Open Science Index, Computer and Systems Engineering Vol:6, No:7, 2012 publications.waset.org/15458.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering
Vol:6, No:7, 2012

Aspect Oriented Software Architecture

Pradip Peter Dey, Ronald F. Gonzales, Gordon W. Romney, Mohammad Amin, Bhaskar Rg Sinha

Abstract—Natural language processing systems pose a unique
challenge for software architectural design as system complexity has
increased continually and systems cannot be easily constructed from
loosaly coupled modules. Lexical, syntactic, semantic, and pragmatic
aspects of linguistic information are tightly coupled in a manner that
requires separation of concerns in a special way in design,
implementation and maintenance. An aspect oriented software
architecture is proposed in this paper after criticaly reviewing
relevant architectura issues. For the purpose of this paper, the
syntactic aspect is characterized by an augmented context-free
grammar. The semantic aspect is composed of multiple perspectives
including denotational, operational, axiomatic and case frame
approaches. Case frame semantics matured in India from deep
thematic analysis. It is argued that lexical, syntactic, semantic and
pragmatic aspects work together in a mutually dependent way and
their synergy is best represented in the aspect oriented approach. The
software architecture is presented with an augmented Unified
Modeling Language.

Keywor ds—L anguage engineering, parsing, software design, user
experience.

|. INTRODUCTION

NTIL recently, Object Oriented Design (OOD) was

considered as one of the best approaches for designing
complex software systems [1]-[4]. Recent investigations into
separation of concerns have led to the considerations of some
new approaches including Aspect Oriented Design (AOD) [5]-
[8]. This paper examines important software design issues and
presents justifications for AOD with a case study from natural
language processing. Architectural design, detailed design and
design reviews provide the most important steps in a cost
effective software development process. Software engineering
activities are goa directed in order to produce working
software in a timely manner within some cost constraints. For
any complex computer based system, software architecture
plays a very important role in its success or failure. According
to Pressman [1: page 223] “One goal of software design is to
derive an architectural rendering of a system”. Multiple
representations of software architecture are recommended for
providing different views of a complex system in order to
clarify the structure of the system, which comprises software
components and the externally visible properties of those
components. Software architecture is “the overall structure of
the software and the ways in which that structure provides
conceptual integrity for a system” [3]. It is also known as high
level design since conceptual integrity is clarified a a high
level of abstraction.

Pradip Peter Dey, Ronald F. Gonzales, Gordon W. Romney, Mohammad
Amin and Bhaskar Raj Sinha are with National University, 3678 Aero Court,
San Diego, CA 92123, USA. They are now with the School of Engineering,
Technology and Media (phone: 858-309-3412; fax: 858-309-3420; e-mail:
pdey@nu.edu; rgonzales@nu.edu; gromney@nu.edu; mamin@nu.edu;
bsinha@nu.edu)

International Scholarly and Scientific Research & Innovation 6(7) 2012

According to Braude and Bernstein [4: page 438], "A
software architecture describes the overall components of an
application and how they relate to each other." The emphasis
on components were considered very productive in OOD,
although this is recently questioned for systems with
crosscutting aspects. Security aspects are often considered to
be spread over multiple components in a complex manner that
defies most variants of OOD approaches. The best
architectural practices are rarely published and often inferred
from excellent products [9]. In practice, software architectural
design is immensely challenging, vastly multifaceted,
strikingly domain based, perpetually changing, rarely cost-
effective, and deceptively ambiguous. Multiple
representations and intuitive explanations are often provided in
order to lessen the difficulty of interpretations of software
architecture.

Il. BACKGROUND

Practitioners and theoreticians have been debating about
software development approaches for a long time. Opposing
views are often presented with effective metaphors. Donald
Knuth initially [11] suggested that software writing is an art.
David Gries [12] argued it to be a science. Watts Humphrey
[13] viewed it as a process. In recent years, practitioners have
come to realize that software is engineered [1]-[2], [4], [14]-
[17]. The scientific foundation of software engineering is not
fully understood. That is, we do not understand it the way we
understand chemistry as the scientific foundation of chemical
engineering. Software architectural design is based partly on
computer science and partly on behavioral sciences and
intuitive judgments although there were some minor attempts
to establish “software science” [2] as the primary basis for
software architecture.

