Search results for: Fire performance
1464 A New Reliability Based Channel Allocation Model in Mobile Networks
Authors: Anujendra, Parag Kumar Guha Thakurta
Abstract:
The data transmission between mobile hosts and base stations (BSs) in Mobile networks are often vulnerable to failure. So, efficient link connectivity, in terms of the services of both base stations and communication channels of the network, is required in wireless mobile networks to achieve highly reliable data transmission. In addition, it is observed that the number of blocked hosts is increased due to insufficient number of channels during heavy load in the network. Under such scenario, the channels are allocated accordingly to offer a reliable communication at any given time. Therefore, a reliability-based channel allocation model with acceptable system performance is proposed as a MOO problem in this paper. Two conflicting parameters known as Resource Reuse factor (RRF) and the number of blocked calls are optimized under reliability constraint in this problem. The solution to such MOO problem is obtained through NSGA-II (Non dominated Sorting Genetic Algorithm). The effectiveness of the proposed model in this work is shown with a set of experimental results.
Keywords: Base station, channel, GA, Pareto-optimal, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19111463 Robot Movement Using the Trust Region Policy Optimization
Authors: Romisaa Ali
Abstract:
The Policy Gradient approach is a subset of the Deep Reinforcement Learning (DRL) combines Deep Neural Networks (DNN) with Reinforcement Learning (RL). This approach finds the optimal policy of robot movement, based on the experience it gains from interaction with its environment. Unlike previous policy gradient algorithms, which were unable to handle the two types of error variance and bias introduced by the DNN model due to over- or underestimation, this algorithm is capable of handling both types of error variance and bias. This article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.
Keywords: Deep neural networks, deep reinforcement learning, Proximal Policy Optimization, state-of-the-art, trust region policy optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841462 Towards a Load Balancing Framework for an SMS–Based Service Invocation Environment
Authors: Mandla T. Nene, Edgar.Jembere, Matthew O. Adigun, Themba Shezi, Siyabonga S. Cebekhulu
Abstract:
The drastic increase in the usage of SMS technology has led service providers to seek for a solution that enable users of mobile devices to access services through SMSs. This has resulted in the proposal of solutions towards SMS-based service invocation in service oriented environments. However, the dynamic nature of service-oriented environments coupled with sudden load peaks generated by service request, poses performance challenges to infrastructures for supporting SMS-based service invocation. To address this problem we adopt load balancing techniques. A load balancing model with adaptive load balancing and load monitoring mechanisms as its key constructs is proposed. The load balancing model then led to realization of Least Loaded Load Balancing Framework (LLLBF). Evaluation of LLLBF benchmarked with round robin (RR) scheme on the queuing approach showed LLLBF outperformed RR in terms of response time and throughput. However, LLLBF achieved better result in the cost of high processing power.Keywords: SMS (Short Message Service), LLLBF (Least Loaded Load Balancing Framework), Service Oriented Computing (SOC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16431461 Porous Carbon Nanoparticles Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction
Authors: Bita Bayatsarmadi, Shi-Zhang Qiao
Abstract:
Oxygen Reduction Reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis.Keywords: Electro-catalyst, mesopore structure, oxygen reduction reaction, soft-template.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20321460 Robust Design of Power System Stabilizers Using Adaptive Genetic Algorithms
Authors: H. Alkhatib, J. Duveau
Abstract:
Genetic algorithms (GAs) have been widely used for global optimization problems. The GA performance depends highly on the choice of the search space for each parameter to be optimized. Often, this choice is a problem-based experience. The search space being a set of potential solutions may contain the global optimum and/or other local optimums. A bad choice of this search space results in poor solutions. In this paper, our approach consists in extending the search space boundaries during the GA optimization, only when it is required. This leads to more diversification of GA population by new solutions that were not available with fixed search space boundaries. So, these dynamic search spaces can improve the GA optimization performances. The proposed approach is applied to power system stabilizer optimization for multimachine power system (16-generator and 68-bus). The obtained results are evaluated and compared with those obtained by ordinary GAs. Eigenvalue analysis and nonlinear system simulation results show the effectiveness of the proposed approach to damp out the electromechanical oscillation and enhance the global system stability.Keywords: Genetic Algorithms, Multiobjective Optimization, Power System Stabilizer, Small Signal Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17231459 The Public Law Studies: Relationship between Accountability, Environmental Education and Smart Cities
Authors: Aline Alves Bandeira, Luís Pedro Lima, Maria Cecília de Paula Silva, Paulo Henrique de Viveiros Tavares
Abstract:
Nowadays, the study of public policies regarding management efficiency is essential. Public policies are about what governments do or do not do, being an area that has grown worldwide, contributing through the knowledge of technologies and methodologies that monitor and evaluate the performance of public administrators. The information published on official government websites needs to provide for transparency and responsiveness of managers. Thus, transparency is a primordial factor for the execution of accountability, providing, in this way, services to the citizen with the expansion of transparent, efficient, democratic information and that value administrative eco-efficiency. The ecologically balanced management of a Smart City must optimize environmental education, building a fairer society, which brings about equality in the use of quality environmental resources. Smart Cities add value in the construction of public management, enabling interaction between people, enhancing environmental education and the practical applicability of administrative eco-efficiency, fostering economic development and improving the quality of life.
