Search results for: Hybrid evolutionary optimization algorithm
811 Supervisory Fuzzy Learning Control for Underwater Target Tracking
Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson
Abstract:
This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905810 Multiple-Level Sequential Pattern Discovery from Customer Transaction Databases
Abstract:
Mining sequential patterns from large customer transaction databases has been recognized as a key research topic in database systems. However, the previous works more focused on mining sequential patterns at a single concept level. In this study, we introduced concept hierarchies into this problem and present several algorithms for discovering multiple-level sequential patterns based on the hierarchies. An experiment was conducted to assess the performance of the proposed algorithms. The performances of the algorithms were measured by the relative time spent on completing the mining tasks on two different datasets. The experimental results showed that the performance depends on the characteristics of the datasets and the pre-defined threshold of minimal support for each level of the concept hierarchy. Based on the experimental results, some suggestions were also given for how to select appropriate algorithm for a certain datasets.Keywords: Data Mining, Multiple-Level Sequential Pattern, Concept Hierarchy, Customer Transaction Database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459809 A General Framework for Modeling Replicated Real-Time Database
Authors: Hala Abdel hameed, Hazem M. El-Bakry, Torky Sultan
Abstract:
There are many issues that affect modeling and designing real-time databases. One of those issues is maintaining consistency between the actual state of the real-time object of the external environment and its images as reflected by all its replicas distributed over multiple nodes. The need to improve the scalability is another important issue. In this paper, we present a general framework to design a replicated real-time database for small to medium scale systems and maintain all timing constrains. In order to extend the idea for modeling a large scale database, we present a general outline that consider improving the scalability by using an existing static segmentation algorithm applied on the whole database, with the intent to lower the degree of replication, enables segments to have individual degrees of replication with the purpose of avoiding excessive resource usage, which all together contribute in solving the scalability problem for DRTDBS.
Keywords: Database modeling, Distributed database, Real time databases, Replication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374808 Application of GM (1, 1) Model Group Based on Recursive Solution in China's Energy Demand Forecasting
Authors: Yeqing Guan, Fen Yang
Abstract:
To learn about China-s future energy demand, this paper first proposed GM(1,1) model group based on recursive solutions of parameters estimation, setting up a general solving-algorithm of the model group. This method avoided the problems occurred on the past researches that remodeling, loss of information and large amount of calculation. This paper established respectively all-data-GM(1,1), metabolic GM(1,1) and new information GM (1,1)model according to the historical data of energy consumption in China in the year 2005-2010 and the added data of 2011, then modeling, simulating and comparison of accuracies we got the optimal models and to predict. Results showed that the total energy demand of China will be 37.2221 billion tons of equivalent coal in 2012 and 39.7973 billion tons of equivalent coal in 2013, which are as the same as the overall planning of energy demand in The 12th Five-Year Plan.
Keywords: energy demands, GM(1, 1) model group, least square estimation, prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560807 Heterogeneous Attribute Reduction in Noisy System based on a Generalized Neighborhood Rough Sets Model
Authors: Siyuan Jing, Kun She
Abstract:
Neighborhood Rough Sets (NRS) has been proven to be an efficient tool for heterogeneous attribute reduction. However, most of researches are focused on dealing with complete and noiseless data. Factually, most of the information systems are noisy, namely, filled with incomplete data and inconsistent data. In this paper, we introduce a generalized neighborhood rough sets model, called VPTNRS, to deal with the problem of heterogeneous attribute reduction in noisy system. We generalize classical NRS model with tolerance neighborhood relation and the probabilistic theory. Furthermore, we use the neighborhood dependency to evaluate the significance of a subset of heterogeneous attributes and construct a forward greedy algorithm for attribute reduction based on it. Experimental results show that the model is efficient to deal with noisy data.Keywords: attribute reduction, incomplete data, inconsistent data, tolerance neighborhood relation, rough sets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595806 Design Standardization in Aramco: Strategic Analysis
Authors: Mujahid S. Alharbi
Abstract:
The construction of process plants in oil and gas-producing countries, such as Saudi Arabia, necessitates substantial investment in design and building. Each new plant, while unique, includes common building types, suggesting an opportunity for design standardization. This study investigates the adoption of standardized Issue for Construction (IFC) packages for non-process buildings in Saudi Aramco. A SWOT analysis presents the strengths, weaknesses, opportunities, and threats of this approach. The approach's benefits are illustrated using the Hawiyah Unayzah Gas Reservoir Storage Program (HUGRSP) as a case study. Standardization not only offers significant cost savings and operational efficiencies, but also expedites project timelines, reduces the potential for change orders, and fosters local economic growth by allocating building tasks to local contractors. Standardization also improves project management by easing interface constraints between different contractors and promoting adaptability to future industry changes. This research underscores the standardization of non-process buildings as a powerful strategy for cost optimization, efficiency enhancement, and local economic development in process plant construction within the oil and gas sector.