It is often suggested that software architectural design is
creatively built from requirements analysis in an iterative
process [1], [4], [13]-[19]. In this process, after some initial
requirements analysis a software architectural representation is
developed and then the requirements analysis is augmented on
the basis of a combination of software architecture, new or
changed requirements or some other factors which in turn
leads to a revised software architecture. The architectural
representation developed in this manner traditionally consisted
of components and their relationships with the primary
assumption that the software is composed of these
components. The components were obtained mainly by
separating and grouping concerns or related computational
elements. Recent studies suggest that certain concerns cannot
be easily localized and specified with individual architectural
units such as components [5]-[8]. These crosscutting concerns
are best represented as architectural aspects in an architectural
design. Inorder to highlight architectural aspects of AOD, we
will consider an interesting case presented below.

880 1SN1:0000000091950263

Open Science Index, Computer and Systems Engineering Vol:6, No:7, 2012 publications.waset.org/15458.pdf

World Academy of Science, Engineering and Technology

International Journa of Comput

er and Systems Engineering

Vol:6, No:7, 2012

Ill. LANGUAGE PROCESSING

Aspects of natural language processing are stimgldor
many reasons, especially for the intricate relatigm among
lexical, syntactic, semantic and pragmatic facet¥Ve speak
informally of the sound and meaning of a word, Wy it is
pronounced, and what it means” [20: pl170]. It énerally
accepted among experts that the meaning of a sentsn
composed from the meaning of its words. An analyi
language for producing a meaningful interpretat®othe most
crucial part of a of natural language processingtesy.
However, such an analysis is one of the most ahgithg
problems in computer science [21]-[28]. Understagdihe
nature of challenge requires a thorough study bfrraljor
aspects of natural language and their proper ogistips.
Although substantial progress has been made incdkxi
processing, controversies on syntactic, semantgaagmatic
aspects remain unresolved. Each of the procesmspgcts
mentioned above is easy to understand, but diffi¢al
formalize for efficient processing. Structure antrpretation
of natural language have been among the most elus
problems in formal modeling. Given an input sengesuch as
“The frog jumped”, computational problems can belaxed
as follows. Lexical processing of the sentengeeidormed by
searching the English lexicon for each of the woedsl
recognizing the word “The” as a determiner, “frag a noun
and “jumped” as a verb [23]-[24]. Syntactic presiag is
carried out by finding relationships among the veond the
sentence, building constituents and providing aicstral
description [22]-[24], called a parse tree or secéediagram,
such as the one shown in Figure 1. It is usualbuered that
lexical analysis precedes syntactic processingoagh their
interdependent nature is also recognized.

Sentence

i

Noun Phrase Verb Phrase

Determiner Noun Verb

The frog jumped

Fig. 1 A Parse Tree for “The frog jumped”

The semantic aspects are processed by analyzing
sentence into an interpretation that can be utiliZer
reasoning, knowledge representation,
information retrieval or other uses. One of theysvdo
represent meaning is through first order logic iost forder
predicate calculus, although semantic networkse-f@snes,
modal logic and other forms are also popular [233], [28].
In first order logic, the meaning of “The frog jueg’ can be
represented as: 3x) [Frog(x) * Jump-Past(x)]. Other
representations of meaning will be discussed ini@e8 of
this paper.

International Scholarly and Scientific Research & Innovation 6(7) 2012

database &Epdaf"

881

Language use in linguistic and extra linguistic teats is
the focus of the pragmatic analysis where commaesen
reasoning plays an important role [26], [28]. Tlmaper
addresses some of the central problems in theses aned
presents a new software architecture in order tovige
alternative analyses in semantics crucial for |aggu
understanding. Semantic processing is usually opedd
compositionally, that is, the meaning of largegliistic units
is usually derived by combining the meanings of llenanes.
However, the rules of composition and the naturseshantic
representation are not yet fully understood posangnajor
challenge for the development of a fully functional
computational linguistic system with incomplete whedge.
Currently, several alternative approaches seem ® b
promising, especially in the semantic area wheognass has
been limited. A software architecture that accomatesl all
major semantic approaches including denotational,
operational, axiomatic and case frame methodseisgmted in
Il\t/wis paper with justifications.

The software architecture presented in this paglknvis the
current practices in identifying the major compdseand their
relationships. A significant aspect of the reskaig that
components of a language processing system nebd best
organized for computationally efficient and lingigally
adequate language engineering. According to theergén
guidelines and best practices in software enginggi1-13],
loosely coupled components are preferred overljigioupled
components in a software system.