Keywords: Accountability, environmental education, new public administration, smart cities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6191458 3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach
Authors: M. Zamurad Shah, M. Kemal Özgören, Raza Samar
Abstract:
This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances.
Keywords: Unmanned Aerial Vehicles, Sliding mode control, 3D Guidance, Path following, trajectory tracking, nonlinear sliding manifolds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27031457 Design and Analysis of a Piezoelectric-Based AC Current Measuring Sensor
Authors: Easa Ali Abbasi, Akbar Allahverdizadeh, Reza Jahangiri, Behnam Dadashzadeh
Abstract:
Electrical current measurement is a suitable method for the performance determination of electrical devices. There are two contact and noncontact methods in this measuring process. Contact method has some disadvantages like having direct connection with wire which may endamage the system. Thus, in this paper, a bimorph piezoelectric cantilever beam which has a permanent magnet on its free end is used to measure electrical current in a noncontact way. In mathematical modeling, based on Galerkin method, the governing equation of the cantilever beam is solved, and the equation presenting the relation between applied force and beam’s output voltage is presented. Magnetic force resulting from current carrying wire is considered as the external excitation force of the system. The results are compared with other references in order to demonstrate the accuracy of the mathematical model. Finally, the effects of geometric parameters on the output voltage and natural frequency are presented.
Keywords: Cantilever beam, electrical current measurement, forced excitation, piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10771456 The Supply Chain Management and Supply Chain Responsiveness in the Competitiveness of the Agrofood Sector: An Econometric Analysis
Authors: Alma Lucero Ortiz, Mario Gómez
Abstract:
The purpose of this article is to conduct a theoretical and empirical study in order to analyze how the Supply Chain Management (SCM) and Supply Chain Responsiveness (SCR) affects the competitive advantage of the agrofood sector in 2017, in particular, the exporting companies of berries in Mexico. This work is presented in two parts, as a first part is developed a theoretical analysis of the main studies to measure the variables subject to the study. Subsequently an empirical study is carried out through field work and to process the data a logical econometric model is performed to be able to evaluate the effect of the SCM and SCR on the competitive advantage in the companies exporting berries. The results suggest that the SCM has a positive effect on the competitive advantage of the companies under study, so it is necessary to implement greater practices oriented towards a suitable SCM for the companies to achieve a competitive performance. In the case of SCR, it was found that this variable does not have effect on competitive advantage.