Keywords: Building, construction, management, project, standardization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82805 Packaging in a Multivariate Conceptual Design Synthesis of a BWB Aircraft
Authors: Paul Okonkwo, Howard Smith
Abstract:
A study to estimate the size of the cabin and major aircraft components as well as detect and avoid interference between internally placed components and the external surface, during the conceptual design synthesis and optimisation to explore the design space of a BWB, was conducted. Sizing of components follows the Bradley cabin sizing and rubber engine scaling procedures to size the cabin and engine respectively. The interference detection and avoidance algorithm relies on the ability of the Class Shape Transform parameterisation technique to generate polynomial functions of the surfaces of a BWB aircraft configuration from the sizes of the cabin and internal objects using few variables. Interference detection is essential in packaging of non-conventional configuration like the BWB because of the non-uniform airfoil-shaped sections and resultant varying internal space. The unique configuration increases the need for a methodology to prevent objects from being placed in locations that do not sufficiently enclose them within the geometry.
Keywords: Packaging, Optimisation, BWB, Parameterisation, Aircraft Conceptual Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420804 Human Pose Estimation using Active Shape Models
Authors: Changhyuk Jang, Keechul Jung
Abstract:
Human pose estimation can be executed using Active Shape Models. The existing techniques for applying to human-body research using Active Shape Models, such as human detection, primarily take the form of silhouette of human body. This technique is not able to estimate accurately for human pose to concern two arms and legs, as the silhouette of human body represents the shape as out of round. To solve this problem, we applied the human body model as stick-figure, “skeleton". The skeleton model of human body can give consideration to various shapes of human pose. To obtain effective estimation result, we applied background subtraction and deformed matching algorithm of primary Active Shape Models in the fitting process. The images which were used to make the model were 600 human bodies, and the model has 17 landmark points which indicate body junction and key features of human pose. The maximum iteration for the fitting process was 30 times and the execution time was less than .03 sec.
Keywords: Active shape models, skeleton, pose estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428803 A New Vector Quantization Front-End Process for Discrete HMM Speech Recognition System
Authors: M. Debyeche, J.P Haton, A. Houacine
Abstract:
The paper presents a complete discrete statistical framework, based on a novel vector quantization (VQ) front-end process. This new VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique that we named the distributed vector quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure, when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants. The first variant uses the K-means algorithm (K-means- DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of neural networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system.
Keywords: Hidden Markov Model, Vector Quantization, Neural Network, Speech Recognition, Arabic Language
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063802 Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning
Authors: W. D. Wan Rosli, Z. Zainuddin, R. Lanouette, S. Sathasivam
Abstract:
This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.