The architectural design of a natural language gssiog

system is one of the most difficult problems in goner
science. It is immensely complicated, highly maltéted,
extravagantly contextual, deceptively ambiguous, d an
strikingly controversial. The underlying compidat is
proven to be an NP-Complete problem [14-15]. Oh¢he
challenges is the interaction among lexical, syitasemantic
and pragmatic processing in the presence of amntpiguin
addition to computational complexity, there are iaddal
problems of arrangements and relationships amorgy th
components where the aspects of processing takee.pla
Experts often try to solve these problems in aqipied way
using a pipeline architecture where the output efical
processing is input to the syntax analyzer, whosgput is
input to the semantic analyzer and so on. Thikitacture is
{Sﬁ:gematically shown in Figure 2. This architeetis similar
to the one used successfully in compilers [16-17RAn
dvantage of this architecture is that it intuityveesembles an
assembly line and it separates concerns in diffel@rsely
coupled components. The elegant features of tlaisitacture
are made very clear by may practitioners [4, 16]. 17
However, natural languages are not fully specifiednally
and do not lend themselves to compiler techniqdesjzately.
In the pipeline architecture, the interactions agnothe
components are not flexible enough to handle somthe
complex natural language problems such as synt@asisics
interactions.

1SN1:0000000091950263

Open Science Index, Computer and Systems Engineering Vol:6, No:7, 2012 publications.waset.org/15458.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering
Vol:6, No:7, 2012

AHER Lexical Syntax Lexical Analyzer %
String Analyzer —+Tokens—» Anaivzer A ()
5 e Syntax Analyzer a_l _O
dise Semantic,
Trees Pragmatic & .
l Security Lexical, N, e
Semantic aspects Semanti, T oEnoTaToNAL | %
LA & lsawmcs | Toperationac |
Analyzer Security Lo s |
SENANTICS
- e A
| ol
Semantic

Representations

|

Pragmatic

Analyzer

Pragmatic
Representations

Fig. 2 A Pipeline Architecture for Natural Langudgcessing

The design and implementation of natural languaggiire
careful consideration of interactions among all ponents.
After initial requirements analysis the softwareswdesigned
using the Model-View-Controller architecture [18}1#hd an
initial prototype was developed following the itéva
development process. After several iterationgjai$ realized

that the separation between the View and Controller

components did not have any advantages because
Controller needed to work closely with the view amtess the
View elements repeatedly. The View and Contratlements

can be combined into a single component called Us

Interface. The Model is responsible for processirggdomain
information; it includes the lexical, syntactic,nsmntic and

| SEMANTICS J' |r CASEFRANE 1|
T | SENANTICS |
Semantic Analyzer ————~~~ “

7

Lexical,
Syntactic,

gragmtaytic & Pragmatic Analyzer%
ecuri
User Interface % aspects A
S/\ \ Lexical,
ecurity (Syntactic,
aspects Semantic &
Security
aspects
userAccess

Fig. 3 An Aspect Oriented Software Architecture Katural
Language Processing

IV. JUSTIFICATIONS

th S :
q’he justifications for software architecture comeni

different sources. One of the significant assunmstibehind
the AOD architecture is that the semantic and syiata
86mponents need to work together. This assumpison
supported by the fact that all major semantic apphes are
compositional, but the rules of composition arevted by

pragmatic components which seem to work togethéh wigyntax [22]-[25]. Some studies also demonstraae semantic

aspects. This architecture is presented in Figurahich
allows more robust interactions among its companentAll
major components are shown in Figure 3 using théiddin

information is required for syntactic decisions{30]. A verb
like “pretend” is neither transitive nor intranséi but takes a
sentential complement as shown in ().

Modeling Language (UML) notations augmented withunacceptability of (2) and (3) and similar exampl&seen

architectural aspects shown in shaded diamondsthin
augmented UML, the components are presented wighined

interfaces and provided interfaces. A requireckriiatce is
shown with a small semicircle attached to a compbna

provided interface is shown with a small circleaaltted to a
component.
meaning of a sentence from its parts. The ruleofposition
are derived from syntax because the constituenttsires of
syntax are properly guided by these rules. In tadi the

aspects of semantic analysis may include denotdfion

operational, axiomatic and case-frame semanticsause
these approaches complement each other in orgeptide a
comprehensive treatment of meaning. The architeciar
Figure 3 is, therefore, composed of UML based campts
augmented with Aspects Oriented (AO) features [184]. A

detailed justification of the architecture, presenin the next
section may help in making a strong case for tlohitactural
design.