Keywords: Competitive advantage, econometric model, supply chain management, supply chain responsiveness, sustained competitive advantage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11891455 Localization of Anatomical Landmarks in Head CT Images for Image to Patient Registration
Authors: M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs
Abstract:
The use of anatomical landmarks as a basis for image to patient registration is appealing because the registration may be performed retrospectively. We have previously proposed the use of two anatomical soft tissue landmarks of the head, the canthus (corner of the eye) and the tragus (a small, pointed, cartilaginous flap of the ear), as a registration basis for an automated CT image to patient registration system, and described their localization in patient space using close range photogrammetry. In this paper, the automatic localization of these landmarks in CT images, based on their curvature saliency and using a rule based system that incorporates prior knowledge of their characteristics, is described. Existing approaches to landmark localization in CT images are predominantly semi-automatic and primarily for localizing internal landmarks. To validate our approach, the positions of the landmarks localized automatically and manually in near isotropic CT images of 102 patients were compared. The average difference was 1.2mm (std = 0.9mm, max = 4.5mm) for the medial canthus and 0.8mm (std = 0.6mm, max = 2.6mm) for the tragus. The medial canthus and tragus can be automatically localized in CT images, with performance comparable to manual localization, based on the approach presented.
Keywords: Anatomical Landmarks, CT, Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33251454 Knowledge Discovery Techniques for Talent Forecasting in Human Resource Application
Authors: Hamidah Jantan, Abdul Razak Hamdan, Zulaiha Ali Othman
Abstract:
Human Resource (HR) applications can be used to provide fair and consistent decisions, and to improve the effectiveness of decision making processes. Besides that, among the challenge for HR professionals is to manage organization talents, especially to ensure the right person for the right job at the right time. For that reason, in this article, we attempt to describe the potential to implement one of the talent management tasks i.e. identifying existing talent by predicting their performance as one of HR application for talent management. This study suggests the potential HR system architecture for talent forecasting by using past experience knowledge known as Knowledge Discovery in Database (KDD) or Data Mining. This article consists of three main parts; the first part deals with the overview of HR applications, the prediction techniques and application, the general view of Data mining and the basic concept of talent management in HRM. The second part is to understand the use of Data Mining technique in order to solve one of the talent management tasks, and the third part is to propose the potential HR system architecture for talent forecasting.Keywords: HR Application, Knowledge Discovery inDatabase (KDD), Talent Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44821453 Exploiting Non Circularity for Angle Estimation in Bistatic MIMO Radar Systems
Authors: Ebregbe David, Deng Weibo
Abstract:
The traditional second order statistics approach of using only the hermitian covariance for non circular signals, does not take advantage of the information contained in the complementary covariance of these signals. Radar systems often use non circular signals such as Binary Phase Shift Keying (BPSK) signals. Their noncicular property can be exploited together with the dual centrosymmetry of the bistatic MIMO radar system to improve angle estimation performance. We construct an augmented matrix from the received data vectors using both the positive definite hermitian covariance matrix and the complementary covariance matrix. The Unitary ESPRIT technique is then applied to the signal subspace of the augmented covariance matrix for automatically paired Direction-of-arrival (DOA) and Direction-of-Departure (DOD) angle estimates. The number of targets that can be detected is twice that obtainable with the conventional ESPRIT approach. Simulation results show the effectiveness of this method in terms of increase in resolution and the number of targets that can be detected.
Keywords: Bistatic MIMO Radar, Unitary Esprit, Non circular signals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19181452 Fuzzy Logic Control of a Semi-Active Quarter Car System
Authors: Devdutt, M. L. Aggarwal
Abstract:
The development of vehicles having best ride comfort and safety of travelling passengers is of great interest for automotive manufacturers. The effect of transmitted vibrations from car body to passenger seat is required to be controlled for achieving the same. The application of magneto-rheological (MR) shock absorber in suspension system has been considered to achieve significant benefits in this regard. This paper introduces a secondary suspension controlled semi-active quarter car system using MR shock absorber for effective vibration control. Fuzzy logic control system is used for design of controller for actual damping force generation by MR shock absorber. Performance evaluations are done related to passenger seat acceleration and displacement in time and frequency domains, in order to see the effectiveness of the proposed semi-active suspension system. Simulation results show that the semi-active suspension system provides better results compared to passive suspension system in terms of passenger ride comfort improvement.
