Search results for: Drug activity prediction.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2455

Search results for: Drug activity prediction.

2035 Coupled Multifield Analysis of Piezoelectrically Actuated Microfluidic Device for Transdermal Drug Delivery Applications

Authors: Muhammad Waseem Ashraf, Shahzadi Tayyaba, Nitin Afzulpurkar, Asim Nisar, Adisorn Tuantranont, Erik L J Bohez

Abstract:

In this paper, design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedle array with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) applications is presented. The fabrication process of silicon microneedle array is first done by series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of MEMS based piezoelectrically actuated device with integrated 2×2 silicon microneedle array is presented. To predict the stress distribution and model fluid flow in coupled field analysis, finite element (FE) and computational fluid dynamic (CFD) analysis using ANSYS rather than analytical systems has been performed. Static analysis and transient CFD analysis were performed to predict the fluid flow through the microneedle array. The inlet pressure from 10 kPa to 150 kPa was considered for static CFD analysis. In the lumen region fluid flow rate 3.2946 μL/min is obtained at 150 V for 2×2 microneedle array. In the present study the authors have performed simulation of structural, piezoelectric and CFD analysis on three dimensional model of the piezoelectrically actuated mcirofluidic device integrated with 2×2 microneedle array.

Keywords: Coupled multifield, finite element analysis, hollow silicon microneedle, transdermal drug delivery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
2034 High Efficiency, Selectivity against Cancer Cell Line of Purified L-Asparaginase from Pathogenic Escherichia coli

Authors: Hazim Saadoon Aljewari, Mohammed Ibraheem Nader, Abdul Hussain M. Alfaisal, NatthidaWeerapreeyakul, Sahapat

Abstract:

L-asparaginase was extracted from pathogenic Escherichia coli which was isolated from urinary tract infection patients. L-asparaginase was purified 96-fold by ultrafiltration, ion exchange and gel filtration giving 39.19% yield with final specific activity of 178.57 IU/mg. L-asparaginase showed 138,356±1,000 Dalton molecular weight with 31024±100 Dalton molecular mass. Kinetic properties of enzyme resulting 1.25×10-5 mM Km and 2.5×10-3 M/min Vmax. L-asparaginase showed a maximum activity at pH 7.5 when incubated at 37 ºC for 30 min and illustrated its full activity (100%) after 15 min incubation at 20-37 ºC, while 70% of its activity was lost when incubated at 60 ºC. L-asparaginase showed cytotoxicity to U937 cell line with IC50 0.5±0.19 IU/ml, and selectivity index (SI=7.6) about 8 time higher selectivity over the lymphocyte cells. Therefore, the local pathogenic E. coli strains may be used as a source of high yield of L-asparaginase to produce anti cancer agent with high selectivity.

Keywords: L-asparaginase, Purification, Cytotoxicity, selectivity index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2825
2033 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar

Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro

Abstract:

The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.

Keywords: NARX, prediction, stock market, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
2032 The Importance of Conserving Pre-Historical, Historical and Cultural Heritage and Its Tourist Exploitation

Authors: Diego Renan G. Tudela, Veruska C. Dutra, Mary Lucia Gomes Silveira de Senna, Afonso R. Aquino

Abstract:

Tourism in the present is the largest industry in the world, being an important global activity that has grown a lot in recent times. In this context, the activity of cultural tourism is growing, being seen as an important source of knowledge and information enjoyed by visitors. This article aims to discuss the cultural tourism, archaeological records and indigenous communities and the importance of preserving these invaluable sources of information, focusing on the records of the first peoples inhabiting the South American and North American lands. The study was based on discussions, theoretical studies, bibliographical research. Archaeological records are an important source of knowledge and information. Indigenous ethnic tourism represents a rescue of the authenticity of indigenous traditional cultures and their relation to the natural habitat. Cultural and indigenous tourism activity requires long-term planning to make it a sustainable activity.

Keywords: Tourism, culture, preservation, discussions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
2031 Injury Prediction for Soccer Players Using Machine Learning

Authors: Amiel Satvedi, Richard Pyne

Abstract:

Injuries in professional sports occur on a regular basis. Some may be minor while others can cause huge impact on a player’s career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player’s number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.

