Search results for: Critical Design Features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7162

Search results for: Critical Design Features

2782 Applying GQM Approach towards Development of Criterion-Referenced Assessment Model for OO Programming Courses

Authors: Norazlina Khamis, Sufian Idris, Rodina Ahmad

Abstract:

The most influential programming paradigm today is object oriented (OO) programming and it is widely used in education and industry. Recognizing the importance of equipping students with OO knowledge and skills, it is not surprising that most Computer Science degree programs offer OO-related courses. How do we assess whether the students have acquired the right objectoriented skills after they have completed their OO courses? What are object oriented skills? Currently none of the current assessment techniques would be able to provide this answer. Traditional forms of OO programming assessment provide a ways for assigning numerical scores to determine letter grades. But this rarely reveals information about how students actually understand OO concept. It appears reasonable that a better understanding of how to define and assess OO skills is needed by developing a criterion referenced model. It is even critical in the context of Malaysia where there is currently a growing concern over the level of competency of Malaysian IT graduates in object oriented programming. This paper discussed the approach used to develop the criterion-referenced assessment model. The model can serve as a guideline when conducting OO programming assessment as mentioned. The proposed model is derived by using Goal Questions Metrics methodology, which helps formulate the metrics of interest. It concluded with a few suggestions for further study.

Keywords: Object-oriented programming, programmingassessment, criterion-referenced assessment model, goal questionsmetrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
2781 Electricity Load Modeling: An Application to Italian Market

Authors: Giovanni Masala, Stefania Marica

Abstract:

Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.

Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
2780 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: Visual search, deep learning, convolutional neural network, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
2779 An Innovative Transient Free Adaptive SVC in Stepless Mode of Control

Authors: U. Gudaru, D. R. Patil

Abstract:

Electrical distribution systems are incurring large losses as the loads are wide spread, inadequate reactive power compensation facilities and their improper control. A comprehensive static VAR compensator consisting of capacitor bank in five binary sequential steps in conjunction with a thyristor controlled reactor of smallest step size is employed in the investigative work. The work deals with the performance evaluation through analytical studies and practical implementation on an existing system. A fast acting error adaptive controller is developed suitable both for contactor and thyristor switched capacitors. The switching operations achieved are transient free, practically no need to provide inrush current limiting reactors, TCR size minimum providing small percentages of nontriplen harmonics, facilitates stepless variation of reactive power depending on load requirement so as maintain power factor near unity always. It is elegant, closed loop microcontroller system having the features of self regulation in adaptive mode for automatic adjustment. It is successfully tested on a distribution transformer of three phase 50 Hz, Dy11, 11KV/440V, 125 KVA capacity and the functional feasibility and technical soundness are established. The controller developed is new, adaptable to both LT & HT systems and practically established to be giving reliable performance.

Keywords: Binary Sequential switched capacitor bank, TCR, Nontriplen harmonics, step less Q control, transient free

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
2778 Interdisciplinarity: A Pedagogical Practice in the Classrooms

Authors: C. Cruz, A. Breda

Abstract:

The world is changing and, consequently, the young people need to acquire more sophisticated tools and skills to lead with the new societies’ challenges. In the curriculum of the Portuguese education system, in the profile of students leaving compulsory education, the critical thinking and creative thinking are pointed out as skills to be developed, as well as the capacity of interconnect different knowledge and applicate them in different contexts and learning areas. Unlike primary school teachers, teachers specialized in a specific area sometimes reveal more difficulties in developing interdisciplinary approaches in the classrooms and, despite the effort, the interdisciplinarity is not a common practice in schools. Statements like "Mathematics is everywhere" are unquestionable, however, some math teachers continue to develop an abstract teaching of mathematics devoid of any connection with reality. Good mathematical problems in real contexts are promising in the development of interdisciplinary pedagogical practices. However, these problems are often addressed by teachers in multidisciplinary rather than interdisciplinary contexts or are not addressed at all due several reasons, which range from insecurity in working on disciplinary domains with which they are not comfortable to a lack of pedagogical resources. In this study this issue is approached through a case study involving Mathematics teachers, which, in their professional development scope, attended a training aimed at stimulating interdisciplinary practices in real contexts, namely related to the COVID-19 pandemic.