Keywords: Fuzzy logic control, MR shock absorber, Quarter car model, Semi-active suspension system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31441451 Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm
Authors: Mahmoud Saeidi, Khadijeh Saeidi, Mahmoud Khaleghi
Abstract:
In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.Keywords: Image Sequences, Noise Reduction, fuzzy algorithm, triangular membership function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18801450 Performance Analysis of Expert Systems Incorporating Neural Network for Fault Detection of an Electric Motor
Authors: M. Khatami Rad, N. Jamali, M. Torabizadeh, A. Noshadi
Abstract:
In this paper, an artificial neural network simulator is employed to carry out diagnosis and prognosis on electric motor as rotating machinery based on predictive maintenance. Vibration data of the primary failed motor including unbalance, misalignment and bearing fault were collected for training the neural network. Neural network training was performed for a variety of inputs and the motor condition was used as the expert training information. The main purpose of applying the neural network as an expert system was to detect the type of failure and applying preventive maintenance. The advantage of this study is for machinery Industries by providing appropriate maintenance that has an essential activity to keep the production process going at all processes in the machinery industry. Proper maintenance is pivotal in order to prevent the possible failures in operating system and increase the availability and effectiveness of a system by analyzing vibration monitoring and developing expert system.Keywords: Condition based monitoring, expert system, neural network, fault detection, vibration monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19901449 Electricity Power Planning: the Role of Wind Energy
Authors: Paula Ferreira, Madalena Araújo, M.E.J. O’Kelly
Abstract:
Combining energy efficiency with renewable energy sources constitutes a key strategy for a sustainable future. The wind power sector stands out as a fundamental element for the achievement of the European renewable objectives and Portugal is no exception to the increase of the wind energy for the electricity generation. This work proposes an optimization model for the long range electricity power planning in a system similar to the Portuguese one, where the expected impacts of the increasing installed wind power on the operating performance of thermal power plants are taken into account. The main results indicate that the increasing penetration of wind power in the electricity system will have significant effects on the combined cycle gas power plants operation and on the theoretically expected cost reduction and environmental gains. This research demonstrated the need to address the impact that energy sources with variable output may have, not only on the short-term operational planning, but especially on the medium to long range planning activities, in order to meet the strategic objectives for the energy sector.Keywords: Wind power, electricity planning model, cost, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16081448 Performance Evaluation of a Millimeter-Wave Phased Array Antenna Using Circularly Polarized Elements
Authors: Rawad Asfour, Salam Khamas, Edward A. Ball
Abstract:
This paper is focused on the design of an mm-wave phased array. To date, linear polarization is adapted in the reported designs of phased arrays. However, linear polarization faces several well-known challenges. As such, an advanced design for phased array antennas is required that offers circularly polarized (CP) radiation. A feasible solution for achieving CP phased array antennas is proposed using open-circular loop antennas. To this end, a 3-element circular loop phased array antenna is designed to operate at 28 GHz. In addition, the array ability to control the direction of the main lobe is investigated. The results show that the highest achievable field of view (FOV) is 100°, i.e. 50° to the left and 50° to the right-hand side directions. The results are achieved with a CP bandwidth of 15%. Furthermore, the results demonstrate that a high broadside gain of circa 11 dBi can be achieved for the steered beam. Besides, radiation efficiency of 97% can also be achieved based on the proposed design.
Keywords: loop antenna, phased array, beam steering, wide bandwidth, circular polarization, CST
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5551447 Iterative Image Reconstruction for Sparse-View Computed Tomography via Total Variation Regularization and Dictionary Learning
Authors: XianYu Zhao, JinXu Guo
Abstract:
Recently, low-dose computed tomography (CT) has become highly desirable due to increasing attention to the potential risks of excessive radiation. For low-dose CT imaging, ensuring image quality while reducing radiation dose is a major challenge. To facilitate low-dose CT imaging, we propose an improved statistical iterative reconstruction scheme based on the Penalized Weighted Least Squares (PWLS) standard combined with total variation (TV) minimization and sparse dictionary learning (DL) to improve reconstruction performance. We call this method "PWLS-TV-DL". In order to evaluate the PWLS-TV-DL method, we performed experiments on digital phantoms and physical phantoms, respectively. The experimental results show that our method is in image quality and calculation. The efficiency is superior to other methods, which confirms the potential of its low-dose CT imaging.Keywords: Low dose computed tomography, penalized weighted least squares, total variation, dictionary learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8341446 Experimental Results about the Dynamics of the Generalized Belief Propagation Used on LDPC Codes
Authors: Jean-Christophe Sibel, Sylvain Reynal, David Declercq
Abstract:
In the context of channel coding, the Generalized Belief Propagation (GBP) is an iterative algorithm used to recover the transmission bits sent through a noisy channel. To ensure a reliable transmission, we apply a map on the bits, that is called a code. This code induces artificial correlations between the bits to send, and it can be modeled by a graph whose nodes are the bits and the edges are the correlations. This graph, called Tanner graph, is used for most of the decoding algorithms like Belief Propagation or Gallager-B. The GBP is based on a non unic transformation of the Tanner graph into a so called region-graph. A clear advantage of the GBP over the other algorithms is the freedom in the construction of this graph. In this article, we explain a particular construction for specific graph topologies that involves relevant performance of the GBP. Moreover, we investigate the behavior of the GBP considered as a dynamic system in order to understand the way it evolves in terms of the time and in terms of the noise power of the channel. To this end we make use of classical measures and we introduce a new measure called the hyperspheres method that enables to know the size of the attractors.