Keywords: Convergence, Modeling, Neural Networks, Preconditioned Conjugate Gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691801 A Kernel Based Rejection Method for Supervised Classification
Authors: Abdenour Bounsiar, Edith Grall, Pierre Beauseroy
Abstract:
In this paper we are interested in classification problems with a performance constraint on error probability. In such problems if the constraint cannot be satisfied, then a rejection option is introduced. For binary labelled classification, a number of SVM based methods with rejection option have been proposed over the past few years. All of these methods use two thresholds on the SVM output. However, in previous works, we have shown on synthetic data that using thresholds on the output of the optimal SVM may lead to poor results for classification tasks with performance constraint. In this paper a new method for supervised classification with rejection option is proposed. It consists in two different classifiers jointly optimized to minimize the rejection probability subject to a given constraint on error rate. This method uses a new kernel based linear learning machine that we have recently presented. This learning machine is characterized by its simplicity and high training speed which makes the simultaneous optimization of the two classifiers computationally reasonable. The proposed classification method with rejection option is compared to a SVM based rejection method proposed in recent literature. Experiments show the superiority of the proposed method.Keywords: rejection, Chow's rule, error-reject tradeoff, SupportVector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456800 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression
Authors: Wanatchapong Kongkaew
Abstract:
This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.
Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243799 Investigation of Passive Solutions of Thermal Comfort in Housing Aiming to Reduce Energy Consumption
Authors: Josiane R. Pires, Marco A. S. González, Bruna L. Brenner, Luciana S. Roos
Abstract:
The concern with sustainability brought the need for optimization of the buildings to reduce consumption of natural resources. Almost 1/3 of energy demanded by Brazilian housings is used to provide thermal solutions. AEC sector may contribute applying bioclimatic strategies on building design. The aim of this research is to investigate the viability of applying some alternative solutions in residential buildings. The research was developed with computational simulation on single family social housing, examining envelope type, absorptance, and insolation. The analysis of the thermal performance applied both Brazilian standard NBR 15575 and degree-hour method, in the scenery of Porto Alegre, a southern Brazilian city. We used BIM modeling through Revit/Autodesk and used Energy Plus to thermal simulation. The payback of the investment was calculated comparing energy savings and building costs, in a period of 50 years. The results shown that with the increment of envelope’s insulation there is thermal comfort improvement and energy economy, with a pay-back period of 24 to 36 years, in some cases.
Keywords: Civil construction, design, thermal performance, energy, economic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925798 Cessna Citation X Performances Improvement by an Adaptive Winglet during the Cruise Flight
Authors: Marine Segui, Simon Bezin, Ruxandra Mihaela Botez
Abstract:
As part of a ‘Morphing-Wing’ idea, this study consists of measuring how a winglet, which is able to change its shape during the flight, is efficient. Conventionally, winglets are fixed-vertical platforms at the wingtips, optimized for a cruise condition that the airplane should use most of the time. However, during a cruise, an airplane flies through a lot of cruise conditions corresponding to altitudes variations from 30,000 to 45,000 ft. The fixed winglets are not optimized for these variations, and consequently, they are supposed to generate some drag, and thus to deteriorate aircraft fuel consumption. This research assumes that it exists a winglet position that reduces the fuel consumption for each cruise condition. In this way, the methodology aims to find these optimal winglet positions, and to further simulate, and thus estimate the fuel consumption of an aircraft wearing this type of adaptive winglet during several cruise conditions. The adaptive winglet is assumed to have degrees of freedom given by the various changes of following surfaces: the tip chord, the sweep and the dihedral angles. Finally, results obtained during cruise simulations are presented in this paper. These results show that an adaptive winglet can reduce, thus improve up to 2.12% the fuel consumption of an aircraft during a cruise.Keywords: Aerodynamics, Cessna Citation X, optimization, winglet, adaptive, morphing, wing, aircraft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246797 Analysis of the EEG Signal for a Practical Biometric System
