Search results for: Partial Differential Equations
1583 Comparison of Two Interval Models for Interval-Valued Differential Evolution
Authors: Hidehiko Okada
Abstract:
The author previously proposed an extension of differential evolution. The proposed method extends the processes of DE to handle interval numbers as genotype values so that DE can be applied to interval-valued optimization problems. The interval DE can employ either of two interval models, the lower and upper model or the center and width model, for specifying genotype values. Ability of the interval DE in searching for solutions may depend on the model. In this paper, the author compares the two models to investigate which model contributes better for the interval DE to find better solutions. Application of the interval DE is evolutionary training of interval-valued neural networks. A result of preliminary study indicates that the CW model is better than the LU model: the interval DE with the CW model could evolve better neural networks.
Keywords: Evolutionary algorithms, differential evolution, neural network, neuroevolution, interval arithmetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16671582 Numerical Analysis of Hydrogen Transport using a Hydrogen-Enhanced Localized Plasticity Mechanism
Authors: Seul-Kee Kim, Chi-Seung Lee, Myung-Hyun Kim, Jae-Myung Lee
Abstract:
In this study, the hydrogen transport phenomenon was numerically evaluated by using hydrogen-enhanced localized plasticity (HELP) mechanisms. Two dominant governing equations, namely, the hydrogen transport model and the elasto-plastic model, were introduced. In addition, the implicitly formulated equations of the governing equations were implemented into ABAQUS UMAT user-defined subroutines. The simulation results were compared to published results to validate the proposed method.Keywords: Hydrogen-enhanced localized plasticity (HELP), Hydrogen embrittlement, Hydrogen transport analysis, ABAQUS UMAT, Finite element method (FEM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24271581 Application of Differential Transformation Method for Solving Dynamical Transmission of Lassa Fever Model
Authors: M. A. Omoloye, M. I. Yusuff, O. K. S. Emiola
Abstract:
The use of mathematical models for solving biological problems varies from simple to complex analyses, depending on the nature of the research problems and applicability of the models. The method is more common nowadays. Many complex models become impractical when transmitted analytically. However, alternative approach such as numerical method can be employed. It appropriateness in solving linear and non-linear model equation in Differential Transformation Method (DTM) which depends on Taylor series make it applicable. Hence this study investigates the application of DTM to solve dynamic transmission of Lassa fever model in a population. The mathematical model was formulated using first order differential equation. Firstly, existence and uniqueness of the solution was determined to establish that the model is mathematically well posed for the application of DTM. Numerically, simulations were conducted to compare the results obtained by DTM and that of fourth-order Runge-Kutta method. As shown, DTM is very effective in predicting the solution of epidemics of Lassa fever model.
Keywords: Differential Transform Method, Existence and uniqueness, Lassa fever, Runge-Kutta Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4891580 Partial Derivatives and Optimization Problem on Time Scales
Authors: Francisco Miranda
Abstract:
The optimization problem using time scales is studied. Time scale is a model of time. The language of time scales seems to be an ideal tool to unify the continuous-time and the discrete-time theories. In this work we present necessary conditions for a solution of an optimization problem on time scales. To obtain that result we use properties and results of the partial diamond-alpha derivatives for continuous-multivariable functions. These results are also presented here.Keywords: Lagrange multipliers, mathematical programming, optimization problem, time scales.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17251579 Bone Proteome Study in Ovariectomised Rats Supplemented with Palm Vitamin E
Authors: Patrick Nwabueze Okechukwu, Ima Nirwana Soelaiman, Gabriele Anisah Ruth Froemming, Mohd Yusri Idorus, Norazlina Mohamed
Abstract:
Supplementation of palm vitamin E has been reported to prevent loss of bone density in ovariectomised female rats. The mechanism by which palm vitamin E exerts these effects is still unknown. We hypothesized that palm vitamin E may act by preventing the protein expression changes. Two dimensional poly acyrilamide gel electrophoresis (2-D PAGE) and PD Quest software genomic solutions Investigator (proteomics) was used to analyze the differential protein expression profile in femoral and humeri bones harvested from three groups of rats; sham-operated rats (SO), ovariectomised rats (Ovx) and ovariectomised rats supplemented for 2 months with palm vitamin E. The results showed that there were over 300 valued spot on each of the groups PVE and OVX as compared to about 200 in SO. Comparison between the differential protein expression between OVX and PVE groups showed that ten spots were down –regulated in OVX but up-regulated in PVE. The ten differential spots were separately named P1-P10. The identification and understanding of the pathway of the differential protein expression among the groups is ongoing and may account for the molecular mechanism through which palm vitamin E exert its anti-osteoporotic effect.Keywords: Palm vitamin E, ovariectomised, osteoporosis protein expression, 2-d-page.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18941578 On Positive Definite Solutions of Quaternionic Matrix Equations