Keywords: iterative decoder, LDPC, region-graph, chaos.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16481445 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System
Authors: Vuk M. Popovic, Dunja D. Popovic
Abstract:
Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.
Keywords: Laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11271444 Harmonic Elimination of Hybrid Multilevel Inverters Using Particle Swarm Optimization
Authors: N. Janjamraj, A. Oonsivilai
Abstract:
This paper present the harmonic elimination of hybrid multilevel inverters (HMI) which could be increase the number of output voltage level. Total Harmonic Distortion (THD) is one of the most important requirements concerning performance indices. Because of many numbers output levels of HMI, it had numerous unknown variables of eliminate undesired individual harmonic and THD nonlinear equations set. Optimized harmonic stepped waveform (OHSW) is solving switching angles conventional method, but most complicated for solving as added level. The artificial intelligent techniques are deliberation to solve this problem. This paper presents the Particle Swarm Optimization (PSO) technique for solving switching angles to get minimum THD and eliminate undesired individual harmonics of 15-levels hybrid multilevel inverters. Consequently it had many variables and could eliminate numerous harmonics. Both advantages including high level of inverter and Particle Swarm Optimization (PSO) are used as powerful tools for harmonics elimination.Keywords: Multilevel Inverters, Particle Swarms Optimization, Harmonic Elimination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25201443 Single Phase Fluid Flow in Series of Microchannel Connected via Converging-Diverging Section with or without Throat
Authors: Abhishek Kumar Chandra, Kaushal Kishor, Wasim Khan, Dhananjay Singh, M. S. Alam
Abstract:
Single phase fluid flow through series of uniform microchannels connected via transition section (converging-diverging section with or without throat) was analytically and numerically studied to characterize the flow within the channel and in the transition sections. Three sets of microchannels of diameters 100, 184, and 249 μm were considered for investigation. Each set contains 10 numbers of microchannels of length 20 mm, connected to each other in series via transition sections. Transition section consists of either converging-diverging section with throat or without throat. The effect of non-uniformity in microchannels on pressure drop was determined by passing water/air through the set of channels for Reynolds number 50 to 1000. Compressibility and rarefaction effects in transition sections were also tested analytically and numerically for air flow. The analytical and numerical results show that these configurations can be used in enhancement of transport processes. However, converging-diverging section without throat shows superior performance over with throat configuration.Keywords: Contraction-expansion flow, integrated microchannel, microchannel network, single phase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9091442 Autonomous Vehicle Navigation Using Harmonic Functions via Modified Arithmetic Mean Iterative Method
Authors: Azali Saudi, Jumat Sulaiman
Abstract:
Harmonic functions are solutions to Laplace’s equation that are known to have an advantage as a global approach in providing the potential values for autonomous vehicle navigation. However, the computation for obtaining harmonic functions is often too slow particularly when it involves very large environment. This paper presents a two-stage iterative method namely Modified Arithmetic Mean (MAM) method for solving 2D Laplace’s equation. Once the harmonic functions are obtained, the standard Gradient Descent Search (GDS) is performed for path finding of an autonomous vehicle from arbitrary initial position to the specified goal position. Details of the MAM method are discussed. Several simulations of vehicle navigation with path planning in a static known indoor environment were conducted to verify the efficiency of the MAM method. The generated paths obtained from the simulations are presented. The performance of the MAM method in computing harmonic functions in 2D environment to solve path planning problem for an autonomous vehicle navigation is also provided.Keywords: Modified Arithmetic Mean method, Harmonic functions, Laplace’s equation, path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8611441 Spatial-Temporal Awareness Approach for Extensive Re-Identification