Authors: Muhammad Kamil Abdullah, Khazaimatol S Subari, Justin Leo Cheang Loong, Nurul Nadia Ahmad
Abstract:
This paper discusses the effectiveness of the EEG signal for human identification using four or less of channels of two different types of EEG recordings. Studies have shown that the EEG signal has biometric potential because signal varies from person to person and impossible to replicate and steal. Data were collected from 10 male subjects while resting with eyes open and eyes closed in 5 separate sessions conducted over a course of two weeks. Features were extracted using the wavelet packet decomposition and analyzed to obtain the feature vectors. Subsequently, the neural networks algorithm was used to classify the feature vectors. Results show that, whether or not the subjects- eyes were open are insignificant for a 4– channel biometrics system with a classification rate of 81%. However, for a 2–channel system, the P4 channel should not be included if data is acquired with the subjects- eyes open. It was observed that for 2– channel system using only the C3 and C4 channels, a classification rate of 71% was achieved.Keywords: Biometric, EEG, Wavelet Packet Decomposition, NeuralNetworks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3041796 Study of Photonic Crystal Band Gap and Hexagonal Microcavity Based on Elliptical Shaped Holes
Authors: A. Benmerkhi, A. Bounouioua, M. Bouchemat, T. Bouchemat
Abstract:
In this paper, we present a numerical optical properties of a triangular periodic lattice of elliptical air holes. We report the influence of the ratio (semi-major axis length of elliptical hole to the filling ratio) on the photonic band gap. Then by using the finite difference time domain (FDTD) algorithm, the resonant wavelength of the point defect microcavities in a two-dimensional photonic crystal (PC) shifts towards the low wavelengths with significantly increased filing ratio. It can be noted that the Q factor is gradually changed to higher when the filling ratio increases. It is due to an increase in reflectivity of the PC mirror. Also we theoretically investigate the H1 cavity, where the value of semi-major axis (Rx) of the six holes surrounding the cavity are fixed at 0.5a and the Rx of the two edge air holes are fixed at the optimum value of 0.52a. The highest Q factor of 4.1359 × 106 is achieved at the resonant mode located at λ = 1.4970 µm.
Keywords: Photonic crystal, microcavity, filling ratio, elliptical holes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602795 Markov Chain Monte Carlo Model Composition Search Strategy for Quantitative Trait Loci in a Bayesian Hierarchical Model
Authors: Susan J. Simmons, Fang Fang, Qijun Fang, Karl Ricanek
Abstract:
Quantitative trait loci (QTL) experiments have yielded important biological and biochemical information necessary for understanding the relationship between genetic markers and quantitative traits. For many years, most QTL algorithms only allowed one observation per genotype. Recently, there has been an increasing demand for QTL algorithms that can accommodate more than one observation per genotypic distribution. The Bayesian hierarchical model is very flexible and can easily incorporate this information into the model. Herein a methodology is presented that uses a Bayesian hierarchical model to capture the complexity of the data. Furthermore, the Markov chain Monte Carlo model composition (MC3) algorithm is used to search and identify important markers. An extensive simulation study illustrates that the method captures the true QTL, even under nonnormal noise and up to 6 QTL.Keywords: Bayesian hierarchical model, Markov chain MonteCarlo model composition, quantitative trait loci.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970794 Optimization of Pretreatment and Enzymatic Saccharification of Cogon Grass Prior Ethanol Production
Authors: Jhalique Jane R. Fojas, Ernesto J. Del Rosario
Abstract:
The dilute acid pretreatment and enzymatic saccharification of lignocellulosic substrate, cogon grass (Imperata cylindrical, L.) was optimized prior ethanol fermentation using simultaneous saccharification and fermentation (SSF) method. The optimum pretreatment conditions, temperature, sulfuric acid concentration, and reaction time were evaluated by determining the maximum sugar yield at constant enzyme loading. Cogon grass, at 10% w/v substrate loading, has optimum pretreatment conditions of 126°C, 0.6% v/v H2SO4, and 20min reaction time. These pretreatment conditions were used to optimize enzymatic saccharification using different enzyme combinations. The maximum saccharification yield of 36.68mg/mL (71.29% reducing sugar) was obtained using 25FPU/g-cellulose cellulase complex combined with 1.1% w/w of cellobiase, ß-glucosidase, and 0.225% w/w of hemicellulase complex, after 96 hours of saccharification. Using the optimum pretreatment and saccharification conditions, SSF of treated substrates was done at 37°C for 120 hours using industrial yeast strain HBY3, Saccharomyces cerevisiae. The ethanol yield for cogon grass at 4% w/w loading was 9.11g/L with 5.74mg/mL total residual sugar.Keywords: Acid pretreatment, bioethanol, biomass, cogon grass, fermentation, lignocellylose, SSF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3894793 Tokyo Skyscrapers: Technologically Advanced Structures in Seismic Areas
Authors: J. Szolomicki, H. Golasz-Szolomicka
Abstract:
The architectural and structural analysis of selected high-rise buildings in Tokyo is presented in this paper. The capital of Japan is the most densely populated city in the world and moreover is located in one of the most active seismic zones. The combination of these factors has resulted in the creation of sophisticated designs and innovative engineering solutions, especially in the field of design and construction of high-rise buildings. The foreign architectural studios (as, for Jean Nouvel, Kohn Pedesen Associates, Skidmore, Owings & Merill) which specialize in the designing of skyscrapers, played a major role in the development of technological ideas and architectural forms for such extraordinary engineering structures. Among the projects completed by them, there are examples of high-rise buildings that set precedents for future development. An essential aspect which influences the design of high-rise buildings is the necessity to take into consideration their dynamic reaction to earthquakes and counteracting wind vortices. The need to control motions of these buildings, induced by the force coming from earthquakes and wind, led to the development of various methods and devices for dissipating energy which occur during such phenomena. Currently, Japan is a global leader in seismic technologies which safeguard seismic influence on high-rise structures. Due to these achievements the most modern skyscrapers in Tokyo are able to withstand earthquakes with a magnitude of over seven degrees at the Richter scale. Damping devices applied are of a passive, which do not require additional power supply or active one which suppresses the reaction with the input of extra energy. In recent years also hybrid dampers were used, with an additional active element to improve the efficiency of passive damping.
Keywords: Core structure, damping systems, high-rise buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031792 Design and Optimization of Parity Generator and Parity Checker Based On Quantum-dot Cellular Automata
Authors: Santanu Santra, Utpal Roy
Abstract:
Quantum-dot Cellular Automata (QCA) is one of the most substitute emerging nanotechnologies for electronic circuits, because of lower power consumption, higher speed and smaller size in comparison with CMOS technology. The basic devices, a Quantum-dot cell can be used to implement logic gates and wires. As it is the fundamental building block on nanotechnology circuits. By applying XOR gate the hardware requirements for a QCA circuit can be decrease and circuits can be simpler in terms of level, delay and cell count. This article present a modest approach for implementing novel optimized XOR gate, which can be applied to design many variants of complex QCA circuits. Proposed XOR gate is simple in structure and powerful in terms of implementing any digital circuits. In order to verify the functionality of the proposed design some complex implementation of parity generator and parity checker circuits are proposed and simulating by QCA Designer tool and compare with some most recent design. Simulation results and physical relations confirm its usefulness in implementing every digital circuit.