Authors: Minghui Wang
Abstract:
The real representation of the quaternionic matrix is definited and studied. The relations between the positive (semi)define quaternionic matrix and its real representation matrix are presented. By means of the real representation, the relation between the positive (semi)definite solutions of quaternionic matrix equations and those of corresponding real matrix equations is established.Keywords: Matrix equation, Quaternionic matrix, Real representation, positive (semi)definite solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14191577 A C1-Conforming Finite Element Method for Nonlinear Fourth-Order Hyperbolic Equation
Authors: Yang Liu, Hong Li, Siriguleng He, Wei Gao, Zhichao Fang
Abstract:
In this paper, the C1-conforming finite element method is analyzed for a class of nonlinear fourth-order hyperbolic partial differential equation. Some a priori bounds are derived using Lyapunov functional, and existence, uniqueness and regularity for the weak solutions are proved. Optimal error estimates are derived for both semidiscrete and fully discrete schemes.
Keywords: Nonlinear fourth-order hyperbolic equation, Lyapunov functional, existence, uniqueness and regularity, conforming finite element method, optimal error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18921576 Evaluation of the Laser and Partial Vibration Stimulation on Osteoporosis
Authors: Ji Hyung Park, Dong-Hyun Seo, Young-Jin Jung, Han Sung Kim
Abstract:
The aim of this study is to evaluate the effects of the laser and partial vibration stimulation on the mice tibia with morphological characteristics. Twenty female C57BL/6 mice (12 weeks old) were used for the experiment. The study was carried out on four groups of animals each consisting of five mice. Four groups of mice were ovariectomized. Animals were scanned at 0 and 2 weeks after ovariectomy by using micro computed tomography to estimate morphological characteristics of tibial trabecular bone. Morphological analysis showed that structural parameters of multi-stimuli group appear significantly better phase in BV/TV, BS/BV, Tb.Th, Tb.N, Tb.Sp, and Tb.pf than single stimulation groups. However, single stimulation groups didn’t show significant effect on tibia with Sham group. This study suggests that multi-stimuli may restrain the change as the degenerate phase on osteoporosis in the mice tibia.
Keywords: Laser, Partial Vibration, Osteoporosis, in vivo micro-CT, mice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19631575 A New Verified Method for Solving Nonlinear Equations
Authors: Taher Lotfi , Parisa Bakhtiari , Katayoun Mahdiani , Mehdi Salimi
Abstract:
In this paper, verified extension of the Ostrowski method which calculates the enclosure solutions of a given nonlinear equation is introduced. Also, error analysis and convergence will be discussed. Some implemented examples with INTLAB are also included to illustrate the validity and applicability of the scheme.
Keywords: Iinterval analysis, nonlinear equations, Ostrowski method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15111574 2D and 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems
Authors: Choon Ki Ahn, Jung Hun Park, Wook Hyun Kwon
Abstract:
CEMTool is a command style design and analyzing package for scientific and technological algorithm and a matrix based computation language. In this paper, we present new 2D & 3D finite element method (FEM) packages for CEMTool. We discuss the detailed structures and the important features of pre-processor, solver, and post-processor of CEMTool 2D & 3D FEM packages. In contrast to the existing MATLAB PDE Toolbox, our proposed FEM packages can deal with the combination of the reserved words. Also, we can control the mesh in a very effective way. With the introduction of new mesh generation algorithm and fast solving technique, our FEM packages can guarantee the shorter computational time than MATLAB PDE Toolbox. Consequently, with our new FEM packages, we can overcome some disadvantages or limitations of the existing MATLAB PDE Toolbox.Keywords: CEMTool, Finite element method (FEM), Numericalanalysis, Partial differential equation (PDE)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37971573 Application of Higher Order Splines for Boundary Value Problems
Authors: Pankaj Kumar Srivastava
Abstract:
Bringing forth a survey on recent higher order spline techniques for solving boundary value problems in ordinary differential equations. Here we have discussed the summary of the articles since 2000 till date based on higher order splines like Septic, Octic, Nonic, Tenth, Eleventh, Twelfth and Thirteenth Degree splines. Comparisons of methods with own critical comments as remarks have been included.Keywords: Septic spline, Octic spline, Nonic spline, Tenth, Eleventh, Twelfth and Thirteenth Degree spline, parametric and non-parametric splines, thermal instability, astrophysics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27691572 Dynamic Modeling and Simulation of Industrial Naphta Reforming Reactor
Authors: Gholamreza Zahedi, M. Tarin, M. Biglari
Abstract:
This work investigated the steady state and dynamic simulation of a fixed bed industrial naphtha reforming reactors. The performance of the reactor was investigated using a heterogeneous model. For process simulation, the differential equations are solved using the 4th order Runge-Kutta method .The models were validated against measured process data of an existing naphtha reforming plant. The results of simulation in terms of components yields and temperature of the outlet were in good agreement with empirical data. The simple model displays a useful tool for dynamic simulation, optimization and control of naphtha reforming.Keywords: Dynamic simulation, fixed bed reactor, modeling, reforming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29641571 Comparison of Two Types of Preconditioners for Stokes and Linearized Navier-Stokes Equations
Authors: Ze-Jun Hu, Ting-Zhu Huang, Ning-Bo Tan
Abstract:
To solve saddle point systems efficiently, several preconditioners have been published. There are many methods for constructing preconditioners for linear systems from saddle point problems, for instance, the relaxed dimensional factorization (RDF) preconditioner and the augmented Lagrangian (AL) preconditioner are used for both steady and unsteady Navier-Stokes equations. In this paper we compare the RDF preconditioner with the modified AL (MAL) preconditioner to show which is more effective to solve Navier-Stokes equations. Numerical experiments indicate that the MAL preconditioner is more efficient and robust, especially, for moderate viscosities and stretched grids in steady problems. For unsteady cases, the convergence rate of the RDF preconditioner is slightly faster than the MAL perconditioner in some circumstances, but the parameter of the RDF preconditioner is more sensitive than the MAL preconditioner. Moreover the convergence rate of the MAL preconditioner is still quite acceptable. Therefore we conclude that the MAL preconditioner is more competitive than the RDF preconditioner. These experiments are implemented with IFISS package.
Keywords: Navier-Stokes equations, Krylov subspace method, preconditioner, dimensional splitting, augmented Lagrangian preconditioner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18771570 Modeling of a Small Unmanned Aerial Vehicle
Authors: A. Elsayed Ahmed, A. Hafez, A. N. Ouda, H. Eldin Hussein Ahmed, H. Mohamed Abd-Elkader
Abstract:
Unmanned aircraft systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. . In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized, and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end the model is checked by matching between the behavior of the states of the nonlinear UAV and the resulted linear model with doublet at the control surfaces.
Keywords: Equations of motion, linearization, modeling, nonlinear model, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56111569 Thermal and Mechanical Buckling of Short and Long Functionally Graded Cylindrical Shells Using First Order Shear Deformation Theory
Authors: O. Miraliyari, M.M. Najafizadeh, A.R. Rahmani, A. Momeni Hezaveh
Abstract:
This paper presents the buckling analysis of short and long functionally graded cylindrical shells under thermal and mechanical loads. The shell properties are assumed to vary continuously from the inner surface to the outer surface of the shell. The equilibrium and stability equations are derived using the total potential energy equations, Euler equations and first order shear deformation theory assumptions. The resulting equations are solved for simply supported boundary conditions. The critical temperature and pressure loads are calculated for both short and long cylindrical shells. Comparison studies show the effects of functionally graded index, loading type and shell geometry on critical buckling loads of short and long functionally graded cylindrical shells.Keywords: Buckling, Functionally graded materials, Short and long cylindrical shell, Thermal and mechanical loads.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21551568 Study of a Four-Bed Pressure Swing Adsorption for Oxygen Separation from Air
Authors: Moghadazadeh Zahra, Towfighi Jafar, Mofarahi Masoud
Abstract:
This article is presented an experimental and modeling study of a four-bed pressure swing adsorption process using zeolite13X to provide oxygen-enriched air. The binary mixture N2/O2 (79/21 vol %) was used as a feed stream. The effects of purge/feed ratio (P/F), adsorption pressure, cyclic time and product flow rate on product purity and recovery under nonisothermal condition were studied. The adsorption dynamics of process were determined using a mathematical model incorporated mass and energy balances. A Mathlab code using finite difference method was developed to solve the set of coupled differential-algebraic equations, and the simulation results are agreed well with experimental results.Keywords: Pressure swing adsorption (PSA), Oxygen, Zeolite 13X.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38651567 Parallel Explicit Group Domain Decomposition Methods for the Telegraph Equation
Authors: Kew Lee Ming, Norhashidah Hj. Mohd. Ali
Abstract:
In a previous work, we presented the numerical solution of the two dimensional second order telegraph partial differential equation discretized by the centred and rotated five-point finite difference discretizations, namely the explicit group (EG) and explicit decoupled group (EDG) iterative methods, respectively. In this paper, we utilize a domain decomposition algorithm on these group schemes to divide the tasks involved in solving the same equation. The objective of this study is to describe the development of the parallel group iterative schemes under OpenMP programming environment as a way to reduce the computational costs of the solution processes using multicore technologies. A detailed performance analysis of the parallel implementations of points and group iterative schemes will be reported and discussed.Keywords: Telegraph equation, explicit group iterative scheme, domain decomposition algorithm, parallelization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15251566 On Some Properties of Interval Matrices
Authors: K. Ganesan
Abstract:
By using a new set of arithmetic operations on interval numbers, we discuss some arithmetic properties of interval matrices which intern helps us to compute the powers of interval matrices and to solve the system of interval linear equations.Keywords: Interval arithmetic, Interval matrix, linear equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20551565 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method
Authors: Emad K. Jaradat, Ala’a Al-Faqih
Abstract:
Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.
Keywords: Non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two- dimensional Schrodinger equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9041564 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor
Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin
Abstract:
This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.Keywords: Ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19221563 Affine Combination of Splitting Type Integrators, Implemented with Parallel Computing Methods
Authors: Adrian Alvarez, Diego Rial
Abstract:
In this work we present a family of new convergent type methods splitting high order no negative steps feature that allows your application to irreversible problems. Performing affine combinations consist of results obtained with Trotter Lie integrators of different steps. Some examples where applied symplectic compared with methods, in particular a pair of differential equations semilinear. The number of basic integrations required is comparable with integrators symplectic, but this technique allows the ability to do the math in parallel thus reducing the times of which exemplify exhibiting some implementations with simple schemes for its modularity and scalability process.Keywords: Lie Trotter integrators, Irreversible Problems, Splitting Methods without negative steps, MPI, HPC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13341562 Exact Solutions of Steady Plane Flows of an Incompressible Fluid of Variable Viscosity Using (ξ, ψ)- Or (η, ψ)- Coordinates
Authors: Rana Khalid Naeem, Asif Mansoor, Waseem Ahmed Khan, Aurangzaib
Abstract:
The exact solutions of the equations describing the steady plane motion of an incompressible fluid of variable viscosity for an arbitrary state equation are determined in the (ξ,ψ) − or (η,ψ )- coordinates where ψ(x,y) is the stream function, ξ and η are the parts of the analytic function, ϖ =ξ( x,y )+iη( x,y ). Most of the solutions involve arbitrary function/ functions indicating that the flow equations possess an infinite set of solutions.
Keywords: Exact solutions, Fluid of variable viscosity, Navier-Stokes equations, Steady plane flows
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34481561 CDM Controller Order and Disturbance Rejection Ability
Authors: Jo˜ao Paulo Coelho, Wojciech Giernacki, Jos´e Boaventura-Cunha
Abstract:
The coefficient diagram method is primarily an algebraic control design method whose objective is to easily obtain a good controller with minimum user effort. As a matter of fact, if a system model, in the form of linear differential equations, is known, the user only need to define a time-constant and the controller order. The later can be established regarding the expected disturbance type via a lookup table first published by Koksal and Hamamci in 2004. However an inaccuracy in this table was detected and pointed-out in the present work. Moreover the above mentioned table was expanded in order to enclose any k order type disturbance.