Keywords: Injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
2030 Metabolites of Polygonum L. Plants Having Antitumor Properties

Authors: Dmitriy Yu. Korulkin, Raissa A. Muzychkina

Abstract:

The article represents the results of research of antitumor activity of different structural types of plant flavonoids extracted by authors from Polygonum L. plants in commercial reserves at the territory of the Republic of Kazakhstan. For the first time ever the results comparative research of antitumor activity of plant flavonoids of different structural groups and their synthetic derivatives have been represented. The results of determination of toxicity of flavonoids in single parenteral infusion conditions have been represented. Experimental substantiation of possible mechanisms of antiproliferative and cytotoxic action of flavonoids has been suggested. The perspectives of usage of plant flavonoids as medications and creation of effective dosage forms of antitumor medicines on their basis have been substantiated.

Keywords: Antitumor activity, cytotoxicity, flavonoids, Polygonum L., secondary metabolites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
2029 Application of Activity-Based Costing Management System by Key Success Paths to Promote the Competitive Advantages and Operation Performance

Authors: Mei-Fang Wu, Shu-Li Wang, Feng-Tsung Cheng

Abstract:

Highly developed technology and highly competitive global market highlight the important role of competitive advantages and operation performances in sustainable company operation. Activity-Based Costing (ABC) provides accurate operation cost and operation performance information. Rich literatures provide relevant research with cases study on Activity-Based Costing application, but the research on cause relationship between key success factors and its specific outcome, such as profitability or share market are few. These relationships provide the ways to handle the key success factors to achieve the specific outcomes for ensuring to promote the competitive advantages and operation performances. The main purposes of this research are exploring the key success paths by Key Success Paths approach which will lead the ways to apply Activity-Base Costing. The Key Success Paths is the innovative method which is exploring the cause relationships and explaining what are the effects of key success factors to specific outcomes of Activity-Based Costing implementation. The cause relationships between key success factors and successful specific outcomes are Key Success Paths (KSPs). KSPs are the guidelines to lead the cost management strategies to achieve the goals of competitive advantages and operation performances. The research findings indicate that good management system design may affect the well outcomes of Activity-Based Costing application and achieve to outstanding competitive advantage, operating performance and profitability as well by KSPs exploration.

Keywords: Activity-Based Costing, Key success factors, Key success paths approach, Key success paths, Key failure paths.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
2028 Antioxidative Potential of Aqueous Extract of Ocimum americanum L. Leaves: An in vitro and in vivo Evaluation

Authors: B. T. Aluko, O. I. Oloyede

Abstract:

Ocimum americanum L (Lamiaceae) is an annual herb that is native to tropical Africa. The in vitro and in vivo antioxidant activity of its aqueous extract was carefully investigated by assessing the DPPH radical scavenging activity, ABTS radical scavenging activity and hydrogen peroxide radical scavenging activity. The reducing power, total phenol, total flavonoids and flavonols content of the extract were also evaluated. The data obtained revealed that the extract is rich in polyphenolic compounds and scavenged the radicals in a concentration dependent manner. This was done in comparison with the standard antioxidants such as BHT and Vitamin C. Also, the induction of oxidative damage with paracetamol (2000 mg/kg) resulted in the elevation of lipid peroxides and significant (P < 0.05) decrease in activities of superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase in the liver and kidney of rats. However, the pretreatment of rats with aqueous extract of O. americanum leaves (200 and 400 mg/kg) and silymarin (100 mg/kg) caused a significant (P < 0.05) reduction in the values of lipid peroxides and restored the levels of antioxidant parameters in these organs. These findings suggest that the leaves of O. americanum have potent antioxidant properties which may be responsible for its acclaimed folkloric uses.

Keywords: Antioxidants, free radicals, Ocimum americanum, scavenging activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
2027 Implementation of Generalized Plasticity in Load-Deformation Behavior of Foundation with Emphasis on Localization Problem

Authors: A. H. Akhaveissy

Abstract:

Nonlinear finite element method with eight noded isoparametric quadrilateral element is used for prediction of loaddeformation behavior including bearing capacity of foundations. Modified generalized plasticity model with non-associated flow rule is applied for analysis of soil-footing system. Also Von Mises and Tresca criterions are used for simulation of soil behavior. Modified generalized plasticity model is able to simulate load-deformation including softening behavior. Localization phenomena are considered by different meshes. Localization phenomena have not been seen in the examples. Predictions by modified generalized plasticity model show good agreement with laboratory data and theoretical prediction in comparison the other models.