International Scholarly and Scientific Research & Innovation 6(7) 2012

882

[30, p 10] concludes that semantic informatiomeiguired in
making syntactic predictions. That is, syntactiab-s
categorization of verbs and imposition of seledion
restrictions are not sufficient to solve these feois [30]-
[33]. It is to be noted that unacceptability dfirgs is

The semantic processing needs to cempdadicated by a preceding star,

(1) John pretended that he was in Paris.
(2) * John pretended.
(3) *John pretended Paris.

It is not easy to decide how to combine syntactid a
semantic information. To justify the AO softwaneltecture
for natural language processing, four interestirgpfems that
require synergistic relationship among various congmts are
considered below.

A. Ambiguity

A grammar is ambiguous if and only if it assign tar
more syntactic structures to at least one inputgstr

1SN1:0000000091950263

From the

Open Science Index, Computer and Systems Engineering Vol:6, No:7, 2012 publications.waset.org/15458.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering
Vol:6, No:7, 2012

Loosely coupled modules of syntax and semanticaiato
adequately support ambiguity treatment without srmgting
aspects. For example, a sentence like “Old menhvarmen
danced” admits two distinct semantic interpretatjomach of
which corresponds to a syntactic structure. Thetasjic
structure given in Figure 4, according to most grears,
including tree adjoining grammars [22], [33], sup@pothe
interpretation that the adjective “Old” modifiesethentire
conjoined noun phrase “men and women” meaninp bn
and women are old. On the other hand, the syntatticture
given in Figure 5 supports the interpretation ttétd”
modifies “men” only, because “Old men” form aumo
phrase constituent I‘Eoun Phrase (Adjective Old) G\loun men)]
whereas the noun “women” is not modified by “Old”.

Sentence

Verb Phrase

/\ I

Adjective Noun Phrase Verb

Noun Phrase

Noun Phrase Conjunction Noun Phrase

Old men and women danced

Fig. 4 A Parse Tree where an adjective modifiesraained Noun
Phrase

Sentence

Noun Phrase Verb Phrase

T |

Noun Phrase Conjunction Noun Phrase Verb

Adjective Noun Noun

Old men and women danced

Fig. 6 A Parse Tree where an adjective modifieoarN

Syntax and semantics together interpret this tyge
ambiguity better than semantics alone. The propo&€&d
architecture allows
components, including syntax and semantics. OQftecal
ambiguity gives rise to syntactic and semantic guoiby. In
the statement “Rice flies like sand” the word “$liecould be a
noun or verb [23]. If “flies” is a noun and “like$ a verb then
the interpretation would be “Rice flies are fondsaind”. On
the other hand, if “flies” is a verb and “like” & preposition
then the interpretation would be “Rice moves aslsaaves”.

B.Semantic Approaches

Semantics is one of the most challenging fieldsaimguage
analysis and there is no clear winner among varouspeting
semantic approaches. Therefore, it is reasonablese all
foremost semantic approaches for accommodatingke
perspectives. The major approaches are explainéollagss:

(a) Denotational SemanticsThis approach suggests that the

International Scholarly and Scientific Research & Innovation 6(7) 2012

883

meaning of a linguistic unit, such as a noun, s émtity it
denotes. For example, in “Ernest killed himselié tperson
who got killed and the killer is denoted by the sandividual.
That is, “Earnest” and “himself’ denote the samespe. The
statements “He killed herself” and “She killed tlemives” are
unacceptable because the subject and the objectatiens
are not identical and violate reflexive construetio (b)
Operational SemanticsThis approach is also known as
behavioral semantics and advocates that the measibgst
shown in the actions of a model, world, or virtmahchine.
Thus the meaning of the request “Please open tbe dobest
demonstrated by opening the door. The meaninge&lkte” in
a computer environment is the set of actions talgnthe
computer after the command is given. For evemuistic unit
in a language, a Turing Machine can be built aneteted on
a universal Turing Machine [34] defining the op&raal
semantics of that linguistic unit. (dAxiomatic Semantics
According to this approach, the meaning of a listiciunit is
the set of consequences derivable from the linguistit in
combination with a set of axioms. This is a prtiwdoretic
approach utilizing mathematical logic, such astfiosder
predicate calculus. Thus, the meaning of “Erneieck
himself” includes the consequences that “Ernestos alive
anymore,” “Earnest is not drinking anymore,” andao (d)
Case Frame SemanticsCase frame semantics is popular with
a number of practitioners including Fillmore [35}37Case
frame semantics was originally developed in andiedita and
was based on deep thematic relations among caarstiparts
of the sentence. Fillmore [35] pointed out tha&t tloun phrase
“the door” is the logical object of the verb “opein’all three
sentences given in (4-6), but it is the syntactibject in (4).
Similarly the noun phrase “the key” is logically arstrument
in both (5) and (6) but a syntactic subject in (5).