Keywords: Interdisciplinarity, Mathematics, professional development, teacher training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195
2777 Determination of Surface Roughness by Ball Burnishing Process Using Factorial Techniques

Authors: P. S. Dabeer, G. K. Purohit

Abstract:

Burnishing is a method of finishing and hardening machined parts by plastic deformation of the surface. Experimental work based on central composite second order rotatable design has been carried out on a lathe machine to establish the effects of ball burnishing parameters on the surface roughness of brass material. Analysis of the results by the analysis of variance technique and the F-test show that the parameters considered, have significant effects on the surface roughness.

Keywords: Ball burnishing, Response surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
2776 Interactive Concept-based Search using MOEA:The Hierarchical Preferences Case

Authors: Gideon Avigad, Amiram Moshaiov, Neima Brauner

Abstract:

An IEC technique is described for a multi-objective search of conceptual solutions. The survivability of solutions is influenced by both model-based fitness and subjective human preferences. The concepts- preferences are articulated via a hierarchy of sub-concepts. The suggested method produces an objectivesubjective front. Academic example is employed to demonstrate the proposed approach.

Keywords: Conceptual solution, engineering design, hierarchical planning, multi-objective search, problem reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
2775 Sensor Optimisation via H∞ Applied to a MAGLEV Suspension System

Authors: Konstantinos Michail, Argyrios Zolotas, Roger Goodall, John Pearson

Abstract:

In this paper a systematic method via H∞ control design is proposed to select a sensor set that satisfies a number of input criteria for a MAGLEV suspension system. The proposed method recovers a number of optimised controllers for each possible sensor set that satisfies the performance and constraint criteria using evolutionary algorithms.

Keywords: H-infinity, Sensor optimisation, Genetic algorithms, MAGLEV vehicles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
2774 Effects of Increased Green Surface on a Densely Built Urban Fabric: The Case of Budapest

Authors: Viktória Sugár, Orsolya Frick, Gabriella Horváth, A. Bendegúz Vöröss, Péter Leczovics, Géza Baráth

Abstract:

Urban greenery has multiple positive effects both on the city and its residents. Apart from the visual advantages, it changes the micro-climate by cooling and shading, also increasing vapor and oxygen, reducing dust and carbon-dioxide content at the same time. The above are all critical factors of livability of an urban fabric. Unfortunately, in a dense, historical district there are restricted possibilities to build green surfaces. The present study collects and systemizes the applicable green solutions in the case of a historical downtown district of Budapest. The study contains a GIS-based measurement of the eligible surfaces for greenery, and also calculates the potential of oxygen production, carbon-dioxide reduction and cooling effect of an increased green surface.  It can be concluded that increasing the green surface has measurable effects on a densely built urban fabric, including air quality, micro-climate and other environmental factors.

Keywords: Urban greenery, green roof, green wall, green surface potential, sustainable city, oxygen production, carbon-dioxide reduction, geographical information system, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
2773 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.

Keywords: Enhanced ideal gas molecular movement, ideal gas molecular movement, model updating method, probability-based damage detection, uncertainty quantification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
2772 Battery/Supercapacitor Emulator for Chargers Functionality Testing

Authors: S. Farag, A. Kupeman

Abstract:

In this paper, design of solid-state battery/supercapacitor emulator based on dc-dc boost converter is described. The emulator mimics charging behavior of any storage device based on a predefined behavior set by the user. The device is operated by a two-level control structure: high-level emulating controller and low- level input voltage controller. Simulation and experimental results are shown to demonstrate the emulator operation.

Keywords: Battery, Charger, Energy, Storage, Supercapacitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866
2771 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient, but not the magnitude. A neural network with two hidden layers was then used to learn the coefficient magnitudes, along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: Quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 223
2770 Supplementary Cementitious Materials as Sustainable Partial Replacement for Cement in the Building Industry

Authors: Nwakaego C. Onyenokporo

Abstract:

Cement is the most extensively used construction material due to its strength and versatility of use. However, the production of Portland cement has become unsustainable because of high energy usage, reduction of natural non-renewable resources and emissions of greenhouse gases. Production of cement contributes to anthropogenic greenhouse gases emissions annually. The growing concerns for the environment resulting from this constant and excessive use of cement has therefore raised the need for more green materials and technology. The use of supplementary cementitious materials (SCMs) is considered as one of the many alternatives suited to address this issue and serve as a sustainable partial replacement for cement in construction. This paper will examine the reuse of these waste materials to partially replace Portland cement. It provides a critical review of literature analysing various supplementary cementitious materials which are applicable in the building industry as either partial replacement for cement or aggregates. These materials have been grouped based on source into industrial wastes, domestic/general wastes, and agricultural wastes. The reuse of these waste materials could potentially reduce the negative effects of cement production and reduce landfills which constitute an environmental nuisance. This paper seeks to inform building industry professionals and researchers in the field on the applicability of these waste materials in construction.