Keywords: Coefficient diagram method, control system design, disturbance rejection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22191560 Solitary Wave Solutions for Burgers-Fisher type Equations with Variable Coefficients
Authors: Amit Goyal, Alka, Rama Gupta, C. Nagaraja Kumar
Abstract:
We have solved the Burgers-Fisher (BF) type equations, with time-dependent coefficients of convection and reaction terms, by using the auxiliary equation method. A class of solitary wave solutions are obtained, and some of which are derived for the first time. We have studied the effect of variable coefficients on physical parameters (amplitude and velocity) of solitary wave solutions. In some cases, the BF equations could be solved for arbitrary timedependent coefficient of convection term.Keywords: Solitary wave solution, Variable coefficient Burgers- Fisher equation, Auxiliary equation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16271559 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks
Authors: P. Karimi, A. H. Khedmati Bazkiaei
Abstract:
The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.Keywords: Smart material, on-line differential artificial neural network, active control, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8151558 Active Vibration Control of Flexible Beam using Differential Evolution Optimisation
Authors: Mohd Sazli Saad, Hishamuddin Jamaluddin, Intan Zaurah Mat Darus
Abstract:
This paper presents the development of an active vibration control using direct adaptive controller to suppress the vibration of a flexible beam system. The controller is realized based on linear parametric form. Differential evolution optimisation algorithm is used to optimize the controller using single objective function by minimizing the mean square error of the observed vibration signal. Furthermore, an alternative approach is developed to systematically search for the best controller model structure together with it parameter values. The performance of the control scheme is presented and analysed in both time and frequency domain. Simulation results demonstrate that the proposed scheme is able to suppress the unwanted vibration effectively.Keywords: flexible beam, finite difference method, active vibration control, differential evolution, direct adaptive controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25591557 Analytic and Finite Element Solutions for Temperature Profiles in Welding using Varied Heat Source Models
Authors: Djarot B. Darmadi, John Norrish, Anh Kiet Tieu
Abstract:
Solutions for the temperature profile around a moving heat source are obtained using both analytic and finite element (FEM) methods. Analytic and FEM solutions are applied to study the temperature profile in welding. A moving heat source is represented using both point heat source and uniform distributed disc heat source models. Analytic solutions are obtained by solving the partial differential equation for energy conservation in a solid, and FEM results are provided by simulating welding using the ANSYS software. Comparison is made for quasi steady state conditions. The results provided by the analytic solutions are in good agreement with results obtained by FEM.Keywords: Analytic solution, FEM, Temperature profile, HeatSource Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22181556 Effective Image and Video Error Concealment using RST-Invariant Partial Patch Matching Model and Exemplar-based Inpainting
Authors: Shiraz Ahmad, Zhe-Ming Lu
Abstract:
An effective visual error concealment method has been presented by employing a robust rotation, scale, and translation (RST) invariant partial patch matching model (RSTI-PPMM) and exemplar-based inpainting. While the proposed robust and inherently feature-enhanced texture synthesis approach ensures the generation of excellent and perceptually plausible visual error concealment results, the outlier pruning property guarantees the significant quality improvements, both quantitatively and qualitatively. No intermediate user-interaction is required for the pre-segmented media and the presented method follows a bootstrapping approach for an automatic visual loss recovery and the image and video error concealment.Keywords: Exemplar-based image and video inpainting, outlierpruning, RST-invariant partial patch matching model (RSTI-PPMM), visual error concealment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14131555 Matrix Valued Difference Equations with Spectral Singularities
Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov
Abstract:
In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial-type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.
Keywords: Difference Equations, Jost Functions, Asymptotics, Eigenvalues, Continuous Spectrum, Spectral Singularities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18101554 Numerical Simulation of Tidal Currents in Persian Gulf
Authors: Ameleh Aghajanloo, Moharam Dolatshahi Pirouz, Masoud Montazeri Namin
Abstract:
In this paper, a two-dimensional (2D) numerical model for the tidal currents simulation in Persian Gulf is presented. The model is based on the depth averaged equations of shallow water which consider hydrostatic pressure distribution. The continuity equation and two momentum equations including the effects of bed friction, the Coriolis effects and wind stress have been solved. To integrate the 2D equations, the Alternative Direction Implicit (ADI) technique has been used. The base of equations discritization was finite volume method applied on rectangular mesh. To evaluate the model validation, a dam break case study including analytical solution is selected and the comparison is done. After that, the capability of the model in simulation of tidal current in a real field is represented by modeling the current behavior in Persian Gulf. The tidal fluctuations in Hormuz Strait have caused the tidal currents in the area of study. Therefore, the water surface oscillations data at Hengam Island on Hormoz Strait are used as the model input data. The check point of the model is measured water surface elevations at Assaluye port. The comparison between the results and the acceptable agreement of them showed the model ability for modeling marine hydrodynamic.Keywords: Persian Gulf, Tidal Currents, Shallow Water Equations, Finite Volumes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058