Keywords: Clock, CMOS technology, Logic gates, QCA Designer, Quantum-dot Cellular Automata (QCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7847791 Detecting and Measuring Fabric Pills Using Digital Image Analysis
Authors: Dariush Semnani, Hossein Ghayoor
Abstract:
In this paper a novel method was presented for evaluating the fabric pills using digital image processing techniques. This work provides a novel technique for detecting pills and also measuring their heights, surfaces and volumes. Surely, measuring the intensity of defects by human vision is an inaccurate method for quality control; as a result, this problem became a motivation for employing digital image processing techniques for detection of defects of fabric surface. In the former works, the systems were just limited to measuring of the surface of defects, but in the presented method the height and the volume of defects were also measured, which leads to a more accurate quality control. An algorithm was developed to first, find pills and then measure their average intensity by using three criteria of height, surface and volume. The results showed a meaningful relation between the number of rotations and the quality of pilled fabrics.Keywords: 3D analysis, computer vision, fabric, pile, surface evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2626790 The Effect of Randomly Distributed Polypropylene Fibers Borogypsum Fly Ash and Cement on Freezing-Thawing Durability of a Fine-Grained Soil
Authors: Ahmet Şahin Zaimoğlu
Abstract:
A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive and cohesionless soils. However, few studies have been carried out on freezing-thawing behavior of fine-grained soils modified with discrete fiber inclusions and additive materials. This experimental study was performed to investigate the effect of randomly distributed polypropylene fibers (PP) and some additive materials [e.g.., borogypsum (BG), fly ash (FA) and cement (C)] on freezing-thawing durability (mass losses) of a fine-grained soil for 6, 12, and 18 cycles. The Taguchi method was applied to the experiments and a standard L9 orthogonal array (OA) with four factors and three levels were chosen. A series of freezing-thawing tests were conducted on each specimen. 0-20% BG, 0-20% FA, 0- 0.25% PP and 0-3% of C by total dry weight of mixture were used in the preparation of specimens. Experimental results showed that the most effective materials for the freezing-thawing durability (mass losses) of the samples were borogypsum and fly ash. The values of mass losses for 6, 12 and 18 cycles in optimum conditions were 16.1%, 5.1% and 3.6%, respectively.Keywords: Additive materials, Freezing-thawing, Optimization, Reinforced soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743789 Developing Examination Management System: Senior Capstone Project, a Case Study
Authors: S. Vasupongayya, W. Noodam, P. Kongyong
Abstract:
This paper presents the result of three senior capstone projects at the Department of Computer Engineering, Prince of Songkla University, Thailand. These projects focus on developing an examination management system for the Faculty of Engineering in order to manage the examination both the examination room assignments and the examination proctor assignments in each room. The current version of the software is a web-based application. The developed software allows the examination proctors to select their scheduled time online while each subject is assigned to each available examination room according to its type and the room capacity. The developed system is evaluated using real data by prospective users of the system. Several suggestions for further improvements are given by the testers. Even though the features of the developed software are not superior, the developing process can be a case study for a projectbased teaching style. Furthermore, the process of developing this software can show several issues in developing an educational support application.
Keywords: Scheduling, Web-based, Greedy Algorithm, Engineering Education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7093788 Evaluating some Feature Selection Methods for an Improved SVM Classifier
Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of features selection methods to reduce the dimensionality of the document-representation vector. Four feature selection methods are evaluated: Random Selection, Information Gain (IG), Support Vector Machine (called SVM_FS) and Genetic Algorithm with SVM (GA_FS). We showed that the best results were obtained with SVM_FS and GA_FS methods for a relatively small dimension of the features vector comparative with the IG method that involves longer vectors, for quite similar classification accuracies. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).