Keywords: cement, greenhouse gases, landfills, sustainable, waste materials

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
2769 Supplementary Cementitious Materials as Sustainable Partial Replacement for Cement in the Building Industry

Authors: Nwakaego C. Onyenokporo

Abstract:

Cement is the most extensively used construction material due to its strength and versatility of use. However, the production of Portland cement has become unsustainable because of high energy usage, reduction of natural non-renewable resources and emissions of greenhouse gases. Production of cement contributes to anthropogenic greenhouse gases emissions annually. The growing concerns for the environment resulting from this constant and excessive use of cement has therefore raised the need for more green materials and technology. The use of supplementary cementitious materials (SCMs) is considered as one of the many alternatives suited to address this issue and serve as a sustainable partial replacement for cement in construction. This paper will examine the reuse of these waste materials to partially replace Portland cement. It provides a critical review of literature analysing various supplementary cementitious materials which are applicable in the building industry as either partial replacement for cement or aggregates. These materials have been grouped based on source into industrial wastes, domestic/general wastes, and agricultural wastes. The reuse of these waste materials could potentially reduce the negative effects of cement production and reduce landfills which constitute an environmental nuisance. This paper seeks to inform building industry professionals and researchers in the field on the applicability of these waste materials in construction.

Keywords: Cement, greenhouse gases, landfills, sustainable, waste materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
2768 Integrating AI Visualization Tools to Enhance Student Engagement and Understanding in AI Education

Authors: Yong W. Foo, Lai M. Tang

Abstract:

Artificial Intelligence (AI), particularly the usage of deep neural networks for hierarchical representations from data, has found numerous complex applications across various domains, including computer vision, robotics, autonomous vehicles, and other scientific fields. However, their inherent “black box” nature can sometimes make it challenging for early researchers or school students of various levels to comprehend and trust the results they produce. Consequently, there has been a growing demand for reliable visualization tools in engineering and science education to help learners understand, trust, and explain a deep learning network. This has led to a notable emphasis on the visualization of AI in the research community in recent years. AI visualization tools are increasingly being adopted to significantly improve the comprehension of complex topics in deep learning. This paper presents an approach to empower students to actively explore the inner workings of deep neural networks by integrating the student-centered learning approach of flipped classroom models with the investigative capabilities of AI visualization tools, namely, the TensorFlow Playground, the Local Interpretable Model-agnostic Explanations (LIME), and the SHapley Additive exPlanations (SHAP), for delivering an AI education curriculum. Integrating these two factors is crucial for fostering ownership, responsibility, and critical thinking skills in the age of AI.

Keywords: Deep Learning, Explainable AI, AI Visualization, Representation Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54
2767 Kinematic and Dynamic Analysis of a Lower Limb Exoskeleton

Authors: Tawakal Hasnain Baluch, Adnan Masood, Javaid Iqbal, Umer Izhar, Umar Shahbaz Khan

Abstract:

This paper will provide the kinematic and dynamic analysis of a lower limb exoskeleton. The forward and inverse kinematics of proposed exoskeleton is performed using Denevit and Hartenberg method. The torques required for the actuators will be calculated using Lagrangian formulation technique. This research can be used to design the control of the proposed exoskeleton.

Keywords: Dynamic Analysis, Exoskeleton, Kinematic Analysis, Lower Limb, Rehabilitation Robotics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4605
2766 Integration of LCA and BIM for Sustainable Construction

Authors: Laura Álvarez Antón, Joaquín Díaz

Abstract:

The construction industry is turning towards sustainability. It is a well-known fact that sustainability is based on a balance between environmental, social and economic aspects. In order to achieve sustainability efficiently, these three criteria should be taken into account in the initial project phases, since that is when a project can be influenced most effectively. Thus the aim must be to integrate important tools like BIM and LCA at an early stage in order to make full use of their potential. With the synergies resulting from the integration of BIM and LCA, a wider approach to sustainability becomes possible, covering the three pillars of sustainability.