Keywords: Localization phenomena, Generalized plasticity, Non-associated Flow Rule

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
2026 Vibration Induced Fatigue Assessment in Vehicle Development Process

Authors: Fatih Kagnici

Abstract:

Improvement in CAE methods has an important role for shortening of the vehicle product development time. It is provided that validation of the design and improvements in terms of durability can be done without hardware prototype production. In recent years, several different methods have been developed in order to investigate fatigue damage of the vehicle. The intended goal among these methods is prediction of fatigue damage in a short time with reduced costs. This study developed a new fatigue damage prediction method in the automotive sector using power spectrum densities of accelerations. This study also confirmed that the weak region in vehicle can be easily detected with the method developed in this study which results were compared with conventional method.

Keywords: Fatigue damage, Power spectrum density, Vibration induced fatigue, Vehicle development

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3126
2025 Design of a Carbon Silicon Electrode for Iontophoresis Treatment towards Alopecia

Authors: Q. Wei, D. G. Hwang, Z. Mohy-Udin, D. H. Shin, J. H. Park, M. Y. Kang, J. H. Cho

Abstract:

This study presents design of a carbon silicon electrode for iontophorsis treatment towards alopecia. The alopecia is a medical description means loss of hair from the body. For solving this problem, the drug need to be delivered into the scalp, therefore, the iontophoresis was chosen to use in this treatment. However, almost common electrodes of iontophoresis device are made with metal material, the electrodes could give patients hurt when they using it, and it is hard to avoid the hair for attaching the hair. For this reason, an electrode is made with silicon material to decrease the hurt from the electrodes, and the carbon material is mixed in it for increasing conductance. The several cones with stainless material on the electrode make the electrode is able to void hair to attach the affected part. According to the results of a vivo-experiment, the carbon silicon electrode showed a good performance and in treatment comfortably.

Keywords: Carbon silicon, drug delivery system, iontophoresis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
2024 Effects of Ciprofloxacin and Levofloxacin Administration on Some Oxidative Stress Markers in the Rat

Authors: Olusegun K. Afolabi, Emmanuel B. Oyewo

Abstract:

Fluoroquinolones are a group of antibiotics widely used because of their broad spectrum activity against both Gram-positive and Gram-negative bacteria. In this study, ciprofloxacin and levofloxacin were administered to rats at therapeutic doses to evaluate their effects on plasma arylesterase activity, as well as, on hepatic advanced oxidized protein products (AOPPs) and malondialdehyde (MDA) levels, as measures of oxidative stress. Ciprofloxacin (80 mg/kg body weight) and levofloxacin (40 mg/kg body weight) were administered to male albino rats for 7 and 14 days. The data obtained demonstrated that plasma arylesterase activity was significantly decreased by both drugs with ciprofloxacin administration inhibiting the activity by 29% and 30% while Levofloxacin treatment resulted in 35% and 30% inhibition, after 7 and 14 days treatment respectively. Hepatic AOPP and MDA levels were both elevated by these antibiotics. This study supplies further evidence that fluoroquinolones at therapeutic doses promote oxidative stress.

Keywords: Arylesterase, Ciprofloxacin, Levofloxacin, Oxidative Stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3339
2023 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents

Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera

Abstract:

The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.

Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4134
2022 An LMI Approach of Robust H∞ Fuzzy State-Feedback Controller Design for HIV/AIDS Infection System with Dual Drug Dosages

Authors: Wudhichai Assawinchaichote

Abstract:

This paper examines the problem of designing robust H controllers for for HIV/AIDS infection system with dual drug dosages described by a Takagi-Sugeno (S) fuzzy model. Based on a linear matrix inequality (LMI) approach, we develop an H controller which guarantees the L2-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value for the system. A sufficient condition of the controller for this system is given in term of Linear Matrix Inequalities (LMIs). The effectiveness of the proposed controller design methodology is finally demonstrated through simulation results. It has been shown that the anti-HIV vaccines are critically important in reducing the infected cells.

Keywords: H∞ Fuzzy control; Takagi-Sugeno (TS) fuzzy model; Linear Matrix Inequalities (LMIs); HIV/AIDS infection system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
2021 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks

Authors: Danilo López, Johana Hernández, Edwin Rivas

Abstract:

The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.

Keywords: Cognitive radio, neural network, prediction, primary user.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987
2020 Metabolic Predictive Model for PMV Control Based on Deep Learning

Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon

Abstract:

In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.