Authors: Tyng-Rong Roan, Fuji Foo, Wenwey Hseush
Abstract:
Recent development of AI and edge computing plays a critical role to capture meaningful events such as detection of an unattended bag. One of the core problems is re-identification across multiple CCTVs. Immediately following the detection of a meaningful event is to track and trace the objects related to the event. In an extensive environment, the challenge becomes severe when the number of CCTVs increases substantially, imposing difficulties in achieving high accuracy while maintaining real-time performance. The algorithm that re-identifies cross-boundary objects for extensive tracking is referred to Extensive Re-Identification, which emphasizes the issues related to the complexity behind a great number of CCTVs. The Spatial-Temporal Awareness approach challenges the conventional thinking and concept of operations which is labor intensive and time consuming. The ability to perform Extensive Re-Identification through a multi-sensory network provides the next-level insights – creating value beyond traditional risk management.
Keywords: Long-short-term memory, re-identification, security critical application, spatial-temporal awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5321440 Comprehensive Hierarchy Evaluation of Power Quality Based on an Incentive Mechanism
Authors: Tao Shun, Xiao Xiangning, HadjSaid, N.
Abstract:
In a liberalized electricity market, it is not surprising that different customers require different power quality (PQ) levels at different price. Power quality related to several power disturbances is described by many parameters, so how to define a comprehensive hierarchy evaluation system of power quality (PQCHES) has become a concerned issue. In this paper, based on four electromagnetic compatibility (EMC) levels, the numerical range of each power disturbance is divided into five grades (Grade I –Grade V), and the “barrel principle" of power quality is used for the assessment of overall PQ performance with only one grade indicator. A case study based on actual monitored data of PQ shows that the site PQ grade indicates the electromagnetic environment level and also expresses the characteristics of loads served by the site. The shortest plank principle of PQ barrel is an incentive mechanism, which can combine with the rewards/penalty mechanism (RPM) of consumed energy “on quality demand", to stimulate utilities to improve the overall PQ level and also stimulate end-user more “smart" under the infrastructure of future SmartGrid..Keywords: Power quality, electromagnetic compatibility, SmartGrid, comprehensive evaluation, barrel principle, electricitymarket
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15711439 Trust and Reputation Mechanism with Path Optimization in Multipath Routing
Authors: Ramya Dorai, M. Rajaram
Abstract:
A Mobile Adhoc Network (MANET) is a collection of mobile nodes that communicate with each other with wireless links and without pre-existing communication infrastructure. Routing is an important issue which impacts network performance. As MANETs lack central administration and prior organization, their security concerns are different from those of conventional networks. Wireless links make MANETs susceptible to attacks. This study proposes a new trust mechanism to mitigate wormhole attack in MANETs. Different optimization techniques find available optimal path from source to destination. This study extends trust and reputation to an improved link quality and channel utilization based Adhoc Ondemand Multipath Distance Vector (AOMDV). Differential Evolution (DE) is used for optimization.