Keywords: Building Information Modeling (BIM), Construction Industry, Design Phase, Life Cycle Assessment (LCA), Sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5432
2765 Communication and Quality in Distributed Agile Development: An Empirical Case Study

Authors: R. Green, T. Mazzuchi, S. Sarkani

Abstract:

Through inward perceptions, we intuitively expect distributed software development to increase the risks associated with achieving cost, schedule, and quality goals. To compound this problem, agile software development (ASD) insists one of the main ingredients of its success is cohesive communication attributed to collocation of the development team. The following study identified the degree of communication richness needed to achieve comparable software quality (reduce pre-release defects) between distributed and collocated teams. This paper explores the relevancy of communication richness in various development phases and its impact on quality. Through examination of a large distributed agile development project, this investigation seeks to understand the levels of communication required within each ASD phase to produce comparable quality results achieved by collocated teams. Obviously, a multitude of factors affects the outcome of software projects. However, within distributed agile software development teams, the mode of communication is one of the critical components required to achieve team cohesiveness and effectiveness. As such, this study constructs a distributed agile communication model (DAC-M) for potential application to similar distributed agile development efforts using the measurement of the suitable level of communication. The results of the study show that less rich communication methods, in the appropriate phase, might be satisfactory to achieve equivalent quality in distributed ASD efforts.

Keywords: agile software development (ASD), distributedsoftware teams, media richness theory, software development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167
2764 Performance Based Seismic Retrofit of Masonry Infilled Reinforced Concrete Frames Using Passive Energy Dissipation Devices

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.

Keywords: Energy Methods, Masonry Infilled Frame, Near-field Earthquakes, Seismic Protection, Supplemental damping devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
2763 Recommended Practice for Experimental Evaluation of the Seepage Sensitivity Damage of Coalbed Methane Reservoirs

Authors: Hao Liu, Lihui Zheng, Chinedu J. Okere, Chao Wang, Xiangchun Wang, Peng Zhang

Abstract:

The coalbed methane (CBM) extraction industry (an unconventional energy source) has not established guidelines for experimental evaluation of sensitivity damage for coal samples. The existing experimental process of previous researches mainly followed the industry standard for conventional oil and gas reservoirs (CIS). However, the existing evaluation method ignores certain critical differences between CBM reservoirs and conventional reservoirs, which could inevitably result in an inaccurate evaluation of sensitivity damage and, eventually, poor decisions regarding the formulation of formation damage prevention measures. In this study, we propose improved experimental guidelines for evaluating seepage sensitivity damage of CBM reservoirs by leveraging on the shortcomings of the existing methods. The proposed method was established via a theoretical analysis of the main drawbacks of the existing methods and validated through comparative experiments. The results show that the proposed evaluation technique provided reliable experimental results that can better reflect actual reservoir conditions and correctly guide the future development of CBM reservoirs. This study is pioneering the research on the optimization of experimental parameters for efficient exploration and development of CBM reservoirs.

Keywords: Coalbed methane, formation damage, permeability, unconventional energy source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 395
2762 Malicious Vehicle Detection Using Monitoring Algorithm in Vehicular Adhoc Networks

Authors: S. Padmapriya

Abstract:

Vehicular Adhoc Networks (VANETs), a subset of Mobile Adhoc Networks (MANETs), refers to a set of smart vehicles used for road safety. This vehicle provides communication services among one another or with the Road Side Unit (RSU). Security is one of the most critical issues related to VANET as the information transmitted is distributed in an open access environment. As each vehicle is not a source of all messages, most of the communication depends on the information received from other vehicles. To protect VANET from malicious action, each vehicle must be able to evaluate, decide and react locally on the information received from other vehicles. Therefore, message verification is more challenging in VANET because of the security and privacy concerns of the participating vehicles. To overcome security threats, we propose Monitoring Algorithm that detects malicious nodes based on the pre-selected threshold value. The threshold value is compared with the distrust value which is inherently tagged with each vehicle. The proposed Monitoring Algorithm not only detects malicious vehicles, but also isolates the malicious vehicles from the network. The proposed technique is simulated using Network Simulator2 (NS2) tool. The simulation result illustrated that the proposed Monitoring Algorithm outperforms the existing algorithms in terms of malicious node detection, network delay, packet delivery ratio and throughput, thereby uplifting the overall performance of the network.

