsing grammatical agreement in Hindi. International
Journal of Pattern Recognition and Artificial Intelligence, 3, 1989,
261-273.

[32] R. D. Van Valin, Exploring the Syntax-Semantics Interface. Cambridge
University Press, 2005.

[33] P. P. Dey, B. Bryant, and T. Takaoka, Lexical Ambiguity in Tree
Adjoining Grammars, Information Processing Letters, 34, 1990, 65-69.

[34] D. Cohen, Introduction to Computer Theory , 2nd Edition, John Wiley
& Sons, 1997.

[35] C. Fillmore, The case for case. In E. Bach & R. T. Harms (Eds.).
Universals in Linguistic Theory. New York: Holt, Rinehart and
Winston, 1968.

[36] C. Fillmore, Frames and the semantics of understanding. Quaderni di
Semantica 6.2, 222-254, 1985.

[37] R. Schank, and R. P. Abelson, Scripts, Plans, Goals, and Understanding,
Lawrence Erlbaum. 1977.

[38] B. Tekeinerdogan, and M. Aksit, “Classifying and Evaluating
Architecture Design Methods”, in M. Aksit (editor), Software
Architectures and Component Technology, Kluwer Academic
Publishers, 2002.

[39] P. Clements, R. Kazman, and M. Klein. Evaluating Software
Architectures. Addison-Wesley, 2005.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:7, 2012

884International Scholarly and Scientific Research & Innovation 6(7) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

7,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

54
58

.p
df