(4) The door opened.

(5) The key opened the door.

(6) The janitor opened the door with the key.

According to case-frame semantics, the undeglyogical
or thematic relations that need to be discoveret specified
in semantic representation can be processed witpete
language analysis with robust interactions of dfie t
@omponents. Every instrument case that appearsa as
prepositional phrase (with-phrase) cannot be useal subject

robust interactions among \EIO of the same verb, resulting in (8) and (10) beingaceptable.

(7) The janitor ate spaghetti with the fork.
(8) * The fork ate spaghetti.

(9) The janitor ate spaghetti with eggs.
(10)* Eggs ate spaghetti.

A.Conjunctions and Disjunctions

Conjunctions and disjunctions are easy to undedstan
intuitively. However, their meanings are difficub specify
without robust interactions of lexical, syntactsemantic and
pragmatic components. Logically, the order of conjs
should not be a problem for meaning. However,sthiag in
(12) is unacceptable for interpretation.

(11) She took poison and died.
(12) * She died and took poison.

1SN1:0000000091950263

Open Science Index, Computer and Systems Engineering Vol:6, No:7, 2012 publications.waset.org/15458.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering
Vol:6, No:7, 2012

In above examples, each conjunct is true separatel§l A Navasa,M.A.Pérez,J. M. Murillo, J. Herdém. Aspect Oriented

However, (11) is acceptable because the secondimaxinis
taken to be a consequence of the first conjun8imilarly, a

disjunction like “Don’t move or | will shoot” reqtes special

treatments. These types of conjunctions and ditijpms

[9]

[10]

cannot be easily processed without the common sense

reasoning of the pragmatic component, in additmtekical,
syntactic and semantic components, working

language strings. Hearers of different cultural Kgasunds
have different interpretations when they are toféttan
immortal would die for his wife. These differencean be
accounted for in a properly defined AO architecture

V. CONCLUSION
The traditional view of loosely coupled

processing systems.

in this paper supports the synergistic relationshipong
lexical, syntactic, semantic and pragmatic comptsei the

togethgii1)
Pragmatic information about speakers, hearers aditace is
often needed for understanding consequences ofrahatul2]

Software Architecture: A Structural Perspectivepdeedings of the
Aspect-Oriented Software Development (AOSD), 2002.

J. Hong, “Why is Great Design so Hardpmmunications of the
ACM, July 2010.

J. L. Azevedo, B. Cunha, and L. Almeida, “Hieranzi Distributed
Architectures for Autonomous Mobile Robots: A casedy”, in
Proceedings of the IEEE Conference on Emerging A@olgies and
Factory Automation2007.

D. E. Knuth, Seminumerical Algorithms: The Art of Computer
Programming 2Addison-Wesley, Reading, Mass., 1969

D. Gries, The Science of Programmingpringer, 1981.

3] W. Humphrey, Managing the Software Process Reading, MA.

[14]

[15]
[16]

[17]

independenhgl
components is not productive for designing natlaabuage
The high level design for wrah
language processing system with an AO architegitesented

[19]

[20]

system. Without the architectural properties @nésd here, a [21]

language processing system is unlikely to procesguiktic

information adequately. The significance of thishatecture is
the synergistic relationship among lexical, syntacemantic
retudies
language processing system

and pragmatic components of the system.
include a comprehensive
implementation using this AO architecture alonghwét tree
adjoining grammar and detailed low level desigre#mations
in an iterative development process. In additivalation of
AO software along line suggested in [38]-[39] woldd of
general interest in this area.

ACKNOWLEDGMENT

[22

(23]

[24]
[25]
[26]

[27]

[28]

The authors gratefully acknowledge the help and/%g]

encouragements received from Joh@icero,
Badkoobehi, Byunggu Yu, Arun Datta, Jodi Reevas many
others during the preparation of this paper.

REFERENCES

[1] R. S. Pressmargoftware Engineering: A Practitioner’s Approacfith
ed.), McGraw-Hill, 2010.

[2] Y. Wang, Software Engineering FoundatiansA Software Science

PerspectiveAuerbach Publications, 2008.

[3] M. Shaw, and D. Garlan, “Formulations and Formadism Software
Architectures”, Computer Science Today: Recent
DevelopmentsSpringer-Verlag LNCS, 1000, 307-323, 1995.