Keywords: VANET, security, malicious vehicle detection, threshold value, distrust value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
2761 H.263 Based Video Transceiver for Wireless Camera System

Authors: Won-Ho Kim

Abstract:

In this paper, a design of H.263 based wireless video transceiver is presented for wireless camera system. It uses standard WIFI transceiver and the covering area is up to 100m. Furthermore the standard H.263 video encoding technique is used for video compression since wireless video transmitter is unable to transmit high capacity raw data in real time and the implemented system is capable of streaming at speed of less than 1Mbps using NTSC 720x480 video.

Keywords: Digital signal processing, H.263 video encoder, surveillance camera, wireless video transceiver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
2760 Six-Phase Tooth-Coil Winding Starter-Generator Embedded in Aerospace Engine

Authors: Flur R. Ismagilov, Vyacheslav E. Vavilov, Denis V. Gusakov

Abstract:

This paper is devoted to solve the problem of increasing the electrification of aircraft engines by installing a synchronous generator at high pressure shaft. Technical solution of this problem by various research centers is discussed. A design solution of the problem was proposed. To evaluate the effectiveness of the proposed cooling system, thermal analysis was carried out in ANSYS software.

Keywords: Flur R. Ismagilov, Vyacheslav E. Vavilov, Denis V. Gusakov

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
2759 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
2758 Modified Fuzzy PID Control for Networked Control Systems with Random Delays

Authors: Yong-can Cao, Wei-dong Zhang

Abstract:

To deal with random delays in Networked Control System (NCS), Modified Fuzzy PID Controller is introduced in this paper to implement real-time control adaptively. Via adjusting the control signal dynamically, the system performance is improved. In this paper, the design process and the ultimate simulation results are represented. Finally, examples and corresponding comparisons prove the significance of this method.

Keywords: Fuzzy Control, Networked Control System, PID, Random Delays

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
2757 Analytic Network Process in Location Selection and Its Application to a Real Life Problem

Authors: Eylem Koç, Hasan Arda Burhan

Abstract:

Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.

Keywords: Analytic Network Process, BOCR, location selection, multi-actor decision making, multi-criteria decision making, real life problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
2756 The Control Vector Scheme for Design of Planar Primitive PH curves

Authors: Ching-Shoei Chiang, Sheng-Hsin Tsai, James Chen

Abstract:

The PH curve can be constructed by given parameters, but the shape of the curve is not so easy to image from the value of the parameters. On the contract, Bézier curve can be constructed by the control polygon, and from the control polygon, we can image the figure of the curve. In this paper, we want to use the hodograph of Bézier curve to construct PH curve by selecting part of the control vectors, and produce other control vectors, so the property of PH curve exists.

Keywords: PH curve, hodograph, Bézier curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
2755 Sampled-Data Control for Fuel Cell Systems

Authors: H. Y. Jung, Ju H. Park, S. M. Lee

Abstract:

Sampled-data controller is presented for solid oxide fuel cell systems which is expressed by a sector bounded nonlinear model. The proposed control law is obtained by solving a convex problem satisfying several linear matrix inequalities. Simulation results are given to show the effectiveness of the proposed design method.

Keywords: Sampled-data control, Sector bound, Solid oxide fuel cell, Time-delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
2754 A Novel Optimized JTAG Interface Circuit Design

Authors: Chenguang Guo, Lei Chen, Yanlong Zhang

Abstract:

This paper describes a novel optimized JTAG interface circuit between a JTAG controller and target IC. Being able to access JTAG using only one or two pins, this circuit does not change the original boundary scanning test frequency of target IC. Compared with the traditional JTAG interface which based on IEEE std. 1149.1, this reduced pin technology is more applicability in pin limited devices, and it is easier to control the scale of target IC for the designer.

Keywords: Boundary scan, JTAG interface, Test frequency, Reduced pin

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
2753 Evaluation of Static Modulus of Elasticity Depending on Concrete Compressive Strength

Authors: K. Krizova, R. Hela

Abstract:

The paper is focused on monitoring of dependencies of different composition concretes on elastic modulus values. To obtain a summary of elastic modulus development in dependence of concrete composition design variability was the objective of the experiment. Essential part of this work was initiated as a reaction to building practice when questions of elastic moduli arose at the same time and which mostly did not obtain the required and expected values from concrete constructions.

Keywords: Concrete, Compressive strength, Modulus of elasticity, EuroCode 2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2863