Keywords: Features selection, learning with kernels, support vector machine, genetic algorithms and classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545787 Local Mesh Co-Occurrence Pattern for Content Based Image Retrieval
Authors: C. Yesubai Rubavathi, R. Ravi
Abstract:
This paper presents the local mesh co-occurrence patterns (LMCoP) using HSV color space for image retrieval system. HSV color space is used in this method to utilize color, intensity and brightness of images. Local mesh patterns are applied to define the local information of image and gray level co-occurrence is used to obtain the co-occurrence of LMeP pixels. Local mesh co-occurrence pattern extracts the local directional information from local mesh pattern and converts it into a well-mannered feature vector using gray level co-occurrence matrix. The proposed method is tested on three different databases called MIT VisTex, Corel, and STex. Also, this algorithm is compared with existing methods, and results in terms of precision and recall are shown in this paper.Keywords: Content-based image retrieval system, HSV color space, gray level co-occurrence matrix, local mesh pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226786 Data Gathering Protocols for Wireless Sensor Networks
Authors: Dhinu Johnson, Gurdip Singh
Abstract:
Sensor network applications are often data centric and involve collecting data from a set of sensor nodes to be delivered to various consumers. Typically, nodes in a sensor network are resource-constrained, and hence the algorithms operating in these networks must be efficient. There may be several algorithms available implementing the same service, and efficient considerations may require a sensor application to choose the best suited algorithm. In this paper, we present a systematic evaluation of a set of algorithms implementing the data gathering service. We propose a modular infrastructure for implementing such algorithms in TOSSIM with separate configurable modules for various tasks such as interest propagation, data propagation, aggregation, and path maintenance. By appropriately configuring these modules, we propose a number of data gathering algorithms, each of which incorporates a different set of heuristics for optimizing performance. We have performed comprehensive experiments to evaluate the effectiveness of these heuristics, and we present results from our experimentation efforts.Keywords: Data Centric Protocols, Shortest Paths, Sensor networks, Message passing systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448785 Application of Artificial Neural Network in Assessing Fill Slope Stability
Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung
Abstract:
This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.
Keywords: Landslide, limit analysis, ANN, soil properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213784 Mass Transfer Modeling of Nitrate in an Ion Exchange Selective Resin
Authors: A. A. Hekmatzadeh, A. Karimi-Jashani, N. Talebbeydokhti
Abstract:
The rate of nitrate adsorption by a nitrate selective ion exchange resin was investigated in a well-stirred batch experiments. The kinetic experimental data were simulated with diffusion models including external mass transfer, particle diffusion and chemical adsorption. Particle pore volume diffusion and particle surface diffusion were taken into consideration separately and simultaneously in the modeling. The model equations were solved numerically using the Crank-Nicholson scheme. An optimization technique was employed to optimize the model parameters. All nitrate concentration decay data were well described with the all diffusion models. The results indicated that the kinetic process is initially controlled by external mass transfer and then by particle diffusion. The external mass transfer coefficient and the coefficients of pore volume diffusion and surface diffusion in all experiments were close to each other with the average value of 8.3×10-3 cm/S for external mass transfer coefficient. In addition, the models are more sensitive to the mass transfer coefficient in comparison with particle diffusion. Moreover, it seems that surface diffusion is the dominant particle diffusion in comparison with pore volume diffusion.Keywords: External mass transfer, pore volume diffusion, surface diffusion, mass action law isotherm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251783 Adaptive Bidirectional Flow for Image Interpolation and Enhancement
Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang
Abstract:
Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually the effects of blurred edges and jagged artifacts in the image to some extent. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to sharpen edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (“jaggies") along the tangent directions. In order to preserve image features such as edges, corners and textures, the nonlinear diffusion coefficients are locally adjusted according to the directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.
Keywords: anisotropic diffusion, bidirectional flow, directional derivatives, edge enhancement, image interpolation, inverse flow, shock filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544782 A Robust Method for Hand Tracking Using Mean-shift Algorithm and Kalman Filter in Stereo Color Image Sequences
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Robert Niese, Bernd Michaelis
Abstract:
Real-time hand tracking is a challenging task in many computer vision applications such as gesture recognition. This paper proposes a robust method for hand tracking in a complex environment using Mean-shift analysis and Kalman filter in conjunction with 3D depth map. The depth information solve the overlapping problem between hands and face, which is obtained by passive stereo measuring based on cross correlation and the known calibration data of the cameras. Mean-shift analysis uses the gradient of Bhattacharyya coefficient as a similarity function to derive the candidate of the hand that is most similar to a given hand target model. And then, Kalman filter is used to estimate the position of the hand target. The results of hand tracking, tested on various video sequences, are robust to changes in shape as well as partial occlusion.Keywords: Computer Vision and Image Analysis, Object Tracking, Gesture Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2928