[4] E. Braude,
Approaches(2™ Edition), John Wiley & Sons, 2011.

[5] C. Chavez, A. Garcia, U. Kulesza, C. Sant'’Annal.@ena. Taming

Heterogeneous Aspects with Crosscutting Interfadesirnal of the
Brazilian Computer Society2006.

[6] E. Baniassad, P. Clements, J. Araujo, A. Moreifa, Rashid, and B.
Tekinerdogan, Discovering Early AspedSEE Software2006.

Hassan

Trends an

and M. BernsteinSoftware Engineering: Modern

(30]

(31]

[32]

[33]

[35]

(36]

[37]

[7]1 I. Krechetov, B. Tekinerdogan, and A. Garcia. Talgaan integrated (38]

aspect-oriented modeling approach for softwareitercture design. In .

In 8th Aspect-Oriented Modeling Workshop, Aspecie@ted Software
Development (AOSD) 2006.

International Scholarly and Scientific Research & Innovation 6(7) 2012

[39]

884

Addison-Wesley.

I. Sommerville, Software Engineering9th Edition, Addison Wesley,
2010.

S. Pfleeger, and J. Atle&oftware Engineering’rentice-Hall, 2010.

B. Agarwal, S. Tayal and M. Gupt&pftware Engineering and Testing
Jones and Bartlet, 2010.

F. Tsui, and O. KaramEssentials of Software Engineering® Ed.,
Jones and Bartlet, 2011.

L. Bass, P. Clements, and R. Kazm&®oftware Architecture in
Practice, 2nd Edition Addison-Wesley, 2003.

J. Miller, and J. Mujerki, Editors, MDA Guide, ¥on 1, OMG
Technical Report. Document OMG/200-05-01,
http://mwww.omg.com/mda, 2003.

N. Chomsky,New Horizons in the Study of Language and Mind
Cambridge University Press., 2000.

R. Hausser,Foundations of Computational Linguistics: Human-
computer Communication in Natural Languad2nd ed.), Springer,
New York, 2001.

A. Abeille, and O. Rambow;Tree Adjoining GrammarsUniv. of
Chicago Press., 2001.

J. Allen, Natural Language Understandin@nd ed. Addison-Wesley,
New York, 1995.

P. CulicoverNatural Language Syntaoxford University Press., 2008.
H. Alshawi, The Core Language EnginglA: MIT Press., 1992.

L. lwanska, and S. Shapiro, (EdsNatural Language Processing and
Knowledge Representation: Language for Knowledge &mowledge
for LanguageAAAI Press. 2000.

D. Jurafsky, Speech and Language Processing: An Introduction to
Natural Language Processing, computational lingastand speech
recognition.Prentice Hall., 2000.

A. Cruse,Meaning in LanguageAn introduction to Semantics and
Pragmatics.(2nd ed.). Oxford Univ. Press., 2004.

R. Rumbaugh, I. Jacobson, and G. Boothe Unified Modeling
Language Reference Manu&nd Edition), Addison Wesley, 2005.
G.M. Green, Semantics and Syntactic regularitzhéinry & Whiteside
Limited, Don Mills, Ontario, 1974.

P. P. Dey, Y. Hayashi, and E. Battistella, (1989).A combination of
strategies for parsing grammatical agreement indHimternational
Journal of Pattern Recognition and Artificial Inligence 3, 1989,
261-273.

R. D. Van ValinExploring the Syntax-Semantics Interfacg&mbridge
University Press, 2005.

P. P. Dey, B. Bryant, and T. Takaoka, Lexical Anulitiy in Tree
Adjoining Grammars,Information Processing Letter84, 1990, 65-69.

&34] D. Cohen, Introduction to Computer Theory , 2ndtigd, John Wiley

& Sons, 1997.

C. Fillmore, The case for case. In E. Bach & R.Harms (Eds.).
Universals in Linguistic Theory. New York: Holt, fhart and
Winston, 1968.

C. Fillmore, Frames and the semantics of undedatg. Quaderni di
Semantica 6.2, 222-254, 1985.

R. Schank, and R. P. Abelson, Scripts, Plans, Gaats Understanding,
Lawrence Erlbaum. 1977.

B. Tekeinerdogan, and M. Aksit, “Classifying and alating

Architecture Design Methods”, in M. Aksit (editor)Software

Architectures and Component TechnologKluwer Academic

Publishers, 2002.

P. Clements, R. Kazman, and M. KleirEvaluating Software
Architectures Addison-Wesley, 2005.

1SN1:0000000091950263