Keywords: Deep learning, indoor quality, metabolism, predictive model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1191
2019 Evaluation of Antioxidant Activities of Rice Paddy Herb (Limnophila aromatica (Lam.) Merr.)

Authors: Rutanachai Thaipratum

Abstract:

Free radicals are atoms or molecules with unpaired electrons. Many diseases are caused by free radicals. Normally, free radical formation is controlled naturally by various beneficial compounds known as antioxidants. Several analytical methods have been used for qualitative and quantitative determination of antioxidants, and each has its own specificity. This project aimed to evaluate antioxidant activity of ethanolic and aqueous extracts from the rice paddy herb (Limnophila aromatica (Lam.) Merr.) measured by DPPH and Hydroxyl radical scavenging method. The results showed that averaged antioxidant activity measured in ethanolic extract (µmol Ascorbic acid equivalent/g fresh mass) were 67.09± 4.99 and 15.55±4.82 as determined by DPPH and Hydroxyl radical scavenging activity assays, respectively. Averaged antioxidant activity measured in aqueous extract (µmol Ascorbic acid equivalent/g fresh mass) were 21.08±1.25 and 10.14±3.94 as determined by DPPH and Hydroxyl radical scavenging activity assays respectively.

Keywords: Free radical, antioxidant, rice paddy herb, Limnophila aromatica (Lam.) Merr.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
2018 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System

Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari

Abstract:

This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].

Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
2017 Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process

Authors: H.Mohammadi Majd, M.Jalali Azizpour, A.V. Hoseini

Abstract:

In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Keywords: Back-propagation artificial neural network(BPANN), deep drawing, prediction, limiting drawing ratio (LDR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
2016 A Heuristics Approach for Fast Detecting Suspicious Money Laundering Cases in an Investment Bank

Authors: Nhien-An Le-Khac, Sammer Markos, M-Tahar Kechadi

Abstract:

Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most international financial institutions have been implementing anti-money laundering solutions (AML) to fight investment fraud. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project for the purpose of developing a new solution for the AML Units in an international investment bank, we proposed a data mining-based solution for AML. In this paper, we present a heuristics approach to improve the performance for this solution. We also show some preliminary results associated with this method on analysing transaction datasets.

Keywords: data mining, anti money laundering, clustering, heuristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3584
2015 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: Audit, machine learning, assessment, metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1021
2014 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: Lexicon, sentiment analysis, stock movement prediction., computational finance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
2013 Using Simulation for Prediction of Units Movements in Case of Communication Failure

Authors: J. Hodicky, P. Frantis

Abstract:

Command and Control (C2) system and its interfacethe Common Operational Picture (COP) are main means that supports commander in its decision making process. COP contains information about friendly and enemy unit positions. The friendly position is gathered via tactical network. In the case of tactical network failure the information about units are not available. The tactical simulator can be used as a tool that is capable to predict movements of units in respect of terrain features. Article deals with an experiment that was based on Czech C2 system that is in the case of connectivity lost fed by VR Forces simulator. Article analyzes maximum time interval in which the position created by simulator is still usable and truthful for commander in real time.

Keywords: command and control system, movement prediction, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
2012 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: Computational finance, sentiment analysis, sentiment lexicon, stock movement prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
2011 Prediction the Limiting Drawing Ratio in Deep Drawing Process by Back Propagation Artificial Neural Network

Authors: H.Mohammadi Majd, M.Jalali Azizpour, M. Goodarzi

Abstract:

In this paper back-propagation artificial neural network (BPANN) with Levenberg–Marquardt algorithm is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Keywords: BPANN, deep drawing, prediction, limiting drawingratio (LDR), Levenberg–Marquardt algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
2010 Application of EEG Wavelet Power to Prediction of Antidepressant Treatment Response

Authors: Dorota Witkowska, Paweł Gosek, Lukasz Swiecicki, Wojciech Jernajczyk, Bruce J. West, Miroslaw Latka

Abstract:

In clinical practice, the selection of an antidepressant often degrades to lengthy trial-and-error. In this work we employ a normalized wavelet power of alpha waves as a biomarker of antidepressant treatment response. This novel EEG metric takes into account both non-stationarity and intersubject variability of alpha waves. We recorded resting, 19-channel EEG (closed eyes) in 22 inpatients suffering from unipolar (UD, n=10) or bipolar (BD, n=12) depression. The EEG measurement was done at the end of the short washout period which followed previously unsuccessful pharmacotherapy. The normalized alpha wavelet power of 11 responders was markedly different than that of 11 nonresponders at several, mostly temporoparietal sites. Using the prediction of treatment response based on the normalized alpha wavelet power, we achieved 81.8% sensitivity and 81.8% specificity for channel T4.