Keywords: Mobile Adhoc Network (MANET), Adhoc Ondemand Multi-Path Distance Vector (AOMDV), Trust and Reputation, Differential Evolution (DE), Link Quality, Channel Utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16591438 Aerodynamic Stall Control of a Generic Airfoil using Synthetic Jet Actuator
Authors: Basharat Ali Haider, Naveed Durrani, Nadeem Aizud, Salimuddin Zahir
Abstract:
The aerodynamic stall control of a baseline 13-percent thick NASA GA(W)-2 airfoil using a synthetic jet actuator (SJA) is presented in this paper. Unsteady Reynolds-averaged Navier-Stokes equations are solved on a hybrid grid using a commercial software to simulate the effects of a synthetic jet actuator located at 13% of the chord from the leading edge at a Reynolds number Re = 2.1x106 and incidence angles from 16 to 22 degrees. The experimental data for the pressure distribution at Re = 3x106 and aerodynamic coefficients at Re = 2.1x106 (angle of attack varied from -16 to 22 degrees) without SJA is compared with the computational fluid dynamic (CFD) simulation as a baseline validation. A good agreement of the CFD simulations is obtained for aerodynamic coefficients and pressure distribution. A working SJA has been integrated with the baseline airfoil and initial focus is on the aerodynamic stall control at angles of attack from 16 to 22 degrees. The results show a noticeable improvement in the aerodynamic performance with increase in lift and decrease in drag at these post stall regimes.Keywords: Active flow control, Aerodynamic stall, Airfoilperformance, Synthetic jet actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23111437 Application of Feed Forward Neural Networks in Modeling and Control of a Fed-Batch Crystallization Process
Authors: Petia Georgieva, Sebastião Feyo de Azevedo
Abstract:
This paper is focused on issues of nonlinear dynamic process modeling and model-based predictive control of a fed-batch sugar crystallization process applying the concept of artificial neural networks as computational tools. The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. A feed forward neural network (FFNN) model of the process is first built as part of the controller structure to predict the process response over a specified (prediction) horizon. The predictions are supplied to an optimization procedure to determine the values of the control action over a specified (control) horizon that minimizes a predefined performance index. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. However, the simulation results demonstrated smooth behavior of the control actions and satisfactory reference tracking.
Keywords: Feed forward neural network, process modelling, model predictive control, crystallization process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18751436 Effect of Si/Al Ratio on SSZ-13 Crystallization and Its Methanol-To-Olefins Catalytic Properties
Authors: Zhiqiang Xu, Hongfang Ma, Haitao Zhang, Weixin Qian, Weiyong Ying
Abstract:
SSZ-13 materials with different Si/Al ratio were prepared by varying the composition of aluminosilicate precursor solutions upon hydrothermal treatment at 150 °C. The Si/Al ratio of the initial system was systematically changed from 12.5 to infinity in order to study the limits of Al composition in precursor solutions for constructing CHA structure. The intermediates and final products were investigated by complementary techniques such as XRD, HRTEM, FESEM, and chemical analysis. NH3-TPD was used to study the Brønsted acidity of SSZ-13 samples with different Si/Al ratios. The effect of the Si/Al ratio on the precursor species, ultimate crystal size, morphology and yield was investigated. The results revealed that Al species determine the nucleation rate and the number of nuclei, which is tied to the morphology and yield of SSZ-13. The size of SSZ-13 increased and the yield decreased as the Si/Al ratio was improved. Varying Si/Al ratio of the initial system is a facile, commercially viable method of tailoring SSZ-13 crystal size and morphology. Furthermore, SSZ-13 materials with different Si/Al ratio were tested as catalysts for the methanol to olefins (MTO) reaction at 350 °C. SSZ-13 with the Si/Al ratio of 35 shows the best MTO catalytic performance.
Keywords: Crystallization, MTO, Si/Al ratio, SSZ-13.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8791435 Economic Load Dispatch with Daily Load Patterns and Generator Constraints by Particle Swarm Optimization
Authors: N. Phanthuna V. Phupha N. Rugthaicharoencheep, S. Lerdwanittip
Abstract:
This paper presents an optimization technique to economic load dispatch (ELD) problems with considering the daily load patterns and generator constraints using a particle swarm optimization (PSO). The objective is to minimize the fuel cost. The optimization problem is subject to system constraints consisting of power balance and generation output of each units. The application of a constriction factor into PSO is a useful strategy to ensure convergence of the particle swarm algorithm. The proposed method is able to determine, the output power generation for all of the power generation units, so that the total constraint cost function is minimized. The performance of the developed methodology is demonstrated by case studies in test system of fifteen-generation units. The results show that the proposed algorithm scan give the minimum total cost of generation while satisfying all the constraints and benefiting greatly from saving in power loss reduction
Keywords: Particle Swarm Optimization, Economic Load Dispatch, Generator Constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859