Keywords: Alpha waves, antidepressant, treatment outcome, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
2009 A Novel NIRS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods

Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara

Abstract:

Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.

Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
2008 New Multi-Solid Thermodynamic Model for the Prediction of Wax Formation

Authors: Ehsan Ghanaei, Feridun Esmaeilzadeh, Jamshid Fathi Kaljahi

Abstract:

In the previous multi-solid models,¤ò approach is used for the calculation of fugacity in the liquid phase. For the first time, in the proposed multi-solid thermodynamic model,γ approach has been used for calculation of fugacity in the liquid mixture. Therefore, some activity coefficient models have been studied that the results show that the predictive Wilson model is more appropriate than others. The results demonstrate γ approach using the predictive Wilson model is in more agreement with experimental data than the previous multi-solid models. Also, by this method, generates a new approach for presenting stability analysis in phase equilibrium calculations. Meanwhile, the run time in γ approach is less than the previous methods used ¤ò approach. The results of the new model present 0.75 AAD % (Average Absolute Deviation) from the experimental data which is less than the results error of the previous multi-solid models obviously.

Keywords: Multi-solid thermodynamic model, PredictiveWilson model, Wax formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
2007 Electromyographic Activity of the Medial Gastrocnemius and Lateral Gastrocnemius Muscle during Salat-s and Specific Exercise

Authors: M. K. M. Safee, W. A. B. Wan Abas, N. A. Abu Osman, F. Ibrahim

Abstract:

This paper investigates the activity of the gastrocnemius (Gas) muscle in healthy subjects during salat (ruku- position) and specific exercise [Unilateral Plantar Flexion Exercise (UPFE)] using electromyography (EMG). Both lateral and medial Gas muscles were assessed. A group of undergraduates aged between 19 to 25 years voluntarily participated in this study. The myoelectric activity of the muscles were recorded and analyzed. The finding indicated that there were contractions of the muscles during the salat and exercise with almost same EMG-s level. From the result, Wilcoxon-s Rank Sum test showed no significant difference between ruku- and UPFE for both medial (p=0.082) and lateral (p=0.226) of GAS muscles. Therefore, salat may be useful in strengthening exercise and also in rehabilitation programs for lower limb activities.

Keywords: Electromyography, salat, exercise, muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
2006 New Simultaneous High Performance Liquid Chromatographic Method for Determination of NSAIDs and Opioid Analgesics in Advanced Drug Delivery Systems and Human Plasma

Authors: Asad Ullah Madni, Mahmood Ahmad, Naveed Akhtar, Muhammad Usman

Abstract:

A new and cost effective RP-HPLC method was developed and validated for simultaneous analysis of non steroidal anti inflammatory dugs Diclofenac sodium (DFS), Flurbiprofen (FLP) and an opioid analgesic Tramadol (TMD) in advanced drug delivery systems (Liposome and Microcapsules), marketed brands and human plasma. Isocratic system was employed for the flow of mobile phase consisting of 10 mM sodium dihydrogen phosphate buffer and acetonitrile in molar ratio of 67: 33 with adjusted pH of 3.2. The stationary phase was hypersil ODS column (C18, 250×4.6 mm i.d., 5 μm) with controlled temperature of 30 C°. DFS in liposomes, microcapsules and marketed drug products was determined in range of 99.76-99.84%. FLP and TMD in microcapsules and brands formulation were 99.78 - 99.94 % and 99.80 - 99.82 %, respectively. Single step liquid-liquid extraction procedure using combination of acetonitrile and trichloroacetic acid (TCA) as protein precipitating agent was employed. The detection limits (at S/N ratio 3) of quality control solutions and plasma samples were 10, 20, and 20 ng/ml for DFS, FLP and TMD, respectively. The Assay was acceptable in linear dynamic range. All other validation parameters were found in limits of FDA and ICH method validation guidelines. The proposed method is sensitive, accurate and precise and could be applicable for routine analysis in pharmaceutical industry as well as in human plasma samples for bioequivalence and pharmacokinetics studies.

Keywords: Diclofenac Sodium, Flurbiprofen, Tramadol, HPLCUV detection, Validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858